首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目的:观察皮质酮(CORT)对培养的脊髓背角神经元Ca2+浓度([Ca2+]i)的调节作用及机制。方法:培养新生SD大鼠脊髓背角神经元,激光共聚焦显微镜检测神经元[Ca2+]i的变化。结果:CORT可快速升高培养的脊髓背角神经元[Ca2+]i,且呈现剂量依赖性(P0.05);CORT诱导的神经元[Ca2+]i升高是以外钙内流为主(P0.01);百日咳毒素(G蛋白活化阻断剂)可阻断CORT所致的脊髓背角神经元[Ca2+]i升高(P0.01),而糖皮质激素受体拮抗剂RU38486对CORT的效应无抑制作用。结论:CORT通过非基因组途径快速增高培养的脊髓背角神经元[Ca2+]i。  相似文献   

2.
目的 探讨大电导钾通道(BK)对小鼠大脑皮层神经元胞内游离钙 ( [Ca2+]i) 和兴奋性的调节作用。方法 体外培养小鼠皮层神经元,用膜片钳技术观察BK特异性阻断剂IBERIOTOXIN对神经元 [Ca2+]i和动作电位频率的影响,用显微荧光测钙法观察IBERIOTOXIN对高钾条件下[Ca2+]i的影响。结果 生理状态下,IBERIOTOXIN灌流(100nmmol/L)对神经元细胞自发动作电位的频率、[Ca2+]i无显著影响;持续电刺激去极化后,IBERIOTOXIN灌流使动作电位频率增加,[Ca2+]i显著升高。高钾溶液(20mmol/L)引起神经元[Ca2+]i升高, 而IBERIOTOXIN灌流则使[Ca2+]i进一步显著升高。结论 BK对小鼠受持续去极化刺激或高钾条件时的神经元[Ca2+]i和兴奋性具有明显调节作用。  相似文献   

3.
目的研究4-氨基吡啶(4-AP)对体外培养的皮层神经元细胞内游离钙浓度([Ca2+]i)的影响,了解4-AP的药理学作用机制.方法荧光探针Fluo-3-AM标记体外培养的皮层神经细胞内游离钙后,用共聚焦显微镜观察记录4-AP及L型谷氨酸对小鼠原代培养的皮层神经元[Ca2+]i的影响.结果4-AP与谷氨酸均能提高[Ca2+]i,两者峰值与持续时间存在差异,共同作用于细胞时的上升曲线与单用谷氨酸时相仿.结论4-AP的药理作用机制可能与提高神经细胞[Ca2+]i有关,其中机制与兴奋性氨基酸的[Ca2+]i升高作用可能不同.  相似文献   

4.
目的研究4-氨基吡啶(4-AP)对体外培养的皮层神经元细胞内游离钙浓度([Ca2+]i)的影响,了解4-AP的药理学作用机制.方法荧光探针Fluo-3-AM标记体外培养的皮层神经细胞内游离钙后,用共聚焦显微镜观察记录4-AP及L型谷氨酸对小鼠原代培养的皮层神经元[Ca2+]i的影响.结果 4-AP与谷氨酸均能提高[Ca2+]i,两者峰值与持续时间存在差异,共同作用于细胞时的上升曲线与单用谷氨酸时相仿.结论 4-AP的药理作用机制可能与提高神经细胞[Ca2+]i有关,其中机制与兴奋性氨基酸的[Ca2+]i升高作用可能不同.  相似文献   

5.
目的观察人N-甲基-D-门冬氨酸受体(NMDAR,NR)主亚基(NR1)单克隆抗体mAbN1对谷氨酸诱导的大鼠海马神经元Ca2 内流的影响。方法建立谷氨酸介导的大鼠海马神经元兴奋毒性损伤模型,以mAbN1及MK-801分别预处理海马神经元,用Fluo-3/AM法,在激光扫描共聚焦显微镜下观察对细胞内游离Ca2 浓度([Ca2 ]i)的影响。结果mAbN1能显著抑制谷氨酸所致海马神经元[Ca2 ]i升高,此作用强于MK-801,且其本身对生理状态下神经元[Ca2 ]i无影响。结论mAbN1的抗兴奋毒性作用可能是通过改变NR的蛋白质二级结构从而影响兴奋毒性作用中的Ca2 内流实现的。  相似文献   

