首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives The purpose of this study was to clarify the cause of decreased metabolic clearance of losartan in patients with end‐stage renal failure. The influence of serum from haemodialysis patients (uraemic serum) and uraemic toxins on the metabolism of losartan to EXP‐3174 was investigated in vitro. Methods The formation of EXP‐3174 was estimated using pooled human liver microsomes. 3‐Carboxy‐4‐methyl‐5‐propyl‐2‐furanpropanoic acid, hippuric acid, indole‐3‐acetic acid, 3‐indoxyl sulfate and p‐cresol were used as uraemic toxins. Key findings Uraemic serum potently decreased the formation of EXP‐3174 in pooled human liver microsomes. In addition, 3‐indoxyl sulfate and p‐cresol significantly decreased the formation of EXP‐3174 in a concentration‐dependent manner. Furthermore, normal serum (10% v/v) with both 3‐indoxyl sulfate and p‐cresol (both 20 μmol/l) significantly decreased the formation of EXP‐3174 by 46%, which was similar to the level of inhibition with uraemic serum (10% v/v). Conclusions These results suggest that decreased the metabolic clearance of losartan in patients with end‐stage renal failure is partly due to high concentrations of 3‐indoxyl sulfate and p‐cresol.  相似文献   

2.
Twenty‐two of Galderma's proprietary compounds were tested in the GADD45α‐GFP ‘GreenScreen HC’ assay (GS), the SOS‐ChromoTest and the Mini‐Ames to evaluate GSs performance for early genotoxicity screening purposes. Forty more characterized compounds were also tested, including antibiotics: metronidazole, clindamycin, tetracycline, lymecycline and neomycin; and catecholamines: resorcinol mequinol, hydroquinone, one aneugen carbendazim, one corticoid dexamethasone, one peroxisome proliferator‐activated receptor rosiglitazone, one pesticide carbaryl and two further proprietary molecules with in vitro genotoxicity data. With proprietary molecules, this study concluded that the GS renders the SOS‐ChromoTest obsolete for in vitro screening. The GS confirmed all results of the Mini‐Ames test (100% concordance). Compared with the micronucleus test, the GS showed a concordance of 82%. With known compounds, the GS ranked the potency of positive results for catecholamines in accordance with other genotoxicity tests and showed very reproducible results. It confirmed positive results for carbendazim, for tetracycline antibiotics and for carbaryl. The GS produced negative results for metronidazole, a nitroreduction‐specific bacterial mutagen, for dexamethasone (a non‐genotoxic apoptosis inducer), for rosiglitazone (a GADD45γ promoter inducer) and for clindamycin and neomycin (inhibitors of macromolecular synthesis in bacteria). As such, the GS appears to be a reproducible, robust, specific and sensitive test for genotoxicity screening. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Objective Although the human small intestine serves primarily as an absorptive organ for nutrients and water, it also has the ability to metabolise drugs. Interest in the small intestine as a drug‐metabolising organ has been increasing since the realisation that it is probably the most important extrahepatic site of drug biotransformation. Key findings Among the metabolising enzymes present in the small intestinal mucosa, the cytochromes P450 (CYPs) are of particular importance, being responsible for the majority of phase I drug metabolism reactions. Many drug interactions involving induction or inhibition of CYP enzymes, in particular CYP3A, have been proposed to occur substantially at the level of the intestine rather than exclusively within the liver, as originally thought. CYP3A and CYP2C represent the major intestinal CYPs, accounting for approximately 80% and 18%, respectively, of total immunoquantified CYPs. CYP2J2 is also consistently expressed in the human gut wall. In the case of CYP1A1, large interindividual variation in the expression levels has been reported. Data for the intestinal expression of the polymorphic CYP2D6 are conflicting. Several other CYPs, including the common hepatic isoform CYP2E1, are expressed in the human small intestine to only a very low extent, if at all. The distribution of most CYP enzymes is not uniform along the human gastrointestinal tract, being generally higher in the proximal regions of the small intestine. Summary This article reviews the current state of knowledge of CYP enzyme expression in human small intestine, the role of the gut wall in CYP‐mediated metabolism, and how this metabolism limits the bioavailability of orally administered drugs. Possible interactions between drugs and CYP activity in the small intestine are also discussed.  相似文献   

4.
