首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New technology enables expansion of newborn screening (NBS) of inborn errors aimed to prevent adverse outcome. In conditions with a large share of asymptomatic phenotypes, the potential harm created by NBS must carefully be weighed against benefit. Policies vary throughout the United States, Australia, and Europe due to limited data on outcome and treatability of candidate screening conditions. We elaborated the rationale for decision making in 3-methylcrotonyl-coenzyme A (CoA) carboxylase deficiency (MCCD), which afflicts leucine catabolism, with reported outcomes ranging from asymptomatic to death. In Bavaria, we screened 677,852 neonates for 25 conditions, including MCCD, based on elevated concentrations of 3-hydroxyisovalerylcarnitine (3-HIVA-C). Genotypes of MCCA (MCCC1) and MCCB (MCCC2) were assessed in identified newborns, their relatives, and in individuals (n = 17) from other regions, and correlated to biochemical and clinical phenotypes. NBS revealed eight newborns and six relatives with MCCD, suggesting a higher frequency than previously assumed (1:84,700). We found a strikingly heterogeneous spectrum of 22 novel and eight reported mutations. Allelic variants were neither related to biochemical nor anamnestic data of our probands showing all asymptomatic or benign phenotypes. Comparative analysis of case reports with NBS data implied that only few individuals (< 10%) develop symptoms. In addition, none of the symptoms reported so far can clearly be attributed to MCCD. MCCD is a genetic condition with low clinical expressivity and penetrance. It largely represents as nondisease. So far, there are no genetic or biochemical markers that would identify the few individuals potentially at risk for harmful clinical expression. The low ratio of benefit to harm was pivotal to the decision to exclude MCCD from NBS in Germany. MCCD may be regarded as exemplary of the ongoing controversy arising from the inclusion of potentially asymptomatic conditions, which generates a psychological burden for afflicted families and a financial burden for health care systems.  相似文献   

2.
Methylcrotonylglycinuria (MCG) is an inborn error of leucine catabolism and has a recessive pattern of inheritance that results from the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC). The clinical phenotypes are highly variable ranging from neonatal onset with severe neurological involvement to asymptomatic adults. Here we identified two novel MCCA (exon 3: c.137G>A; p.46G>E), (IVS7-1G>A splice site mutation), and four novel MCCB (exon 11: c.1065A>T; p.355L>F), (exon 15: c.1430A>G; p.477Q>R), (exon 16: c.1549G>A; p.517G>R), (exon 16: c.1559A>C; p.520Y>S) mutant alleles from five MCC-deficient patients.  相似文献   

3.
Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency appears to be the most frequent organic aciduria detected in tandem mass spectrometry (MS/MS) screening programs in the United States, Australia, and Europe. A pilot study of newborn screening using MS/MS has recently been commenced in Japan. Our group detected two asymptomatic MCC deficiency patients by the pilot screening and collected data on another three MCC deficiency patients to study the molecular bases of the MCC deficiency in Japan. Molecular analyses revealed novel mutations in one of the causative genes, MCCA or MCCB, in all five of the patients: nonsense and frameshift mutations in MCCA (c.1750C > T/c.901_902delAA) in patient 1, nonsense and frameshift mutations in MCCB (c.1054_1055delGG/c.592C > T) in patient 2, frameshift and missense mutations in MCCB (c.1625_1626insGG/c.653_654CA > TT) in patient 3, a homozygous missense mutation in MCCA (c.1380T > G/ 1380T > G) in patient 4, and compound heterozygous missense mutations in MCCB (c.569A > G/ c.838G > T) in patient 5. No obvious clinical symptoms were observed in patients 1, 2, and 3. Patient 4 had severe neurological impairment and patient 5 developed Reye-like syndrome. The increasing use of MS/MS newborn screening in Japan will further clarify the clinical and genetic heterogeneity among patients with MCC deficiency in the Japanese population.  相似文献   

