首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
Neurotransmitter transporters are critical for synaptic neurotransmitter inactivation. Transporter inhibitors markedly increase the duration and magnitude of synaptic transmission, underscoring the importance of transporter activity in neurotransmission. Recent studies indicate that membrane trafficking dynamically governs neuronal transporter cell-surface presentation in a protein kinase C-regulated manner, suggesting that transporter trafficking profoundly affects synaptic signaling. However, the molecular architecture coupling neurotransmitter transporters to the endocytic machinery is not defined. Here, we identify nonclassical, distinct endocytic signals in the dopamine transporter (DAT) that are necessary and sufficient to drive constitutive and protein kinase C-regulated DAT internalization. The DAT internalization signal is conserved across SLC6 neurotransmitter carriers and is functional in the homologous norepinephrine transporter, suggesting that this region is likely to be the endocytic signal for all SLC6 neurotransmitter transporters. The DAT endocytic signal does not conform to classic internalization motifs, suggesting that SLC6 neurotransmitter transporters may have evolved unique endocytic mechanisms.  相似文献   

2.
Uptake by Na(+)/Cl(-)-dependent neurotransmitter transporters is the principal mechanism by which extracellular biogenic amine concentrations are regulated. In addition to uptake, the cloned transporter proteins also elicit ion channel-like currents, but the physiological consequences of these currents are unknown. Here, whole-cell patch clamp and perforated-patch recordings show that substrates of the dopamine transporter (DAT), such as dopamine (DA) and amphetamine, increase the firing activity of rat DA neurons in culture. We found that these substrates elicit inward currents that are Na(+)-dependent and blocked by cocaine. These currents are primarily comprised of anions and result in an excitatory response in DA neurons at lower DA concentrations than are required for D2 autoreceptor activation. Thus, in addition to clearing extracellular DA, our results suggest that the currents associated with DAT modulate excitability and may regulate release of neurotransmitter from midbrain DA neurons.  相似文献   

3.
4.
Several studies report that the striatal dopamine (DA) uptake declines with age, but the underlying mechanisms are still unclear. The use of molecular, biochemical and morphological techniques, and antibodies which detect the glycosylated (80 kDa) and non-glycosylated (50 kDa) DA transporter (DAT) forms in the rat mesostriatal system, reveals that DAT is pre- and post-translationally damaged during aging. In middle age (18 months), the glycosylated DAT form decreases in the plasma membrane of striatal terminals, and the non-glycosylated form is accumulated in the endoplasmic reticulum-Golgi complex. Thereafter, in aged rats (24 months), DAT synthesis is also affected as the decrease in both DATmRNA and total DAT protein levels suggests. However, the evidence of a decrease in both DAT expression in the endosomal (vesicle-enriched) compartment and the phosphorylated DAT fraction from middle age, as well as its compartmental redistribution towards the terminal plasma membrane, with an increase in the membrane DAT/total DAT ratio in striatal synapotosomes, in aged rats, indicate that DA-cells activate compensatory mechanisms directed at maintaining DAT function during normal aging.  相似文献   

5.
We investigated the functional relationship between the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin 1A (syn 1A) and the dopamine transporter (DAT) by treating rat striatal tissue with Botulinum Neurotoxin C (BoNT/C) and co-transfecting syn 1A with DAT in non-neuronal cells, followed by analysis of DAT activity, phosphorylation, and regulation. Treatment of striatal slices with BoNT/C resulted in elevated dopamine (DA) transport Vmax and reduced DAT phosphorylation, while heterologous co-expression of syn 1A led to reduction in DAT surface expression and transport Vmax. Syn 1A was present in DAT immunoprecipitation complexes, supporting a direct or indirect interaction between the proteins. Phorbol ester regulation of DA transport activity was retained in BoNT/C-treated synaptosomes and syn 1A transfected cells, demonstrating that protein kinase C (PKC) and syn 1A effects occur through independent processes. These findings reveal a novel mechanism for regulation of DAT activity and phosphorylation, and suggest the potential for syn 1A to impact DA neurotransmission through effects on reuptake.  相似文献   