6.
目的:建立NMDA诱导原代培养皮层神经元兴奋毒损伤模型,探讨NMDA对NMDA受体过度活化诱导兴奋性神经毒的可能途径。方法:原代培养新生大鼠大脑皮层神经元,通过倒置显微镜形态学观察、细胞活力检测(MTT及LDH释放的检测)及胞内Ca2+的动态测定,探索NMDA诱导毒性作用的适当浓度及时间。通过对ROS、NO检测,分析NMDA诱导毒性作用于线粒体的损伤情况。结果:NMDA(100μmol/L/2 h)引起皮层神经元形态学改变,且引起神经元细胞活力时间和浓度依赖性的下降,由同时伴随LDH释放增加(P<0.05),ROS和NO的生成量明显增加(P<0.05),皮层神经元内Ca2+的快速升高,并维持在高水平。结论:NMDA诱发皮层神经元明显的细胞毒性作用,提示NMDA过度活化NMDA受体后通过神经元膜内Ca2+超载造成ROS和NO的生成量增加,导致皮层神经元产生毒性损伤。  相似文献   

7.
钙离子(Ca2+)是常见的第二信使,不同于其它第二信使,其主要位于细胞外或存储于内质网(endoplasmic reticulum,ER)等细胞器内.静息状态下细胞内游离Ca2+浓度(intracellular Ca2+ concentration,[Ca2+]i)约为细胞外的1/20000,受体激活或生物信号刺激可通过改变[Ca2+]i进一步发挥生物放大效应.[Ca2+]i的升高主要通过胞内Ca2+释放和胞外Ca2+内流两大途径.随着胞内钙库的排空,位于质膜上的Ca2+内流通道被激活,使Ca2+由胞外进入胞质内,这个过程称为钙库操纵的钙内流(store-operated calcium entry,SOCE),其通道称为钙库操纵的钙通道(store-operated calcium channel,SOCC).近来研究证实组成SOCC的主要蛋白是:Ca2+感受蛋白基质相互作用分子1(stromal interaction molecule 1,STIM1)[1-2]和Ca2+通道蛋白Orai1[3-4].  相似文献   

8.
目的:探讨人参皂甙Rd(Ginsenoside Rd,GSRd)对皮层神经元兴奋性毒性损伤后细胞内游离钙离子浓度变化的影响。方法:采用原代方法培养大鼠皮层神经元,免疫荧光染色鉴定神经元纯度。应用激光共聚焦显微镜,观察GSRd对谷氨酸(Glutamate,Glu)和N-甲基-D-天门冬氨酸(NMDA)刺激后神经元胞内游离钙离子浓度变化的影响。使用钙离子荧光探针Fluo-4,AM标记细胞内游离钙,以Fluo-4的荧光强度反映细胞内游离钙浓度变化。结果:空白对照组荧光强度没有明显变化,而高浓度Glu刺激可迅速升高神经元胞内的荧光强度;在给予GSRd干预时,荧光强度升高的幅度明显降低,与MK-801的作用相似;NMDA刺激亦可使神经元胞内荧光强度明显升高,而加入GSRd干预时,荧光强度升高的幅度较NMDA损伤组有明显减小。结论:GSRd能够抑制高浓度Glu和NMDA引起的大量钙内流,提示减轻兴奋性毒性损伤过程中的钙超载可能是GSRd神经保护作用的机制之一。  相似文献   

9.
目的 探讨慢性应激对大鼠胃功能和胃肠神经系统的影响,并分析其海马谷氨酸(Glu)离子型受体机制.方法 通过建造慢性应激性抑郁模型大鼠,结合脑立体定位及微量注射Glu和N-甲基-D-天冬氨酸(NMDA)受体阻断剂MK-801,对实验鼠进行糖水偏爱等行为学检测、胃内压记录及胃内在神经丛的一氧化氮合酶(NOS)阳性神经元表达的组织化学检测.结果 慢性不可预见性温和应激(CUMS)动物表现出抑郁样行为,且胃运动减弱;海马注射NMDA受体阻断剂MK-801,可以反转CUMS的效应;海马注射Glu,能增加游泳不动时间,但对胃运动无影响.CUMS使胃肌间神经丛NOS阳性神经元数量减少[(73.74±16.38 )/LPF,P<0.05],神经节数量减少[(4.25±1.34)/LPF,P<0.05],但每个神经节内神经元数量明显增加(6.55±2.37,P<0.05);海马注射MK-801能改善CUMS引起的神经节数量减少的现象.结论 慢性应激诱发的抑郁样行为与海马Glu及其NMDA受体有关,而胃活动的减弱可能与海马NMDA受体变化影响胃肌间神经丛NOS神经元分布格局有关.  相似文献   