Many N,N‐dialkylated tryptamines show psychoactive properties and were encountered as new psychoactive substances. The aims of the presented work were to study the phase I and II metabolism and the detectability in standard urine screening approaches (SUSA) of 5‐methoxy‐2‐methyl‐N,N‐diallyltryptamine (5‐MeO‐2‐Me‐DALT), 5‐methoxy‐2‐methyl‐N‐allyl‐N‐cyclohexyltryptamine (5‐MeO‐2‐Me‐ALCHT), and 5‐methoxy‐2‐methyl‐N,N‐diisopropyltryptamine (5‐MeO‐2‐Me‐DIPT) using gas chromatography–mass spectrometry (GC–MS), liquid chromatography coupled with multistage accurate mass spectrometry (LC–MSn), and liquid chromatography‐high‐resolution tandem mass spectrometry (LC‐HR‐MS/MS). For metabolism studies, urine was collected over a 24 h period after administration of the compounds to male Wistar rats at 20 mg/kg body weight (BW). Phase I and II metabolites were identified after urine precipitation with acetonitrile by LC‐HR‐MS/MS. 5‐MeO‐2‐Me‐DALT (24 phase I and 12 phase II metabolites), 5‐MeO‐2‐Me‐ALCHT (24 phase I and 14 phase II metabolites), and 5‐MeO‐2‐Me‐DIPT (20 phase I and 11 phase II metabolites) were mainly metabolized by O‐demethylation, hydroxylation, N‐dealkylation, and combinations of them as well as by glucuronidation and sulfation of phase I metabolites. Incubations with mixtures of pooled human liver microsomes and cytosols (pHLM and pHLC) confirmed that the main metabolic reactions in humans and rats might be identical. Furthermore, initial CYP activity screenings revealed that CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were involved in hydroxylation, CYP2C19 and CYP2D6 in O‐demethylation, and CYP2C19, CYP2D6, and CYP3A4 in N‐dealkylation. For SUSAs, GC–MS, LC‐MSn, and LC‐HR‐MS/MS were applied to rat urine samples after 1 or 0.1 mg/kg BW doses, respectively. In contrast to the GC–MS SUSA, both LC–MS SUSAs were able to detect an intake of 5‐MeO‐2‐Me‐ALCHT and 5‐MeO‐2‐Me‐DIPT via their metabolites following 1 mg/kg BW administrations and 5‐MeO‐2‐Me‐DALT following 0.1 mg/kg BW dosage. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
GSK5182 (4‐[(Z)‐1‐[4‐(2‐dimethylaminoethyloxy)phenyl]‐hydroxy‐2‐phenylpent‐1‐enyl]phenol) is a specific inverse agonist for estrogen‐related receptor γ, a member of the orphan nuclear receptor family that has important functions in development and homeostasis. This study was performed to elucidate the metabolites of GSK5182 and to characterize the enzymes involved in its metabolism. Incubation of human liver microsomes with GSK5182 in the presence of NADPH resulted in the formation of three metabolites, M1, M2 and M3. M1 and M3 were identified as N‐desmethyl‐GSK5182 and GSK5182 N‐oxide, respectively, on the basis of liquid chromatography‐tandem mass spectrometric (LC‐MS/MS) analysis. M2 was suggested to be hydroxy‐GSK5182 through interpretation of its MS/MS fragmentation pattern. In addition, the specific cytochrome P450 (P450) and flavin‐containing monooxygenase (FMO) isoforms responsible for GSK5182 oxidation to the three metabolites were identified using a combination of correlation analysis, chemical inhibition in human liver microsomes and metabolism by expressed recombinant P450 and FMO isoforms. GSK5182 N‐demethylation and hydroxylation is mainly mediated by CYP3A4, whereas FMO1 and FMO3 contribute to the formation of GSK5182 N‐oxide from GSK5182. The present data will be useful for understanding the pharmacokinetics and drug interactions of GSK5182 in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
7.