6.
Tumoral growth effects on brain circuitry and neurochemical activities remain poorly documented. This study evaluates C6 graft effects on striatal dopaminergic afferent projections at both anatomical and functional levels. Immunohistochemistry was performed to investigate changes in neurofilament (NF), tyrosine hydroxylase (TH) and dopamine transporter (DAT) expression. Dopaminergic turnover was assessed using multiprobe microdialysis in freely-moving rat. In C6 graft striatum, dopamine (DA) catabolites were reduced in glioblastoma (DOPAC: -61%, HVA: -62%). In contrast, the DA level remained unchanged. Staining for NF, TH and DAT was drastically decreased inside the tumor. Our histological data report that striatal tumoral growth is associated with a decrease in the density of dopaminergic endings which can explain, at least in part, the decrease in DA turnover. The decrease in DAT transporter expression and the lack of change in DA level may result from an increase in DA diffusion from the peripheral areas of the tumor. In conclusion, glioblastoma growth has major consequences on the local neuronal circuitry and its neurochemistry. Changes in inter-connections and neurotransmitter turnover may result in abnormal neuronal firing activity and participate in clinical disorders associated with glioblastoma diagnosis.  相似文献   

7.
8.
The possible voltage-dependence of the dopamine transporter (DAT) was investigated using electrophysiological and electrochemical recordings in rat brain slices containing the substantia nigra (SN). Whole-cell patch clamp recordings of DA neurons, revealed that addition of 15 mM KCl rapidly depolarized the membrane potential by approximately 20 mV, whereas these cells were hyperpolarized approximately 10 mV by DA (10 microM) and approximately 14 mV by the GABAB-receptor agonist baclofen (30 microM). High-speed chronoamperometric recordings were used to monitor clearance properties of exogenously applied DA signals during similar manipulations. Superfusion of slices with 15 mM KCl significantly increased the time course of the DA signal, consistent with inhibition of DAT activity. Application of the D2 DA-receptor antagonist sulpiride (50 microM) also significantly increased the time course, suggesting that DA-induced hyperpolarization enhances DAT activity. Baclofen reversed the effects of sulpiride on DA clearance. These results demonstrate that changes in DA cell membrane potential can modulate DAT activity.  相似文献   

9.
目的:探讨人多巴胺(DA)转运体(dopamine transporter,DAT)基因过表达对单胺类递质代谢的效应。方法:从人胎脑中提取总RNA,RT-PCR方法扩增DAT cDNA片段,重组于pGEM-T-EASY载体中并进行全序列测定。重组真核表达载体pLNCX2-DAT转染MN9D细胞,Western Blot检测DAT的表达,高压液相(high-performance liquid chromatography,HPLC)法检测细胞内外DA含量的变化。结果:RT-PCR方法扩增得到1981bp的cDNA片段,测序结果表明所得到的片段与DAT序列完全一致;Westein Blot证实转染后的MN9D细胞(实验组)内DAT基因表达明显高于对照组(P0.05);HPLC结果表明实验组中细胞内外的DA含量明显高于对照组(P0.05)。结论:DAT高表达明显促进DA的循环和利用,为帕金森病的基因治疗提供了理论依据。  相似文献   

10.
Glutamate excitotoxicity has been implicated in the pathophysiology of epilepsy. Systemic injection of kainic acid (KA) in the rat produces an animal model of human temporal lobe epilepsy. We examined the temporal expression of the sodium-dependent neuronal glutamate transporter, excitatory amino acid carrier 1 (EAAC1), in KA-induced rat epilepsy. As an early alteration, perinuclear deposits of EAAC1 protein were found mainly in the large pyramidal neurons at the hippocampus, neocortex, piriform cortex, and amygdala with the reduction of neuropil staining 6 hours after KA injection. Immunoelectron microscopic study revealed that the perinuclear EAAC1 immunoreactivity corresponded to the translocation to the Golgi complex. At this time point, EAAC1 mRNA was down-regulated. The intracellular aggregation of EAAC1 primarily disappeared by 24 hours. In vitro studies indicated that internalization of EAAC1 from the plasma membrane to the intracellular compartment by KA treatment was associated with the reduction of electrogenic transporter currents. Our results suggest that the transient EAAC1 internalization participates in the modulation of the transporter function preventing excessive glutamate uptake to pyramidal neurons during the early stage of epilepsy.  相似文献   