10.
目的:研究急性缺氧对大鼠远端肺静脉平滑肌细胞(PVSMC)细胞内钙浓度([Ca2+]i)的影响及L型电压依赖性钙通道(VDCC)阻断剂硝苯地平的作用,为缺氧性肺动脉高压发病机制的进一步研究提供理论依据.方法:胶原酶消化法培养大鼠远端PVSMC,利用荧光显微镜和细胞内钙浓度检测系统观测急性缺氧(4%O2)、高钾(60 mmol/L KCl)溶液对PVSMC的[Ca2+]i影响及硝苯地平的干预作用.结果:对照组PVSMC的[Ca2+]i随时间变化维持基线水平;缺氧组PVSMC急性缺氧后,[Ca2+]i迅速升高并维持平台水平,△[Ca2+]i达82.83 nmol/L士23.03 nmol/L;硝苯地平干预组PVSMC予急性缺氧和5μmol/L硝苯地平干预后,[Ca2+]i升高幅度较小;高钾溶液孵育PVSMC后,[Ca2+]i迅速增高,5 μmol/L硝苯地平能完全阻断PVSMC的[Ca2+]i对高钾溶液的反应.结论:急性缺氧可使大鼠远端PVSMC的[Ca2+]i升高,其机制可能与激活PVSMC的VDCC和另外的非VDCC依赖的钙通道导致细胞外Ca2+内流有关.  相似文献   

11.
Qiu Z  Crutcher KA  Hyman BT  Rebeck GW 《Neuroscience》2003,122(2):291-303
Apolipoprotein E (apoE) alters the pathophysiology of Alzheimer's disease, but its mechanism is not fully understood. We examined the effects of recombinant human apoE3 and apoE4 on the neuronal calcium response to N-methyl-D-aspartate (NMDA), and compared them to their toxicity. ApoE4 (100 nM) significantly increased the resting calcium (by 70%) and the calcium response to NMDA (by 185%), whereas similar changes were not obtained in apoE3-treated neurons. ApoE4, but not apoE3, also significantly increased neurotoxicity, as evidenced by enhanced lactate dehydrogenase release (by 53%) and reduced 3-(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide levels (by 32%). ApoE4-induced changes in the calcium response to NMDA and associated neurotoxicity were blocked by coincubation with MK-801. Both the receptor-associated protein, which inhibits interaction of apoE with members of the LDL receptor family, including the low-density lipoprotein receptor-related protein (LRP), and activated alpha2-macroglobulin, another LRP ligand, prevented apoE4-induced enhancement of the calcium response to NMDA, resting calcium levels, and neurotoxicity. A tandem apoE peptide (100 nM) containing only the receptor binding region residues also eliminated the enhanced calcium signaling and neurotoxicity by apoE4. Taken together, our data demonstrate that differential effects of apoE3 and apoE4 on the calcium signaling in neurons correlate with their effect on neurotoxicity, which are secondary to receptor binding.  相似文献   

12.
Wang J  Jiang Y  Cao H  Yu L  Bo T  Ni H  Jiang Q  Wu X 《Neuroscience letters》2006,397(1-2):104-109
To study the long-term changes induced in immature rat cortical neuronal cultures by transient exposure to an Mg(2+)-free treatment, at cultured day 6, cells were assigned into three groups, based on the mediums they were transiently exposed to as follows: control group 1 (CONT1) was exposed to Dulbecco's Modified Eagle's Medium (DMEM), control group 2 was exposed to a physiological solution (PS), and the magnesium-free physiological solution group (MGFPS) was exposed to the same medium as CONT2 except for the removal of magnesium. Following a 3-h exposure, the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSC) were recorded and intracellular calcium concentrations ([Ca2+]i) were measured. Compared to the CONT1 and CONT2 groups, the MGFPS group displayed a significantly greater amplitude (at d6, d7, d9, and d12) and frequency (at d6, d7, and d9) of sEPSC (p<0.05). Also, both the resting and peak intracellular calcium levels were significantly greater in the MGFPS group at days 6, 7, 9, 12 and 17 (p<0.05). The rise time (time from resting level to peak level of intracellular calcium following NMDA application) was significantly shorter in the MGFPS group at culture days 7 and 17 and significantly longer at culture day 12 (p<0.05). Finally, we compared the percentage of cortical neurons expressing neuron-specific enolase (NSE) and found that there were no significant differences in the number of NSE positive neurons among three groups at days 7, 12, and 17. Our results suggests that there are long-term changes in sEPSCs and [Ca2+]i in cultured rat cortical neurons following exposure to Mg2+-free environment without cell loss.  相似文献   

