共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine phosphatase PTPN22 regulates IL‐1β dependent Th17 responses by modulating dectin‐1 signaling in mice 下载免费PDF全文
Harriet A Purvis Fiona Clarke Christine K Jordan Cristina Sanchez Blanco Georgina H Cornish Xuezhi Dai David J Rawlings Rose Zamoyska Andrew P Cope 《European journal of immunology》2018,48(2):306-315
A single nucleotide polymorphism within the PTPN22 gene is a strong genetic risk factor predisposing to the development of multiple autoimmune diseases. PTPN22 regulates Syk and Src family kinases downstream of immuno‐receptors. Fungal β‐glucan receptor dectin‐1 signals via Syk, and dectin‐1 stimulation induces arthritis in mouse models. We investigated whether PTPN22 regulates dectin‐1 dependent immune responses. Bone marrow derived dendritic cells (BMDCs) generated from C57BL/6 wild type (WT) and Ptpn22?/? mutant mice, were pulsed with OVA323‐339 and the dectin‐1 agonist curdlan and co‐cultured in vitro with OT‐II T‐cells or adoptively transferred into OT‐II mice, and T‐cell responses were determined by immunoassay. Dectin‐1 activated Ptpn22?/? BMDCs enhanced T‐cell secretion of IL‐17 in vitro and in vivo in an IL‐1β dependent manner. Immunoblotting revealed that compared to WT, dectin‐1 activated Ptpn22?/? BMDCs displayed enhanced Syk and Erk phosphorylation. Dectin‐1 activation of BMDCs expressing Ptpn22R619W (the mouse orthologue of human PTPN22R620W) also resulted in increased IL‐1β secretion and T‐cell dependent IL‐17 responses, indicating that in the context of dectin‐1 Ptpn22R619W operates as a loss‐of‐function variant. These findings highlight PTPN22 as a novel regulator of dectin‐1 signals, providing a link between genetically conferred perturbations of innate receptor signaling and the risk of autoimmune disease. 相似文献
2.
Mark A. Kroenke Stephen W. Chensue Benjamin M. Segal 《European journal of immunology》2010,40(8):2340-2348
Previous studies have shown that EAE can be elicited by the adoptive transfer of either IFN‐γ‐producing (Th1) or IL‐17‐producing (Th17) myelin‐specific CD4+ T‐cell lines. Paradoxically, mice deficient in either IFN‐γ or IL‐17 remain susceptible to EAE following immunization with myelin antigens in CFA. These observations raise questions about the redundancy of IFN‐γ and IL‐17 in autoimmune demyelinating disease mediated by a diverse, polyclonal population of autoreactive T cells. In this study, we show that an atypical form of EAE, induced in C57BL/6 mice by the adoptive transfer of IFN‐γ‐deficient effector T cells, required IL‐17 signaling for the development of brainstem infiltrates. In contrast, classical EAE, characterized by predominant spinal cord inflammation, occurred in the combined absence of IFN‐γ and IL‐17 signaling, but was dependent on GM‐CSF and CXCR2. Our findings contribute to a growing body of data, indicating that individual cytokines vary in their importance across different models of CNS autoimmunity. 相似文献
3.
4.
Dong‐Jae Kim Jong‐Hwan Park Luigi Franchi Steffen Backert Gabriel Núñez 《European journal of immunology》2013,43(10):2650-2658
Helicobacter pylori colonization of the stomach affects about half of the world population and is associated with the development of gastritis, ulcers, and cancer. Polymorphisms in the IL1B gene are linked to an increased risk of H. pylori associated cancer, but the bacterial and host factors that regulate interleukin (IL)‐1β production in response to H. pylori infection remain unknown. Using murine BM‐derived DCs, we show that the bacterial virulence factors cytotoxin‐associated genes pathogenicity island and CagL, but not vacuolating cytotoxin A or CagA, regulate the induction of pro‐IL‐1β and the production of mature IL‐1β in response to H. pylori infection. We further show that the host receptors, Toll‐like receptor 2 (TLR2) and nucleotide‐binding oligomerization domain 2 (NOD2), but not NOD1, are required for induction of pro‐IL‐1β and NOD‐like receptor pyrin domain containing 3 (NLRP3) in H. pylori infected DCs. In contrast, NLRP3 and the adaptor ASC were essential for the activation of caspase‐1, processing of pro‐IL‐1β into IL‐1β, and IL‐1β secretion. Finally, we show that mice deficient in caspase‐1, IL‐1β, and IL‐1 receptor, but not NLRP3, are impaired in the clearance of CagA‐positive H. pylori from the stomach when compared with WT mice. These studies identify bacterial cag pathogenicity island and the cooperative interaction among host innate receptors TLR2, NOD2, and NLRP3 as important regulators of IL‐1β production in H. pylori infected DCs. 相似文献
5.