11.
Besides the dopaminergic (DA-ergic) neurons possessing the whole set of enzymes of DA synthesis from l-tyrosine and the DA membrane transporter (DAT), the neurons partly expressing the DA-ergic phenotype have been first discovered two decades ago. Most of the neurons express individual enzymes of DA synthesis, tyrosine hydroxylase (TH) or aromatic l-amino acid decarboxylase (AADC) and lack the DAT. A list of the neurons partly expressing the DA-ergic phenotype is not restricted to so-called monoenzymatic neurons, e.g. it includes some neurons co-expressing both enzymes of DA synthesis but lacking the DAT. In contrast to true DA-ergic neurons, monoenzymatic neurons and bienzymatic non-dopaminergic neurons lack the vesicular monoamine transporter 2 (VMAT2) that raises a question about the mechanisms of storing and release of their final synthetic products. Monoenzymatic neurons are widely distributed all through the brain in adulthood being in some brain regions even more numerous than DA-ergic neurons. Individual enzymes of DA synthesis are expressed in these neurons continuously or transiently in norm or under certain physiological conditions. Monoenzymatic neurons, particularly those expressing TH, appear to be even more numerous and more widely distributed in the brain during ontogenesis than in adulthood. Most populations of monoenzymatic TH neurons decrease in number or even disappear by puberty. Functional significance of monoenzymatic neurons remained uncertain for a long time after their discovery. Nevertheless, it has been shown that most monoenzymatic TH neurons and AADC neurons are capable to produce l-3,4-dihydroxyphenylalanine (L-DOPA) from l-tyrosine and DA from L-DOPA, respectively. L-DOPA produced in monoenzymatic TH neurons is assumed to play a role of a neurotransmitter or neuromodulator acting on target neurons via catecholamine receptors. Moreover, according to our hypothesis L-DOPA released from monoenzymatic TH neurons is captured by monoenzymatic AADC neurons for DA synthesis. Such cooperative synthesis of DA is considered as a compensatory reaction under a failure of DA-ergic neurons, e.g. in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease.Thus, a substantial number of the brain neurons express partly the DA-ergic phenotype, mostly individual complementary enzymes of DA synthesis, serving to produce DA in cooperation that is supposed to be a compensatory reaction under the failure of DA-ergic neurons.  相似文献   

12.
The emerging profile for the effects of prenatal cocaine exposure presents two prominent features in the exposed offspring: cognitive/attention deficits and an age-associated trend toward motor/tone abnormalities up to 2 years of age. One candidate mechanism underlying these clinical features is long-lasting alterations to dopamine (DA) neuron function. However, the impact of prenatal cocaine exposure on DA release in dopaminergic terminal fields in vivo in mature offspring is poorly understood. Long-Evans female rats were implanted with an i.v. access port, bred, and given saline or cocaine-HCl (3 mg/kg/ml) for gestational days (GD) 8-14 (1x/day), GD 15-21 (2x/day), or GD 8-21 (1x/day-GD 8-14, 2x/day-GD 15-21). Using in vivo high-speed chronoamperometric recordings, potassium-stimulated DA release was measured in striatum of anesthetized male offspring 90-150 days after birth. There was a trend toward increased potassium-evoked DA signal amplitudes in offspring exposed to cocaine at any time period examined. In offspring exposed to cocaine during GD 8-21 and GD 15-21, but not at GD 8-14, there were significant decreases in the clearance capacity of the potassium-evoked DA signal compared with control offspring. The time required to clear 80% of the evoked DA signal (T(80)) in striatum for DA was significantly prolonged (approximately 150% of control) and this effect was further increased in the mean-evoked DA concentration range for these two groups. We also measured total dopamine transporter (DAT) and tyrosine hydroxylase protein levels in these offspring by blot immunolabeling and found a small, but significant, decrease in DAT protein in striatum from offspring exposed at GD 8-21 and GD 15-21. Collectively, these data demonstrate that prenatal cocaine exposure during dopamine neuron neurogenesis has long-lasting effects on DA neuron function lasting into early adulthood which may be related in part to steady state DAT protein levels. These molecular events may be associated with established cognitive deficits and perhaps the trends seen in altered motor behavior.  相似文献   

