首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BONE》2013,57(2):482-488
In the FREEDOM study, denosumab treatment (60 mg every 6 months) decreased bone resorption, increased bone mineral density (BMD), and reduced new vertebral, nonvertebral, and hip fractures over 36 months in postmenopausal women with osteoporosis. In a subset of these women, hip quantitative computed tomography (QCT) was performed at baseline and months 12, 24, and 36. These scans were analyzed using Medical Image Analysis Framework (MIAF) software, which allowed assessment of total hip integral, trabecular, subcortical, and cortical compartments; the cortical compartment was further divided into 2 areas of interest (outer and inner cortex). This substudy reports changes in BMD and bone mineral content (BMC) from baseline and compared placebo with denosumab over 36 months of treatment (placebo N = 26; denosumab N = 36). Denosumab treatment resulted in significant improvements in total hip integral volumetric BMD (vBMD) and BMC from baseline at each time point. At month 36, the mean percentage increase from baseline in total hip integral vBMD and BMC was 6.4% and 4.8%, respectively (both p < 0.0001). These gains were accounted for by significant increases in vBMD and BMC in the trabecular, subcortical, and cortical compartments. In the placebo group, total hip integral vBMD and BMC decreased at month 36 from baseline by − 1.5% and − 2.6%, respectively (both p < 0.05). The differences between denosumab and placebo were also significant at months 12, 24, and 36 for integral, trabecular, subcortical, and cortical vBMD and BMC (all p < 0.05 to < 0.0001). While the largest percentage differences occurred in trabecular vBMD and BMC, the largest absolute differences occurred in cortical vBMD and BMC. In summary, denosumab significantly improved both vBMD and BMC from baseline and placebo, assessed by QCT MIAF, in the integral, trabecular, subcortical, and cortical hip compartments, all of which are relevant to bone strength.  相似文献   

2.
Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p  0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.  相似文献   

3.

Summary

Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength.

Introduction

To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength.

Methods

In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated.

Results

Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p?<?0.01) and QCT (5.7%, p?<?0.0001). Between-treatment differences were significant for trabecular spine (p?=?0.0017) [non-parametric test], trabecular trochanter (10.7%, p?<?0.0001), total hip (10.8%, p?<?0.0001), and compressive strength indices at femoral neck (8.6%, p?=?0.0001), and trochanter (14.1%, p?<?0.0001).

Conclusions

Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength.  相似文献   

4.
FREEDOM was a phase 3 trial in 7808 women aged 60–90 yr with postmenopausal osteoporosis. Subjects received placebo or 60 mg denosumab subcutaneously every 6 mo for 3 yr in addition to daily calcium and vitamin D. Denosumab significantly decreased bone turnover; increased dual-energy X-ray absorptiometry (DXA) areal bone mineral density (aBMD); and significantly reduced new vertebral, nonvertebral, and hip fractures. In a subset of women (N = 209), lumbar spine, total hip, and femoral neck volumetric BMD (vBMD) were assessed by quantitative computed tomography at baseline and months 12, 24, and 36. Significant improvement from placebo and baseline was observed in aBMD and vBMD in the denosumab-treated subjects at all sites and time points measured. The vBMD difference from placebo reached 21.8%, 7.8%, and 5.9%, respectively, for the lumbar spine, total hip, and femoral neck at 36 mo (all p  0.0001). Compared with placebo and baseline, significant increases were also observed in bone mineral content (BMC) at the total hip (p < 0.0001) largely related to significant BMC improvement in the cortical compartment (p < 0.0001). These results supplement the data from DXA on the positive effect of denosumab on BMD in both the cortical and trabecular compartments.  相似文献   