Hartmann Raifer Azita J. Mahiny Nadine Bollig Franziska Petermann Anne Hellhund Kerstin Kellner Anna Guralnik Katharina Reinhard Evita Bothur Magdalena Huber Stefan Bauer Max Löhning Elina A. Kiss Stephanie C. Ganal Andreas Diefenbach Thomas Korn Michael Lohoff 《European journal of immunology》2012,42(12):3189-3201
6.
NLRP3 inflammasome mediates interleukin‐1β production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice 下载免费PDF全文
《Immunology》2017,150(4):495-505
Acinetobacter baumannii is a multi‐drug resistant, Gram‐negative bacteria and infection with this organism is one of the major causes of mortality in intensive care units. Inflammasomes are multiprotein oligomers that include caspase‐1, and their activation is required for maturation of interleukin‐1β (IL‐1β). Inflammasome signalling is involved in host defences against various microbial infections, but the precise mechanism by which A. baumannii activates inflammasomes and the roles of relevant signals in host defence against pulmonary A. baumannii infection are unknown. Our results showed that NLRP3, ASC and caspase‐1, but not NLRC4, are required for A. baumannii‐induced production of IL‐1β in macrophages. An inhibitor assay revealed that various pathways, including P2X7R, K+ efflux, reactive oxygen species production and release of cathepsins, are involved in IL‐1β production in macrophages in response to A. baumannii. Interleukin‐1β production in bronchoalveolar lavage (BAL) fluid was impaired in NLRP3‐deficient and caspase‐1/11‐deficient mice infected with A. baumannii, compared with that in wild‐type (WT) mice. However, the bacterial loads in BAL fluid and lungs were comparable between WT and NLRP3‐deficient or caspase‐1/11‐deficient mice. The severity of lung pathology was reduced in NLRP3‐ deficient, caspase‐1/11‐ deficient and IL‐1‐receptor‐deficient mice, although the recruitment of immune cells and production of inflammatory cytokines and chemokines were not altered in these mice. These findings indicate that A. baumannii leads to the activation of NLRP3 inflammasome, which mediates IL‐1β production and lung pathology. 相似文献
7.
Sandra Naundorf Martina Schr?der Conny H?flich Nimisha Suman Hans‐Dieter Volk Gerald Grütz 《European journal of immunology》2009,39(4):1066-1077
IL‐10 is a potent immunoregulatory and anti‐inflammatory cytokine. However, therapeutic trials in chronic inflammation have been largely disappointing. It is well established that IL‐10 can inhibit Th1 and Th2 cytokine production via indirect effects on APC. Less data are available about the influence of IL‐10 on IL‐17 production, a cytokine which has been recently linked to chronic inflammation. Furthermore, there are only few reports about a direct effect of IL‐10 on T cells. We demonstrate here that IL‐10 can directly interfere with TCR‐induced IFN‐γ production in freshly isolated memory T cells in the absence of APC. This effect was independent of the previously described effects of IL‐10 on T cells, namely inhibition of IL‐2 production and inhibition of CD28 signaling. In contrast, IL‐10 did not affect anti‐CD3/anti‐CD28‐induced IL‐17 production from memory T cells even in the presence of APC. This might have implications for the interpretation of therapeutic trials in patients with chronic inflammation where Th17 cells contribute to pathogenesis. 相似文献
8.
9.