A steady-state model is presented of the metabolism of imipramine. In this model, the N-demethylation and 2-hydroxylation rates of imipramine were measured with and without the presence of metabolites by using a tritium isotope of imipramine. At an imipramine concentration of 5 micromol/l, desipramine, in the concentration ratio 1:2, decreased the total metabolic rate by 70%. The 2-hydroxylation pathway was mainly inhibited, thereby increasing the N-demethylation pathway from 25% to 62% in the presence of desipramine. The additional presence of 2-hydroxy-imipramine did not change this situation. A study on the relative influence of CYP1A2 and 3A4 only revealed minor changes in the presence of desipramine. In conclusion, the presence of metabolites in metabolism studies undertaken in vitro may reflect the changes from the single- to the multiple-dose situation observed clinically and therefore constitute a better model for the clinical application of a drug.  相似文献   

8.
9.
10.
11.
12.
13.
Cytochrome P450 2C19 (CYP2C19) allelic variants are thought to play an important part in inter‐individual variability in drug metabolism. We evaluated the in vitro hydroxylation of nebivolol by 31 CYP2C19 alleles identified in a Chinese Han population recently. Wild‐type CYP2C19*1B and 30 isoforms were highly expressed in insect cells, and the enzymatic activities of CYP2C19 variants towards nebivolol hydroxylation were characterized. Among the 30 CYP2C19 alleles, most of the recombinant CYP2C19 variants exhibited no or significantly low activity compared with CYP2C19*1B. Three variants, CYP2C19*29 (K28I), L16F, and CYP2C19*23 (G91R), showed increased intrinsic clearance of >140% CYP2C19*1B. Combined with a previous study on the effects of CYP2D6 variants on nebivolol metabolism, our comprehensive analyses on the enzymatic activities of CYP2C19 variants towards nebivolol in the present study may contribute to determination of the optimal doses of nebivolol for the treatment of hypertension and understanding of “individualized” medication.  相似文献   

14.
AIM: To assess the power of in vivo studies needed to discern the effect of genotype on pharmacokinetics (PK) and pharmacodynamics (PD) using CYP2C9 and (S)-warfarin as an example. METHODS: Information on the in vitro metabolism of (S)-warfarin and genetic variation in CYP2C9 was incorporated into a mechanistic population-based PK-PD model. The influence of study design on the ability to detect significant differences in PK (AUC(0-12 h)) and PD (AUEC(0-12 h) INR) between CYP2C9 genotypes was investigated. RESULTS: A study size of 90 (based on the natural abundance of genotypes and uniform dosage) was required to achieve 80% power to discriminate the PK of (S)-warfarin between wild type (*1/*1) and the combination of all other genotypes. About 250 subjects were needed to detect a difference in anticoagulant response. The power to detect differences between specific genotypes was much lower. Analysis of experimental comparisons of the PK or PD between wild-type and other individual genotypes indicated that only 21% of cases (20 of 95 comparisons within 11 PD and four PK-PD studies) reported statistically significant differences. This was similar to the percentage expected from our simulations (20%, chi(2) test, P = 0.80). Simulations of studies enriched with specific genotypes indicated that only three and five subjects were required to detect differences in PK and PD between wild type and the *3/*3 genotype, respectively. CONCLUSION: The utilization of prior information (including in vivo enzymology) in clinical trial simulations can guide the design of subsequent in vivo studies of the impact of genetic polymorphisms, and may help to avoid costly, inconclusive outcomes.  相似文献   

15.