5.
Hip fractures account for over one‐half the morbidity, mortality, and cost associated with osteoporosis. Fragility of the proximal femur is the result of rapid and unbalanced bone remodeling events that excavate more bone than they deposit, producing a porous, thinned, and fragile cortex. We hypothesized that the slowing of remodeling during treatment with denosumab allows refilling of the many cavities excavated before treatment now opposed by excavation of fewer new resorption cavities. The resulting net effect is a reduction in cortical porosity and an increase in proximal femur strength. Images were acquired at baseline and 36 months using multidetector CT in 28 women receiving denosumab and 22 women receiving placebo in a substudy of FREEDOM, a randomized, double‐blind, placebo‐controlled trial involving women with postmenopausal osteoporosis. Porosity was quantified using StrAx1.0 software. Strength was estimated using finite element analysis. At baseline, the higher the serum resorption marker, CTx, the greater the porosity of the total cortex (r = 0.34, p = 0.02), and the higher the porosity, the lower the hip strength (r = –0.31, p = 0.03). By 36 months, denosumab treatment reduced porosity of the total cortex by 3.6% relative to baseline. Reductions in porosity relative to placebo at 36 months were 5.3% in total cortex, 7.9% in compact‐appearing cortex, 5.6% in outer transitional zone, and 1.8% in inner transitional zone (all p < 0.01). The improvement in estimated hip integral strength of 7.9% from baseline (p < 0.0001) was associated with the reduction in total porosity (r = –0.41, p = 0.03). In summary, denosumab reduced cortical porosity of the proximal femoral shaft, resulting in increased mineralized matrix volume and improved strength, changes that may contribute to the reduction in hip and nonvertebral fractures reported with denosumab therapy. © 2016 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

6.
Denosumab is an approved therapy for postmenopausal women with osteoporosis at high or increased risk for fracture. In the FREEDOM study, denosumab reduced fracture risk and increased bone mineral density (BMD). We report the spine and hip dual-energy X-ray absorptiometry (DXA) BMD responses from the overall study of 7808 women and from a substudy of 441 participants in which more extensive spine and hip assessments as well as additional skeletal sites were evaluated. Significant BMD improvements were observed as early as 1 mo at the lumbar spine, total hip, and trochanter (all p < 0.005 vs placebo and baseline). BMD increased progressively at the lumbar spine, total hip, femoral neck, trochanter, 1/3 radius, and total body from baseline to months 12, 24, and 36 (all p < 0.005 vs placebo and baseline). BMD gains above the least significant change of more than 3% at 36 months were observed in 90% of denosumab-treated subjects at the lumbar spine and 74% at the total hip, and gains more than 6% occurred in 77% and 38%, respectively. In conclusion, denosumab treatment resulted in significant, early, and continued BMD increases at both trabecular and cortical sites throughout the skeleton over 36 mo with important gains observed in most subjects.  相似文献   

7.
Romosozumab is a bone‐forming agent with a dual effect of increasing bone formation and decreasing bone resorption. In FRActure study in postmenopausal woMen with ostEoporosis (FRAME), postmenopausal women with osteoporosis received romosozumab 210 mg s.c. or placebo once monthly for 12 months, followed by denosumab 60 mg s.c. once every 6 months in both groups for 12 months. One year of romosozumab increased spine and hip BMD by 13% and 7%, respectively, and reduced vertebral and clinical fractures with persistent fracture risk reduction upon transition to denosumab over 24 months. Here, we further characterize the BMD gains with romosozumab by quantifying the percentages of patients who responded at varying magnitudes; report the mean T‐score changes from baseline over the 2‐year study and contrast these results with the long‐term BMD gains seen with denosumab during Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) and its Extension studies; and assess fracture incidence rates in year 2, when all patients received denosumab. Among 7180 patients (n = 3591 placebo, n = 3589 romosozumab), most romosozumab‐treated patients experienced ≥3% gains in BMD from baseline at month 12 (spine, 96%; hip, 78%) compared with placebo (spine, 22%; hip, 16%). For romosozumab patients, mean absolute T‐score increases at the spine and hip were 0.88 and 0.32, respectively, at 12 months (placebo: 0.03 and 0.01) and 1.11 and 0.45 at 24 months (placebo‐to‐denosumab: 0.38 and 0.17), with the 2‐year gains approximating the effect of 7 years of continuous denosumab administration. Patients receiving romosozumab versus placebo in year 1 had significantly fewer vertebral fractures in year 2 (81% relative reduction; p < 0.001), with fewer fractures consistently observed across other fracture categories. The data support the clinical benefit of rebuilding the skeletal foundation with romosozumab before transitioning to antiresorptive therapy. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.  相似文献   