Gencheng Han Renxi Wang Guojiang Chen Jianan Wang Ruonan Xu Liyan Wang Jiannan Feng Xia Li Renfeng Guo Li Fu Beifen Shen Yan Li 《Immunology》2010,129(2):197-206
Whether interleukin (IL)‐17 promotes a diabetogenic response remains unclear. Here we examined the effects of neutralization of IL‐17 on the progress of adoptively transferred diabetes. IL‐17‐producing cells in non‐obese diabetic (NOD) mice were identified and their role in the pathogenesis of diabetes examined using transfer and co‐transfer assays. Unexpectedly, we found that in vivo neutralization of IL‐17 did not protect NOD–severe combined immunodeficiency (SCID) mice against diabetes transferred by diabetic splenocytes. In NOD mice, γδ+ T cells were dominated by IL‐17‐producing cells and were found to be the major source of IL‐17. Interestingly, these IL‐17‐producing γδ T cells did not exacerbate diabetes in an adoptive transfer model, but had a regulatory effect, protecting NOD mice from diabetes by up‐regulating transforming growth factor (TGF)‐β production. Our data suggest that the presence of IL‐17 did not increase the chance of the development of diabetes; γδ T cells protected NOD mice from diabetes in a TGF‐β‐dependent manner, irrespective of their role as major IL‐17 producers. 相似文献
10.
IL‐1β activation in response to Staphylococcus aureus lung infection requires inflammasome‐dependent and independent mechanisms 下载免费PDF全文
Maintaining balanced levels of IL‐1β is extremely important to avoid host tissue damage during infection. Our goal was to understand the mechanisms behind the reduced pathology and decreased bacterial burdens in Ifnlr1?/? mice during lung infection with Staphylococcus aureus. Intranasal infection of Ifnlr1?/? mice with S. aureus led to significantly improved bacterial clearance, survival and decrease of proinflammatory cytokines in the airway including IL‐1β. Ifnlr1?/? mice treated with recombinant IL‐1β displayed increased bacterial burdens in the airway and lung. IL‐1β levels in neutrophils from Ifnlr1?/? infected mice lungs were decreased when compared to neutrophils from WT mice. Mice lacking NLRP3 and caspase‐1 had reduced IL‐1β levels 4 h after infection, due to reductions or absence of active caspase‐1 respectively, but levels at 24 h were comparable to WT infected mice. Ifnlr1?/? infected mice had decreases in both active caspase‐1 and neutrophil elastase indicating an important role for the neutrophil serine protease in IL‐1β processing. By inhibiting neutrophil elastase, we were able to decrease IL‐1β levels by 39% in Nlrp3?/? infected mice when compared to WT mice. These results highlight the crucial role of both proteases in IL‐1β processing, via inflammasome‐dependent and ‐independent mechanisms. 相似文献
11.
IL‐34‐ and M‐CSF‐induced macrophages switch memory T cells into Th17 cells via membrane IL‐1α 下载免费PDF全文
Etienne D. Foucher Simon Blanchard Laurence Preisser Philippe Descamps Norbert Ifrah Yves Delneste Pascale Jeannin 《European journal of immunology》2015,45(4):1092-1102
Macrophages orchestrate the immune response via the polarization of CD4+ T helper (Th) cells. Different subsets of macrophages with distinct phenotypes, and sometimes opposite functions, have been described. M‐CSF and IL‐34 induce the differentiation of monocytes into IL‐10high IL‐12low immunoregulatory macrophages, which are similar to tumor‐associated macrophages (TAMs) in ovarian cancer. In this study, we evaluated the capacity of human macrophages induced in the presence of M‐CSF (M‐CSF macrophages) or IL‐34 (IL‐34 macrophages) and ovarian cancer TAMs to modulate the phenotype of human CD4+ T cells. Taken together, our results show that M‐CSF‐, IL‐34 macrophages, and TAMs switch non‐Th17 committed memory CD4+ T cells into conventional CCR4+ CCR6+ CD161+ Th17 cells, expressing or not IFN‐gamma. Contrary, the pro‐inflammatory GM‐CSF macrophages promote Th1 cells. The polarization of memory T cells into Th17 cells is mediated via membrane IL‐1α (mIL‐1α), which is constitutively expressed by M‐CSF‐, IL‐34 macrophages, and TAMs. This study elucidates a new mechanism that allows macrophages to maintain locally restrained and smoldering inflammation, which is required in angiogenesis and metastasis. 相似文献
12.