The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.  相似文献   

16.
Objectives The effects of myricetin, a natural flavonoid, on the pharmacokinetics of losartan and its active metabolite, EXP‐3174, were investigated in rats. Losartan and myricetin interact with cytochrome P450 (CYP) enzymes and P‐glycoprotein, and the increase in the use of health supplements may result in myricetin being taken concomitantly with losartan as a combination therapy to treat or prevent cardiovascular diseases. Methods The pharmacokinetic parameters of losartan and EXP‐3174 were determined after oral administration of losartan (9 mg/kg) to rats in the presence or absence of myricetin (0.4, 2 and 8 mg/kg). The effects of myricetin on P‐glycoprotein as well as CYP3A4 and CYP2C9 activity were also evaluated. Key findings Myricetin inhibited CYP3A4 and CYP2C9 enzyme activity with a 50% inhibition concentration of 7.8 and 13.5 µm , respectively. In addition, myricetin significantly enhanced the cellular accumulation of rhodamine 123 in MCF‐7/ADR cells overexpressing P‐glycoprotein in a concentration‐dependent manner. The pharmacokinetic parameters of losartan were significantly altered by myricetin compared with the control. The presence of myricetin (2 or 8 mg/kg) increased the area under the plasma concentration–time curve of losartan by 31.4–61.1% and peak plasma concentration of losartan by 31.8–50.2%. Consequently, the absolute bioavailability of losartan in the presence of myricetin increased significantly (P < 0.05, 2 mg/kg; P < 0.01, 8 mg/kg) compared with the control. There was no significant change in the time to reach the peak plasma concentration, apparent volume of distribution at steady state or terminal half‐life of losartan in the presence of myricetin. Furthermore, concurrent use of myricetin (8 mg/kg) significantly decreased the metabolite–parent area under the plasma concentration–time curve ratio by 20%, implying that myricetin may inhibit the CYP‐mediated metabolism of losartan to its active metabolite, EXP‐3174. Conclusions The enhanced bioavailability of losartan may be mainly due to inhibition of the CYP3A4‐ and CYP2C9‐mediated metabolism of losartan in the small intestine or in the liver, and the P‐glycoprotein efflux pump in the small intestine by myricetin.  相似文献   

17.
A range of novel pyridine‐2,4,6‐tricarbohydrazide thiourea compounds ( 4a–i ) were synthesized in good to excellent yields (63–92%). The enzyme inhibitory potentials of these compounds were investigated against α‐ and β‐glucosidases because these enzymes play a crucial role in treating type‐2 diabetes mellitus (T2DM). As compared to the reference compound acarbose (IC50 38.22 ± 0.12 μM), compounds 4i (IC50 25.49 ± 0.67 μM), 4f (IC50 28.91 ± 0.43 μM), 4h (IC50 30.66 ± 0.52 μM), and 4e (IC50 35.01 ± 0.45 μM) delivered better inhibition against α‐glucosidase and were quite inactive/completely inactive against β‐glucosidase. The structure–activity relationship of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

18.