8.
In a randomized clinical trial in patients initiating glucocorticoid therapy (GC-I) or on long-term therapy (GC-C), denosumab every 6 months increased spine and hip bone mineral density at 12 and 24 months significantly more than daily risedronate. The aim of this study was to evaluate the effects of denosumab compared with risedronate on bone strength and microarchitecture measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) in GC-I and GC-C. A subset of 110 patients had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and tibia at baseline and at 12 and 24 months. Cortical and trabecular microarchitecture were assessed with standard analyses and failure load (FL) with micro-finite element analysis. At the radius at 24 months, FL remained unchanged with denosumab and significantly decreased with risedronate in GC-I (−4.1%, 95% confidence interval [CI] −6.4, −1.8) and, in GC-C, it significantly increased with denosumab (4.3%, 95% CI 2.1, 6.4) and remained unchanged with risedronate. Consequently, FL was significantly higher with denosumab than with risedronate in GC-I (5.6%, 95% CI 2.4, 8.7, p < 0.001) and in GC-C (4.1%, 95% CI 1.1, 7.2, p = 0.011). We also found significant differences between denosumab and risedronate in percentage changes in cortical and trabecular microarchitectural parameters in GC-I and GC-C. Similar results were found at the tibia. To conclude, this HR-pQCT study shows that denosumab is superior to risedronate in terms of preventing FL loss at the distal radius and tibia in GC-I and in increasing FL at the radius in GC-C, based on significant differences in changes in the cortical and trabecular bone compartments between treatment groups in GC-I and GC-C. These results suggest that denosumab could be a useful therapeutic option in patients initiating GC therapy or on long-term GC therapy and may contribute to treatment decisions in this patient population. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

9.
Premenopausal women with idiopathic osteoporosis (PreMenIOP) have marked deficits in skeletal microstructure. We have reported that sequential treatment with teriparatide and denosumab improves central skeletal bone mineral density (BMD) by dual-energy X-ray absorptiometry and central QCT in PreMenIOP. We conducted preplanned analyses of high-resolution peripheral quantitative computed tomography (HR-pQCT) scans from teriparatide and denosumab extension studies to measure effects on volumetric BMD (vBMD), microarchitecture, and estimated strength at the distal radius and tibia. Of 41 women enrolled in the parent teriparatide study (20 mcg daily), 34 enrolled in the HR-pQCT study. HR-pQCT participants initially received teriparatide (N = 24) or placebo (N = 10) for 6 months; all then received teriparatide for 24 months. After teriparatide, 26 enrolled in the phase 2B denosumab extension (60 mg q6M) for 24 months. Primary outcomes were percentage change in vBMD, microstructure, and stiffness after teriparatide and after denosumab. Changes after sequential teriparatide and denosumab were secondary outcomes. After teriparatide, significant improvements were seen in tibial trabecular number (3.3%, p = 0.01), cortical area and thickness (both 2.7%, p < 0.001), and radial trabecular microarchitecture (number: 6.8%, thickness: 2.2%, separation: −5.1%, all p < 0.02). Despite increases in cortical porosity and decreases in cortical density, whole-bone stiffness and failure load increased at both sites. After denosumab, increases in total (3.5%, p < 0.001 and 3.3%, p = 0.02) and cortical vBMD (1.7% and 3.2%; both p < 0.01), and failure load (1.1% and 3.6%; both p < 0.05) were seen at tibia and radius, respectively. Trabecular density (3.5%, p < 0.001) and number (2.4%, p = 0.03) increased at the tibia, while thickness (3.0%, p = 0.02) increased at the radius. After 48 months of sequential treatment, significant increases in total vBMD (tibia: p < 0.001; radius: p = 0.01), trabecular microstructure (p < 0.05), cortical thickness (tibia: p < 0.001; radius: p = 0.02), and whole bone strength (p < 0.02) were seen at both sites. Significant increases in total vBMD and bone strength parameters after sequential treatment with teriparatide followed by denosumab support the use of this regimen in PreMenIOP. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