4.
Methylcrotonylglycinuria (MCG; MIM 210200) is an autosomal recessive inherited human disorder caused by the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC, E.C.6.4.1.4), involved in leucine catabolism. This mitochondrial enzyme is one of the four biotin-dependent carboxylases known in humans. MCC is composed of two different types of subunits, alpha and beta, encoded by the nuclear genes MCCA and MCCB, respectively, recently cloned and characterized. Several mutations have been identified, in both genes, the majority are missense mutations along with splicing mutations and small insertions/deletions. We have expressed four missense mutations, two MCCA and two MCCB mapping to highly evolutionarily conserved residues, by transient transfection of SV40-transformed deficient fibroblasts in order to confirm their pathogenic effect. All the missense mutations expressed resulted in null or severely diminished MCC activity providing direct evidence that they are disease-causing ones. The MCCA mutations have been analysed in the context of three-dimensional structural information modelling the changes in the crystallized biotin carboxylase subunit of the Escherichia coli acetyl-CoA carboxylase. The apparent severity of all the MCC mutations contrasts with the variety of the clinical phenotypes suggesting that there are other cellular and metabolic unknown factors that affect the resulting phenotype.  相似文献   

5.
Isolated 3-Methylcrotonyl-CoA carboxylase deficiency (MCC deficiency) is an organic aciduria presenting with a highly variable phenotype and has been part of newborn screening programs in various countries, in particular in the US. Here we present enzymatic and genetic characterisation of 22 individuals with increased 3-hydroxyisovalerylcarnitine and/or 3-methylcrotonylglycine suggesting MCC deficiency, but only partially reduced 3-methylcrotonyl-CoA carboxylase activity. Among these, 21 carried a single mutant allele in either MCCC1 (n=20) or MCCC2 (n=1). Our results suggest that heterozygosity for such a single deleterious mutation may lead to misdiagnosis of MCC deficiency.  相似文献   

6.
Human ornithine transcarbamylase is a trimer with 46% amino acid sequence homology to the catalytic subunit of E coli aspartate transcarbamylase. Secondary structure predictions, distributions of hydrophilic and hydrophobic regions, and the pattern of conserved residues suggest that the three dimensional structures of the two proteins are likely to be similar. A three dimensional model of ornithine transcarbamylase was generated from the crystal structure of the catalytic subunit of E coli aspartate transcarbamylase in the holoenzyme, by aligning the sequences, building in gaps, and minimising the energy. The binding sites for carbamyl phosphate in both enzymes are similar and the ornithine binding site in ornithine transcarbamylase appears to be in the same location as the L-aspartate binding site in aspartate transcarbamylase, with negatively charged side chains replaced by positively charged residues. Mutations in the ornithine transcarbamylase gene found in patients with hyperammonaemia of the "neonatal type" are clustered in important structural or functional domains, either in the interior of the protein, at the active site, or at the interchain interface, while mutations found in patients with milder "late onset" disease are located primarily on the surface of the protein. The predicted effects of all known missense mutations and in frame deletions in the ornithine transcarbamylase gene on the structure and function of the mature enzyme are described.  相似文献   

7.
8.
9.
Holocarboxylase synthetase (HCS) catalyses the biotinylation of the four biotin-dependent carboxylases found in humans. A deficiency in HCS results in biotin-responsive multiple carboxylase deficiency (MCD). We have identified six different point mutations in the HCS gene in nine patients with MCD. Two of the mutations are frequent among the MCD patients analyzed. Four of the mutations cluster in the putative biotin- binding domain as deduced from the corresponding Escherichia coli enzyme and consistent with an explanation for biotin-responsiveness based on altered affinity for biotin. The two others may define an additional domain involved in biotin-binding or biotin-mediated stabilization of the protein.   相似文献   