Orteronel is a nonsteroidal, selective inhibitor of 17,20‐lyase that was recently in phase 3 clinical development as a treatment for castration‐resistant prostate cancer. In humans, the primary clearance route for orteronel is renal excretion. Human liver microsomal studies indicated that orteronel weakly inhibits CYP1A2, 2C8, 2C9 and 2C19, with IC50 values of 17.8, 27.7, 30.8 and 38.8 µm , respectively, whereas orteronel does not inhibit CYP2B6, 2D6 or 3A4/5 (IC50 > 100 µm ). Orteronel also does not exhibit time‐dependent inhibition of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 or 3A4/5. The results of a static model indicated an [I]/Ki ratio >0.1 for CYP1A2, 2C8, 2C9 and 2C19. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to assess the potential for drug–drug interactions (DDIs) between orteronel and theophylline, repaglinide, (S)‐warfarin and omeprazole, which are sensitive substrates of CYP1A2, 2C8, 2C9 and 2C19, respectively. Simulation of the area under the plasma concentration–time curve (AUC) of these four CYP substrates in the presence and absence of orteronel revealed geometric mean AUC ratios <1.25. Therefore, in accordance with the 2012 US FDA Draft Guidance on DDIs, orteronel can be labeled a ‘non‐inhibitor’ and further clinical DDI evaluation is not required. In PBPK models of moderate and severe renal impairment, the AUC of orteronel was predicted to increase by 52% and 83%, respectively. These results are in agreement with those of a clinical trial in which AUC increases of 38% and 87% were observed in patients with moderate and severe renal impairment, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
4‐Methylesculetin (4‐ME) is a synthetic derivative of coumarin that displays a potent reactive oxygen species (ROS) scavenger and metal chelating agent and therefore has been produced to help reduce the risk of human disease. The main objective of this study was to investigate the in vivo genotoxicity of 4‐ME and initially to verify its potential antigenotoxicity on doxorubicin (DXR)‐induced DNA damage. Different doses of 4‐ME (500, 1000 and 2000 mg kg–1 body weight) were administered by gavage only or with a simultaneous intraperitoneal (i.p.) injection of DXR (80 mg kg–1). The following endpoints were analyzed: DNA damage in peripheral blood, liver, bone marrow, brain and testicle cells according to an alkaline (pH > 13) comet assay and micronucleus induction in bone marrow cells. Cytotoxicity was assessed by scoring polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). No differences were observed between the negative control and the groups treated with a 4‐ME dose for any of the endpoints analyzed, indicating that it lacks genotoxic and cytotoxic effects. Moreover, 4‐ME demonstrated protective effects against DXR‐induced DNA damage at all tested doses and in all analyzed cell types, which ranged from 34.1% to 93.3% in the comet assay and 54.4% to 65.9% in the micronucleus test. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
AH‐7921 (3,4‐dichloro‐N‐[(1‐dimethylamino)cyclohexylmethyl]benzamide) is a new synthetic opioid and has led to multiple non‐fatal and fatal intoxications. To comprehensively study AH‐7921 metabolism, we assessed human liver microsome (HLM) metabolic stability, determined AH‐7921's metabolic profile after human hepatocytes incubation, confirmed our findings in a urine case specimen, and compared results to in silico predictions. For metabolic stability, 1 µmol/L AH‐7921 was incubated with HLM for up to 1 h; for metabolite profiling, 10 µmol/L was incubated with pooled human hepatocytes for up to 3 h. Hepatocyte samples were analyzed by liquid chromatography quadrupole/time‐of‐flight high‐resolution mass spectrometry (MS). High‐resolution full scan MS and information‐dependent acquisition MS/MS data were analyzed with MetabolitePilot? (SCIEX) using multiple data processing algorithms. The presence of AH‐7921 and metabolites was confirmed in the urine case specimen. In silico prediction of metabolite structures was performed with MetaSite? (Molecular Discovery). AH‐7921 in vitro half‐life was 13.5 ± 0.4 min. We identified 12 AH‐7921 metabolites after hepatocyte incubation, predominantly generated by demethylation, less dominantly by hydroxylation, and combinations of different biotransformations. Eleven of 12 metabolites identified in hepatocytes were found in the urine case specimen. One metabolite, proposed to be di‐demethylated, N‐hydroxylated and glucuronidated, eluted after AH‐7921 and was the most abundant metabolite in non‐hydrolyzed urine. MetaSite? correctly predicted the two most abundant metabolites and the majority of observed biotransformations. The two most dominant metabolites after hepatocyte incubation (also identified in the urine case specimen) were desmethyl and di‐desmethyl AH‐7921. Together with the glucuronidated metabolites, these are likely suitable analytical targets for documenting AH‐7921 intake. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号