10.
Romosozumab, a monoclonal antibody that binds sclerostin, has a dual effect on bone by increasing bone formation and reducing bone resorption, and thus has favorable effects in both aspects of bone volume regulation. In a phase 2 study, romosozumab increased areal BMD at the lumbar spine and total hip as measured by DXA compared with placebo, alendronate, and teriparatide in postmenopausal women with low bone mass. In additional analyses from this international, randomized study, we now describe the effect of romosozumab on lumbar spine and hip volumetric BMD (vBMD) and BMC at month 12 as assessed by QCT in the subset of participants receiving placebo, s.c. teriparatide (20 µg once daily), and s.c. romosozumab (210 mg once monthly). QCT measurements were performed at the lumbar spine (mean of L1 and L2 entire vertebral bodies, excluding posterior processes) and hip. One year of treatment with romosozumab significantly increased integral vBMD and BMC at the lumbar spine and total hip from baseline, and compared with placebo and teriparatide (all p < 0.05). Trabecular vertebral vBMD improved significantly and similarly from baseline (p < 0.05) with both romosozumab (18.3%) and teriparatide (20.1%), whereas cortical vertebral vBMD gains were larger with romosozumab compared with teriparatide (13.7% versus 5.7%, p < 0.0001). Trabecular hip vBMD gains were significantly larger with romosozumab than with teriparatide (10.8% versus 4.2%, p = 0.01), but were similar for cortical vBMD (1.1% versus –0.9%, p = 0.12). Cortical BMC gains were larger with romosozumab compared with teriparatide at both the spine (23.3% versus 10.9%, p < 0.0001) and hip (3.4% versus 0.0%, p = 0.03). These improvements are expected to result in strength gains and support the continued clinical investigation of romosozumab as a potential therapy to rapidly reduce fracture risk in ongoing phase 3 studies. © 2016 American Society for Bone and Mineral Research.  相似文献   

11.
The intensity of bone remodeling is a critical determinant of the decay of cortical and trabecular microstructure after menopause. Denosumab suppresses remodeling more than alendronate, leading to greater gains in areal bone mineral density (aBMD). These greater gains may reflect differing effects of each drug on bone microarchitecture and strength. In a phase 2 double‐blind pilot study, 247 postmenopausal women were randomized to denosumab (60 mg subcutaneous 6 monthly), alendronate (70 mg oral weekly), or placebo for 12 months. All received daily calcium and vitamin D. Morphologic changes were assessed using high‐resolution peripheral quantitative computed tomography (HR‐pQCT) at the distal radius and distal tibia and QCT at the distal radius. Denosumab decreased serum C‐telopeptide more rapidly and markedly than alendronate. In the placebo arm, total, cortical, and trabecular BMD and cortical thickness decreased (?2.1% to ?0.8%) at the distal radius after 12 months. Alendronate prevented the decline (?0.6% to 2.4%, p = .051 to <.001 versus placebo), whereas denosumab prevented the decline or improved these variables (0.3% to 3.4%, p < .001 versus placebo). Changes in total and cortical BMD were greater with denosumab than with alendronate (p ≤ .024). Similar changes in these parameters were observed at the tibia. The polar moment of inertia also increased more in the denosumab than alendronate or placebo groups (p < .001). Adverse events did not differ by group. These data suggest that structural decay owing to bone remodeling and progression of bone fragility may be prevented more effectively with denosumab. © 2010 American Society for Bone and Mineral Research  相似文献   