13.
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic (DAergic) neurons in the substantia nigra and the subsequent depletion of dopamine (DA). This study assessed the protective effects of costunolide on DA-induced apoptosis in human DAergic SH-SY5Y cells, and its regulation of DA metabolism-associated gene and protein expression. Annexin V and propidium iodide (PI) staining using flow cytometric analysis (FACS) revealed that costunolide significantly protected human DAergic SH-SY5Y cells against DA-induced apoptosis. In addition, co-treatment of costunolide with DA in SH-SY5Y cells regulated DA metabolism-associated gene expression, as we observed an increase in both mRNA and protein levels of nuclear receptor related-1 (Nurr1), DA transporter (DAT), and vesicular monoamine transporter type 2 (VMAT2). In contrast, α-synuclein (ASYN) protein levels were decreased. Our findings suggest that costunolide has anti-apoptotic activity, presumably due to its regulatory effects on DA metabolism-associated genes. Therefore, costunolide could be considered as a candidate therapy for the treatment of Parkinson's disease.  相似文献   

14.
Nucleus accumbens (ACC) of young (4 months old) and aged (24 months old) Wistar rats were perfused with dopamine (DA) uptake blocker, cocaine, or the serotonin (5-HT) selective reuptake inhibitor, fluoxetine, through the microdialysis probe membrane, used to assess the dopamine transporter (DAT) or serotonin transporter (SERT) modulation. The basal extracellular DA release in the ACC was significantly lower in aged rats than young rats. Analysis of DA and 5-HT concentrations in the ACC with increased positive GFAP revealed that DA and DOPAC levels of aged rats were decreased to 55 and 60% of those in young rats, respectively. After co-perfusion with cocaine, both DA and 5-HT releases in the ACC were increased in the young and aged groups. However, the magnitude of the increased DA release was lower in aged rats than young rats. Co-perfusion with fluoxetine showed lower magnitude of the increased DA release in aged rats. It appears that the DAT and SERT system responds initially to ACC cell loss with age, and that especially ACC DAT in the aged rat is more degenerative compared with the young rats. These findings suggest that the serotonergic system with SERT in the remaining ACC neurons show an early adaptive response and resistance to the normal aging and maintain the multiple regulatory system in the ACC despite neural loss since the dopaminergic neurons in the aged animals are vulnerable to aging.  相似文献   

15.
可卡因主要作用于单胺类转运体,包括多巴胺转运体(DAT)、5-HT转运体(SERT)和去甲肾上腺素转运体(NET),阻止这些转运体将突触前释放的神经递质转运回突触前膜神经末梢,从而增强单胺能神经递质的作用而产生精神兴奋效应,其中DAT是可卡因作用的主要环节。可卡因也能够增加突触前末梢神经递质的释放,对突触后神经元的基因和蛋白水平的调节在可卡因成瘾中的作用也是不可忽视的。本文就可卡因成瘾分子机制的最新研究进展作一综述。  相似文献   

16.
Dopamine (DA) is implicated in working memory (WM) functioning. Variations in the DA transporter (DAT1) gene (SLC6A3) regulate DA availability in striatum. Compared to DAT1 9/10-repeat carriers, homozygosity of the DAT1 10-repeat allele has been related to less active dopaminergic pathways. A group of younger adults received 4 weeks of computerized adaptive training on several WM tasks. All participants improved their performance as a function of training. However, DAT1 9/10-repeat carriers showed larger training-related gains than DAT1 10-repeat carriers in visuospatial WM. By contrast, the two groups were indistinguishable in baseline WM performance as well as in a variety of tasks assessing different cognitive abilities. This pattern of results provides novel evidence that WM plasticity is a more sensitive indicator of DAT1 gene-related cognitive differences than single-assessment performance scores.  相似文献   