10.
Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy   总被引:1,自引:0,他引:1  
Hypertrophic cardiomyopathy (HCM) is a frequent genetic cardiac disease and the most common cause of sudden cardiac death in young individuals. Most of the currently known HCM disease genes encode sarcomeric proteins. Previous studies have shown an association between CSRP3 missense mutations and either dilated cardiomyopathy (DCM) or HCM, but all these studies were unable to provide comprehensive genetic evidence for a causative role of CSRP3 mutations. We used linkage analysis and identified a CSRP3 missense mutation in a large German family affected by HCM. We confirmed CSRP3 as an HCM disease gene. Furthermore, CSRP3 missense mutations segregating with HCM were identified in four other families. We used a newly designed monoclonal antibody to show that muscle LIM protein (MLP), the protein encoded by CSRP3, is mainly a cytosolic component of cardiomyocytes and not tightly anchored to sarcomeric structures. Our functional data from both in vitro and in vivo analyses suggest that at least one of MLP's mutated forms seems to be destabilized in the heart of HCM patients harbouring a CSRP3 missense mutation. We also present evidence for mild skeletal muscle disease in affected persons. Our results support the view that HCM is not exclusively a sarcomeric disease and also suggest that impaired mechano-sensory stress signalling might be involved in the pathogenesis of HCM.  相似文献   

11.
ras gene mutations have been described with varying frequency in several types of human malignancies. To determine the incidence and type of ras mutations in human soft tissue tumors, we studied 45 sarcomas, including 27 malignant fibrous histiocytomas (MFHs), 10 liposarcomas, 2 rhabdomyosarcomas, and 6 leiomyosarcomas. Al of the tumors were investigated by direct sequence analysis with the automated DNA sequencing of polymerase chain reaction-amplified ras sequences. Twenty (44%) of the sarcomas examined harbored K-ras mutations, 18 (90%) of which were MFHs. All of the K-ras mutations were G-to-A transition mutations in the second position of codon 13 (glycine --> aspartic acid). Of the samples with K-ras activation, 7 (16% of the total of 45 tumors), including 6 MFHs and 1 leiomyosarcoma, also contained H-ras mutation. All of the tumors that showed H-ras alteration had G-to-T transversion mutations in the second base of codon 12 (glycine --> valine). These data possibly implicate that ras gene activation may be a relatively uncommon event in soft tissue tumors, with the exception of MFH. It is suggested that the oncogenic process underlying the development of tumors between these groups may be different and that ras gene mutations may play a role in the etiology and/or progression of MFH. It is noteworthy that when ras gene activation occurs in sarcoma, it predominantly affects the K-ras gene, particularly codon 13. Moreover, H-ras mutations in our samples were detected only in association with tumors that also displayed K-ras-mutated genes. This study demonstrates for the first time concomitant mutations in two different members of the ras gene family in sarcoma  相似文献   

12.
KMeyeDB ( http://mutview.dmb.med.keio.ac.jp/ ) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye‐related diseases including retinitis pigmentosa, cone‐rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet–Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user‐interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene. Hum Mutat 31:1–8, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
Rom-1 and peripherin are related membrane proteins of the photoreceptorouter segments. Both proteins are located at the rims of thephotoreceptor disks, where they may act jointly in disk biogenesis.Mutations in the gene (RDS) encoding peripherin cause autosomaldominant retinitis pigmentosa, autosomal dominant punctata albescensand butterfly macular degeneration in man, and retinal degenerationslow in mice. To facilitate ROM1 mutation and linkage analysisin inherited retinal diseases, we cloned and characterized thehuman and murine ROM1 genes. In both species, the ROM1 codingregion is contained within  相似文献   