12.
The 3-year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long-term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross-over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long-term; 2207 cross-over). Reductions in BTMs were maintained (long-term group) or occurred rapidly (cross-over group) following denosumab administration. In the long-term group, lumbar spine and total hip BMD increased further, resulting in 5-year gains of 13.7% and 7.0%, respectively. In the cross-over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2-year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a "virtual untreated twin" cohort. Adverse events did not increase with long-term denosumab administration. Two adverse events in the cross-over group were adjudicated as consistent with osteonecrosis of the jaw. Five-year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.  相似文献   

13.
Romosozumab is a monoclonal antibody that inhibits sclerostin and has been shown to reduce the risk of fractures within 12 months. In a phase II, randomized, placebo‐controlled clinical trial of treatment‐naïve postmenopausal women with low bone mass, romosozumab increased bone mineral density (BMD) at the hip and spine by the dual effect of increasing bone formation and decreasing bone resorption. In a substudy of that trial, which included placebo and teriparatide arms, here we investigated whether those observed increases in BMD also resulted in improvements in estimated strength, as assessed by finite element analysis. Participants received blinded romosozumab s.c. (210 mg monthly) or placebo, or open‐label teriparatide (20 μg daily) for 12 months. CT scans, obtained at the lumbar spine (n = 82) and proximal femur (n = 46) at baseline and month 12, were analyzed with finite element software (VirtuOst, O.N. Diagnostics) to estimate strength for a simulated compression overload for the spine (L1 vertebral body) and a sideways fall for the proximal femur, all blinded to treatment assignment. We found that, at month 12, vertebral strength increased more for romosozumab compared with both teriparatide (27.3% versus 18.5%; p = 0.005) and placebo (27.3% versus –3.9%; p < 0.0001); changes in femoral strength for romosozumab showed similar but smaller changes, increasing more with romosozumab versus teriparatide (3.6% versus –0.7%; p = 0.027), and trending higher versus placebo (3.6% versus ?0.1%; p = 0.059). Compartmental analysis revealed that the bone‐strengthening effects for romosozumab were associated with positive contributions from both the cortical and trabecular bone compartments at both the lumbar spine and hip. Taken together, these findings suggest that romosozumab may offer patients with osteoporosis a new bone‐forming therapeutic option that increases both vertebral and femoral strength within 12 months. © 2017 American Society for Bone and Mineral Research.  相似文献   

14.
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214 ) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

15.
Osteoporosis is a chronic disease and requires long‐term treatment with pharmacologic therapy to ensure sustained antifracture benefit. Denosumab reduced the risk for new vertebral, nonvertebral, and hip fractures over 36 months in the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. Whereas discontinuation of denosumab has been associated with transient increases in bone remodeling and declines in bone mineral density (BMD), the effect on fracture risk during treatment cessation is not as well characterized. To understand the fracture incidence between treatment groups after cessation of investigational product, we evaluated subjects in FREEDOM who discontinued treatment after receiving two to five doses of denosumab or placebo, and continued study participation for ≥7 months. The off‐treatment observation period for each individual subject began 7 months after the last dose and lasted until the end of the study. This subgroup of 797 subjects (470 placebo, 327 denosumab), who were evaluable during the off‐treatment period, showed similar baseline characteristics for age, prevalent fracture, and lumbar spine and total hip BMD T‐scores. During treatment, more placebo‐treated subjects as compared with denosumab‐treated subjects sustained a fracture and had significant decreases in BMD. During the off‐treatment period (median 0.8 years per subject), 42% versus 28% of placebo‐ and denosumab‐treated subjects, respectively, initiated other therapy. Following discontinuation, similar percentages of subjects in both groups sustained a new fracture (9% placebo, 7% denosumab), resulting in a fracture rate per 100 subject‐years of 13.5 for placebo and 9.7 for denosumab (hazard ratio [HR] 0.82; 95% confidence interval [CI], 0.49–1.38), adjusted for age and total hip BMD T‐score at baseline. There was no apparent difference in fracture occurrence pattern between the groups during the off‐treatment period. In summary, there does not appear to be an excess in fracture risk after treatment cessation with denosumab compared with placebo during the off‐treatment period for up to 24 months. © 2013 American Society for Bone and Mineral Research.  相似文献   