13.
Na+-K+-2Cl- cotransporter has been suggested to contribute to active intracellular Cl- accumulation in neurons at both early developmental and adult stages. In this report, we extensively characterized the Na+-K+-2Cl- cotransporter in primary culture of cortical neurons that were dissected from cerebral cortex of rat fetus at embryonic day 17. The Na+-K+-2Cl- cotransporter was expressed abundantly in soma and dendritic processes of cortical neurons evaluated by immunocytochemical staining. Western blot analysis revealed that an approximately 145-kDa cotransporter protein was present in cerebral cortex at the early postnatal (P0-P9) and adult stages. There was a time-dependent upregulation of the cotransporter activity in cortical neurons during the early postnatal development. A substantial level of bumetanide-sensitive K+ influx was detected in neurons cultured for 4-8 days in vitro (DIV 4-8). The cotransporter activity was increased significantly at DIV 12 and maintained at a steady level throughout DIV 12-14. Bumetanide-sensitive K+ influx was abolished completely in the absence of either extracellular Na+ or Cl-. Opening of gamma-aminobutyric acid (GABA)-activated Cl- channel or depletion of intracellular Cl- significantly stimulated the cotransporter activity. Moreover, the cotransporter activity was elevated significantly by activation of N-methyl-D-aspartate ionotropic glutamate receptor via a Ca2+-dependent mechanism. These results imply that the inwardly directed Na+-K+-2Cl- cotransporter is important in active accumulation of intracellular Cl- and may be responsible for GABA-mediated excitatory effect in immature cortical neurons.  相似文献   

14.
To explore the possible cellular source and mechanism of apolipoprotein E (apoE) expression in mechanical injured neuronal cultures. Primary cultured mouse cortical neurons were subjected into mechanical injury by needle scratching. The conditioned medium of wild type (WT) primary mouse astrocytes was collected and added into cultured injured apoE knockout (KO) neurons. Separately, the conditioned medium of injured apoE KO neurons was collected and added into cultured WT astrocytes. We used a specific inhibitor of extracellular signal-regulated kinase (ERK) to block the possible apoE-associated pathway between injured neurons and astrocytes. The apoE expression levels of the cells and secreted into medium were measured by Western blot, respectively. The apoE expression was increased in neurons after mechanically injury, and the injured neurons uptook the astrocyte-secreted apoE, as well. Furthermore, the injured neurons stimulated astrocytes to express more apoE through the ERK signaling pathway. Mechanical injury triggered the neurons to increasingly synthesized apoE and uptook exogenous apoE, while stimulators released from injured neurons elevated astrocytes in apoE expression and secretion.  相似文献   

15.
16.
New DC  An H  Ip NY  Wong YH 《Neuroscience》2006,137(4):1347-1358
The GABAB receptors are generally considered to be classical Gi-coupled receptors that lack the ability to mobilize intracellular Ca2+ without the aid of promiscuous G proteins. Here, we report the ability of GABAB receptors to promote calcium influx into primary cultures of rat cortical neurons and transfected Chinese hamster ovary cells. Chinese hamster ovary cells were transfected with GABAB1(a) or GABAB1(b) subunits along with GABAB2 subunits. In experiments using the fluorometric imaging plate reader platform, GABA and selective agonists promoted increases in intracellular Ca2+ levels in transfected Chinese hamster ovary cells and cortical neurons with the expected order of potency. These effects were fully antagonized by selective GABAB receptor antagonists. To investigate the intracellular pathways responsible for mediating these effects we employed several pharmacological inhibitors. Pertussis toxin abolished GABAB mediated Ca2+ increases, as did the phospholipase Cbeta inhibitor U73122. Inhibitor 2-aminethoxydiphenyl borane acts as an antagonist at inositol 1,4,5-trisphosphate receptors and at store-operated channels. In all cell types, 2-aminethoxydiphenyl borane prevented Ca2+ mobilization. The selective store-operated channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride prevented increases in intracellular Ca2+ levels as did performing the assays in Ca2+ free buffers. In conclusion, GABAB receptors expressed in Chinese hamster ovary cells and endogenously expressed in rat cortical neurons promote Ca2+ entry into the cell via the activation of store-operated channels, using a mechanism that is dependent on Gi/o heterotrimeric proteins and phospholipase Cbeta. These findings suggest that the neuronal effects mediated by GABAB receptors may, in part, rely on the receptor's ability to promote Ca2+ influx.  相似文献   