16.
LGR7 and LGR8 are G protein-coupled receptors that belong to the leucine-rich repeat-containing G-protein coupled receptor (LGR) family, including the thyroid-stimulating hormone (TSH), LH and FSH receptors. LGR7 and LGR8 stimulate cAMP production upon binding of the cognate ligands, relaxin and insulin-like peptide 3 (INSL3), respectively. We cloned several novel splice variants of both LGR7 and LGR8 and analysed the function of four variants. LGR7.1 is a truncated receptor, including only the N-terminal region of the receptor and two leucine rich repeats. In contrast, LGR7.2, LGR7.10 and LGR 8.1 all contain an intact seven transmembrane domain and most of the extracellular region, lacking only one or two exons in the ectodomain. Our analysis demonstrates that although LGR7.10 and LGR8.1 are expressed at the cell surface, LGR7.2 is predominantly retained within cells and LGR7.1 is partially secreted. mRNA expression analysis revealed that several variants are co-expressed in various tissues. None of these variants were able to stimulate cAMP production following relaxin or INSL3 treatment. Unexpectedly, we did not detect any direct specific relaxin or INSL3 binding on any of the splice variants. The large number of receptor splice variants identified suggests an unforeseen complexity in the physiology of this novel hormone-receptor system.  相似文献   

17.
Propionic acidemia is an inherited metabolic disorder caused by deficiency of propionyl-CoA carboxylase, a dodecameric enzyme composed of alpha-PCC and beta-PCC subunits (encoded by genes PCCA and PCCB) that have been associated with a number of mutations responsible for this disease. To clarify the molecular effect associated with gene alterations causing propionic acidemia, 12 different mutations affecting the PCCB gene (R67S, S106R, G131R, R165W, R165Q, E168K, G198D, A497V, R512C, L519P, W531X, and N536D) were analyzed for their involvement in alpha-beta heteromeric and beta-beta homomeric assembly. The experiments were performed using the mammalian two-hybrid system, which was assayed at two different temperatures to distinguish between mutations directly involved in interaction and those probably affecting polypeptide folding, thus indirectly affecting the correct assembly. Mutations R512C, L519P, W531X, and N536D, located at the carboxyl-terminal end of the PCCB gene, were found to inhibit alpha-beta heteromeric and/or the beta-beta homomeric interaction independently of the cultivation temperature, reflecting their primary effect on the assembly. Two mutations A497V and R165Q did not affect either heteromeric or homomeric assembly. The remaining mutations (R67S, S106R, G131D, R165W, E168K, and G198D), located in the amino-terminal region of the beta-polypeptide, resulted in normal interaction levels only when expressed at the lower temperature, suggesting that these changes could be considered as folding defects. From these results and the clinical manifestations associated with patients bearing the mutations described above, several genotype-phenotype correlations may be established. In general, the temperature-sensitive mutations are associated with a less severe, although variable phenotype. This could correlate with the recent hypothesis that the effect of folding mutations can be influenced by the capacity of the cellular protein quality control machinery, which provides clues to our understanding of the variability of the clinical symptoms observed among the patients bearing these mutations.  相似文献   

18.
遗传性多发性外生骨疣基因突变研究   总被引:1,自引:0,他引:1  
目的进一步阐明遗传性多发性外生骨疣(hereditarymultipleexostoses,EXT)的发病机理,并为最终防治本病提供依据。方法采用聚合酶链反应-单链构象多态性分析,在30个EXT家系中进行EXT1基因和EXT2基因全部外显子突变检测,并对发现的致病突变进行DNA测序分析。结果在2个家系中发现了致病突变,并经DNA序列分析证实,一个系EXT1基因exon6区域单个碱基(T)丢失;另一个系EXT2基因exon2区域4个碱基(tgt)丢失,前者系国内首次报道,后者系尚未见报道的新突变,这两种突变均系移码突变。结论EXT1基因或EXT2基因突变,可导致EXT,本研究结果可直接应用于EXT的遗传咨询和产前基因诊断。  相似文献   

19.
The metabolism of leucine was studied in cultured human fibroblasts derived from patients with defects in each of the major steps in the catabolism of the amino acid. Intact fibroblasts were incubated with [U-14C]leucine and the organic acid products were isolated by liquid partition chromatography. In control fibroblasts the major product of leucine was 3-hydroxyisovaleric acid. This was also the case for fibroblasts with deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase, 3-methylcrotonyl-CoA carboxylase and 3-methylglutaconyl-CoA hydratase. There was little or no accumulation of the compound with fibroblasts from patients with maple syrup urine disease and isovaleric acidemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号