16.
Denosumab is a fully human monoclonal antibody that inhibits bone resorption by neutralizing RANKL, a key mediator of osteoclast formation, function, and survival. This phase 3, multicenter, double‐blind study compared the efficacy and safety of denosumab with alendronate in postmenopausal women with low bone mass. One thousand one hundred eighty‐nine postmenopausal women with a T‐score ≤ ?2.0 at the lumbar spine or total hip were randomized 1:1 to receive subcutaneous denosumab injections (60 mg every 6 mo [Q6M]) plus oral placebo weekly (n = 594) or oral alendronate weekly (70 mg) plus subcutaneous placebo injections Q6M (n = 595). Changes in BMD were assessed at the total hip, femoral neck, trochanter, lumbar spine, and one‐third radius at 6 and 12 mo and in bone turnover markers at months 1, 3, 6, 9, and 12. Safety was evaluated by monitoring adverse events and laboratory values. At the total hip, denosumab significantly increased BMD compared with alendronate at month 12 (3.5% versus 2.6%; p < 0.0001). Furthermore, significantly greater increases in BMD were observed with denosumab treatment at all measured skeletal sites (12‐mo treatment difference: 0.6%, femoral neck; 1.0%, trochanter; 1.1%, lumbar spine; 0.6%, one‐third radius; p ≤ 0.0002 all sites). Denosumab treatment led to significantly greater reduction of bone turnover markers compared with alendronate therapy. Adverse events and laboratory values were similar for denosumab‐ and alendronate‐treated subjects. Denosumab showed significantly larger gains in BMD and greater reduction in bone turnover markers compared with alendronate. The overall safety profile was similar for both treatments.  相似文献   

17.
The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo. © 2014 American Society for Bone and Mineral Research  相似文献   

18.
It is an important aim in the prevention of osteoporosis to stop or decelerate bone loss during the early postmenopausal years. Here we report on results of the 3-year EFOPS exercise trial in osteopenic women. The exercise strategy emphasized low-volume high-resistance strength training and high-impact aerobics. Forty-eight fully compliant women (55.1±3.3 years) with no medication or illness affecting bone metabolism participated in the exercise group (EG); 30 women (55.5±3.0 years) served as non-training controls (CG). At baseline there were no significant between-group differences with respect to physical fitness, bone mineral density, pain and nutritional status. The training consisted of two group training and two home training sessions per week. The study participants of both groups were individually supplemented with calcium and vitamin D (cholecalciferol). Bone mineral density (BMD) was measured by DXA at the lumbar spine, proximal femur and distal forearm and by QCT at the lumbar spine. Speed of sound and broadband ultrasound attenuation were determined at the calcaneus by quantitative ultrasound (QUS). Pain frequency and intensity at different skeletal sites were assessed via questionnaire. After 38 months, the following within-group changes were measured: DXA lumbar spine, EG: 0.8% n.s.; CG: –3.3% P <0.001; QCT trabecular ROI, EG: 1.1% n.s; CG: –7.7% P <0.001; QCT cortical ROI, EG: 5.3% P <0.001; CG: –2.6% P <0.001; DXA total hip: EG: –0.2% n.s; CG –1.9%, P <0.001; DXA distal forearm, EG: –2.8% P <0.001; CG: –3.8% P <0.001; BUA, EG: –0.3% n.s; CG –5.4% P <0.001; SOS, EG: 0.3% n.s; CG –1.0% P <0.001. At year 3 between-group differences relative to the exercise group were: DXA lumbar spine: 4.1% P <0.001; QCT trabecular ROI: 8.8% P <0.001; QCT cortical ROI: 7.9% P <0.001; DXA total hip: 2.1%, P <0.001; DXA distal forearm: 1.0% n.s.; BUA: 5.8% P <0.05; SOS: 1.3% P <0.001. Pain frequency and intensity in the spine significantly decreased in the exercise group and increased in the control group, while no between-group differences were detected in the main joints. In summary, over a period of 3 years our low-volume/high-intensity exercise program was successful to maintain bone mineral density at the spine, hip and calcaneus, but not at the forearm.  相似文献   

19.