17.
Li L  Su Y  Zhao C  Zhao H  Liu G  Wang J  Xu Q 《Neuroscience》2006,142(2):391-400
Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent trophic factors identified for promoting survival and function of dopaminergic (DA) neurons in the midbrain. Ret, a member of the receptor tyrosine kinase (RTK) superfamily transduces GDNF signaling. The role of Ret in the development of DA neurons is not clear however. Here we demonstrate the involvement of Ret in the DA neuron development both in vitro and in vivo. The dopamine transporter (DAT) gene was clearly induced in rat embryonic neural precursors that had been transfected with Ret. Temporary blockade of Ret expression in embryos using Ret antisense oligonucleotides (Ret-AS-ODN) in vivo led to reduced striatal DA content and a decrease of tyrosine hydroxylase (TH) positive fibers in the striatum. Additionally, some DA neurons in the substantia nigra (SN) underwent apoptotic cell death following the Ret-AS-ODN treatment. Taken together, the data suggest that normal function of Ret is required in vivo for the maturation of DA neurons, in particular for cell survival and fiber innervation. We further demonstrated Ret-induced expression of DAT in vitro.  相似文献   

18.
Recently, we demonstrated that mice deficient of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) were partly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Here we extended the study and investigated TNF-alpha receptor 1 (-/-) (TNFR1) and TNF-alpha receptor 2 (-/-) (TNFR2) mice using a chronic MPTP dosing regimen (15 mg/kg MPTP on 8 consecutive days). One week after the last MPTP treatment, HPLC determination of striatal dopamine (DA) and immunostaining for the dopamine transporter (DAT) in the substantia nigra pars compacta (SNpc) was performed. MPTP treatment reduced striatal DA levels significantly; nigral DAT immunoreactivity was reduced to a lower extent. However, there was no difference in DA levels and the number of DAT positive neurons between TNFR1 (-/-), TNFR2 (-/-) and wild type mice after MPTP treatment. In contrast to TNF-alpha deficiency neither TNFR1 nor TNFR2 gene ablation showed protection against MPTP neurotoxicity, which argues for a protective mechanism of TNF-alpha not mediated by TNFR1 and TNFR2 signaling.  相似文献   

19.
In this report we compared three different parameters of nigrostriatal dopaminergic (NSDA) function – locomotor activity, striatal dopamine (DA) levels and 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios between heterozygous mutant dopamine transporter mice (+/− DAT) and their wild type controls (+/+ DAT) at three different age range periods: 4–10, 11–17 and 18–24 months of age. Locomotor activity of the +/− DAT mice failed to differ over the three age periods sampled. In +/+ DAT mice a significant decrease in locomotor activity was obtained at the 18–24-month old period compared with scores at the two earlier age periods. In addition, locomotor scores of +/+ DAT mice at 18–24 months of age were significantly decreased as compared with scores of the +/− DAT mice at this age. Striatal DA concentrations of +/− DAT mice also failed to differ over the three age periods sampled, while that of +/+ DAT mice showed significant decreases in striatal DA at 11–17 and 18–24 months of age as compared to their 4–10-month old cohorts. Striatal DOPAC/DA ratios were significantly increased in both +/+ and +/− DAT mice at the 11–17 and 18–24 month age periods as compared with their respective 4–10-month old groups. Striatal DOPAC/DA ratios of +/− DAT mice were significantly greater than that of the +/+ DAT mice at 18–24 months of age. These findings reveal the significance of interactions between a mutation of the dopamine transporter and aging upon NSDA function and the importance of isolating such variables when using knock-out models.  相似文献   

20.
The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission which undergoes constitutive and substrate-mediated trafficking to and from the membrane. Although, considerable research has been done to elucidate the regulation of substrate-stimulated DAT trafficking, less is known about which trafficking proteins are involved in constitutive DAT trafficking. Rab proteins are GTPases known to regulate the trafficking of proteins to and from specific endocytic compartments. Rabs 8 and 11, in particular, are involved in trafficking proteins from intracellular compartments to the plasma membrane. In this study, we sought to determine whether Rabs 8 and 11 would modulate DAT activity and trafficking in N2A neuroblastoma cells. We used Rab mutations known to confer constitutively active or dominant negative activity of these proteins to investigate the role of Rab activity in constitutive DAT trafficking and function. We found that constitutively active Rab 11 upregulates DAT function and surface expression while neither the constitutively active nor the dominant negative mutant of Rab 8 had any effect on DA uptake. Furthermore, immunofluorescence experiments revealed that dominant negative Rab 11 overexpression results in decreased surface DAT indicating a necessary function of Rab 11 in DAT trafficking to the plasma membrane. These data show for the first time a functional role of Rab proteins in the constitutive recycling of DAT to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号