17.
Apolipoprotein E (apoE) is the major apolipoprotein in the brain and is known for its important role in plasticity and neurodegeneration. We show that apoE dose-dependently increases intracellular free Ca2+ in rat hippocampal astrocytes and neurons. This effect varies with isoforms in the order E4>E3>E2. It is insensitive to blockade of action potentials by tetrodotoxin or inhibition of binding of apoE by heparinase, by the LRP ligand lactoferrin and by low density lipoprotein. ApoE evoked Ca2+-increases are blocked in zero [Ca]o and by the Ca-channel antagonists nickel and ω-Agatoxin-IVa but not by nifedipine and ω-Conotoxin-GVIa, demonstrating an isoform-specific activation of P/Q type Ca2+-channels. This novel mechanism is discussed with respect to Alzheimer's disease, that is linked for most cases to the apoE ε-allelic variation (ε4 > ε3 > ε2).  相似文献   

18.
Brain structures and functions are increasingly recognized to be directly affected by gonadal hormones, which classically determine reproductive functions and sexual phenotypes. In this regard, we found recently that ovariectomy trimmed the dendritic spines of female rat primary somatosensory cortical neurons and estradiol supplement reversed it. Here, we investigated whether in the male androgen also has a cortical modulatory effect. The dendritic arbors and spines of rat somatosensory cortical pyramidal neurons were studied following intracellular dye injection and three-dimensional reconstruction. Dendritic spines, but not length, of the layers III and V pyramidal neurons were found reduced at 2 weeks and rebounded slightly at 4 weeks and further at 8 and 24 weeks following castration, which, however, remained significantly fewer than those of the intact animals. Two weeks of osmotic pump-delivered testosterone treatment to animals castrated for 4 weeks replenished serum testosterone and reversed the densities of dendritic spines on these neurons to control animal levels. Androgen receptor appears to mediate this effect as its antagonist flutamide reduced the dendritic spines of normal adult rats while causing a mild feedback surge of serum testosterone. On the other hand, blocking the conversion of testosterone to estrogen with the aromatase inhibitor anastrozole failed to alter the dendritic spine densities in male adult rats. In conclusion, these results support our hypothesis that testosterone acts directly on the androgen receptor in males to modulate the dendritic spines of somatosensory cortical output neurons.  相似文献   

19.
目的: 观察蒺藜皂苷(TTLS)对缺氧/复氧诱导的大鼠皮层神经元凋亡及细胞内游离钙离子浓度变化的影响。方法: 原代培养大鼠皮层神经元,建立缺氧/复氧损伤的皮层神经元凋亡模型。比色法测定细胞乳酸脱氢酶(LDH)释放漏出率;Annexin V-FITC/PI双染,流式细胞仪定量分析细胞凋亡百分率;Fluo-3荧光染色,激光扫描共聚焦显微镜观察细胞内钙平均荧光值变化。结果: 缺氧3 h复氧12 h可诱导出皮层神经元凋亡,引起细胞内钙离子浓度增高,高于对照组(P<0.01)。蒺藜皂苷(0.025 g/L)能明显降低缺氧/复氧诱导的神经元凋亡,并可降低细胞内钙浓度,与模型组比较有显著差异(P<0.01)。结论: 蒺藜皂苷可降低由缺氧/复氧诱导的皮层神经元的凋亡,减轻细胞损伤,这种作用机制可能与其抑制神经细胞内钙超载有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号