Summary

In the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6?Months (FREEDOM) study, women with incident clinical fractures reported significant declines in health-related quality of life (HRQoL). The largest declines were observed when the assessment was <3?months post fracture. The largest impact of incident clinical fractures was on physical function, and that of incident clinical vertebral fractures was on back pain.

Introduction

In the FREEDOM trial, denosumab significantly reduced the risk of new vertebral, hip, and nonvertebral fractures. We evaluated the effect of denosumab on HRQoL and the association between incident clinical fractures and HRQoL.

Methods

The FREEDOM trial enrolled 7,868 women aged 60–90?years with a total hip and/or lumbar spine BMD T-score <?2.5 and not <?4.0 at either site. Women were randomized to receive denosumab 60?mg or placebo every 6?months, in addition to daily calcium and vitamin D. HRQoL was assessed with the Osteoporosis Assessment Questionnaire-Short Version (OPAQ-SV) at baseline and every 6?months for 36?months. The OPAQ-SV assesses physical function, emotional status, and back pain. Higher scores indicate better health status.

Results

No statistically significant differences in mean change in HRQoL from baseline to end of study were found when comparing treatment groups. Compared with women without any incident fractures during the study, women with incident clinical fractures reported significant declines in physical function (?4.0 vs. ?0.5) and emotional status (?5.0 vs. ?0.8) at month?36 (P?<?0.001 for both). Importantly, time-dependent covariate analyses demonstrated that the largest declines were observed when the assessment was <3?months post fracture. The largest impact of incident clinical fractures was on physical function, and that of incident clinical vertebral fractures was on back pain.

Conclusions

These findings not only demonstrate that incident clinical fractures impact HRQoL but also contribute new information regarding the impact of these fracture events on HRQoL over time.  相似文献   

20.
Several studies, using dual‐energy X‐ray absorptiometry (DXA), have reported substantial bone loss after bariatric surgery. However, profound weight loss may cause artifactual changes in DXA areal bone mineral density (aBMD) results. Assessment of volumetric bone mineral density (vBMD) by quantitative computed tomography (QCT) may be less susceptible to such artifacts. We assessed changes in BMD of the lumbar spine and proximal femur prospectively for 1 year using DXA and QCT in 30 morbidly obese adults undergoing Roux‐en‐Y gastric bypass surgery and 20 obese nonsurgical controls. At 1 year, subjects who underwent gastric bypass surgery lost 37 ± 2 kg compared with 3 ± 2 kg lost in the nonsurgical controls (p < 0.0001). Spine BMD declined more in the surgical group than in the nonsurgical group whether assessed by DXA (?3.3 versus ?1.1%, p = 0.034) or by QCT (?3.4 versus 0.2%, p = 0.010). Total hip and femoral neck aBMD declined significantly in the surgical group when assessed by DXA (?8.9 versus ?1.1%, p < 0.0001 for the total hip and ?6.1 versus ?2.0%, p = 0.002 for the femoral neck), but no changes in hip vBMD were noted using QCT. Within the surgical group, serum P1NP and CTX levels increased by 82% ± 10% and by 220% ± 22%, respectively, by 6 months and remained elevated over 12 months (p < 0.0001 for all). Serum calcium, vitamin D, and PTH levels remained stable in both groups. We conclude that moderate vertebral bone loss occurs in the first year after gastric bypass surgery. However, striking declines in DXA aBMD at the proximal femur were not confirmed with QCT vBMD measurements. These discordant results suggest that artifacts induced by large changes in body weight after bariatric surgery affect DXA and/or QCT measurements of bone, particularly at the hip. © 2014 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号