Rebecca L. O'Brien Christina L. Roark Willi K. Born 《European journal of immunology》2009,39(3):662-666
IL‐17 is produced not only by CD4+ αβ T cells, but also CD8+ αβ T cells, NKT cells, and γδ T cells, plus some non‐T cells, including macrophages and neutrophils. The ability of IL‐17 to deploy neutrophils to sites of inflammation imparts this cytokine with a key role in diseases of several types. Surprisingly, γδ T cells are responsible for much of the IL‐17 produced in several disease models, particularly early on. 相似文献
13.
14.
Catherine Uyttenhove Frank Brombacher Jacques Van Snick 《European journal of immunology》2010,40(8):2230-2235
TGF‐β and IL‐4 were recently shown to selectively upregulate IL‐9 production by naïve CD4+ T cells. We report here that TGF‐β interactions with IL‐1α, IL‐1β, IL‐18, and IL‐33 have equivalent IL‐9‐stimulating activities that function even in IL‐4‐deficient animals. This was observed after in vitro antigenic stimulation of immunized or unprimed mice and after polyclonal T‐cell activation. Based on intracellular IL‐9 staining, all IL‐9‐producing cells were CD4+ and 80–90% had proliferated, as indicated by reduced CFSE staining. In contrast to IL‐9, IL‐13 and IL‐17 were strongly stimulated by IL‐1 and either inhibited (IL‐13) or were unaffected (IL‐17) by addition of TGF‐β. IL‐9 and IL‐17 production also differed in their dependence on IL‐2 and regulation by IL‐1/IL‐23. As IL‐9 levels were much lower in Th2 and Th17 cultures, our results identify TGF‐β/IL‐1 and TGF‐β/IL‐4 as the main control points of IL‐9 synthesis. 相似文献
15.
16.
Secreted IL‐1α promotes T‐cell activation and expansion of CD11b+Gr1+ cells in carbon tetrachloride‐induced liver injury in mice 下载免费PDF全文
Dandan Lin Lei Lei Yinsheng Zhang Bo Hu Guangming Bao Yonghao Liu Yuan Song Chunliang Liu Yan Wu Lixiang Zhao Xiao Yu Haiyan Liu 《European journal of immunology》2015,45(7):2084-2098
Interleukin‐1α is mainly expressed on the cell membrane, but can also be secreted during inflammation. The roles of secreted and membrane IL‐1α in acute liver inflammation are still not known. Here, we examined the functions of secreted and membrane IL‐1α in a mouse model of carbon tetrachloride‐induced acute liver injury. We show that secreted IL‐1α aggravates liver damage and membrane IL‐1α slightly protects mice from liver injury. Further studies showed that secreted IL‐1α promotes T‐cell activation. It also increased the expansion of CD11b+Gr1+ myeloid cells, which may serve as a negative regulator of acute liver inflammation. Moreover, secreted IL‐1α induced IL‐6 production from hepatocytes. IL‐6 neutralization reduced the proliferation of CD11b+Gr1+ myeloid cells in vivo. CCL2 and CXCL5 expression was increased by secreted IL‐1α in vitro and in vivo. Antagonists of the chemokine receptors for CCL2 and CXCL5 significantly reduced the migration of CD11b+Gr1+ myeloid cells. These results demonstrate that secreted and membrane IL‐1α play different roles in acute liver injury. Secreted IL‐1α could promote T‐cell activation and the recruitment and expansion of CD11b+Gr1+ myeloid cells through induction of CCL2, CXCL5, and IL‐6. The controlled release of IL‐1α could be a critical regulator during acute liver inflammation. 相似文献
17.
Reverse plasticity: TGF‐β and IL‐6 induce Th1‐to‐Th17‐cell transdifferentiation in the gut 下载免费PDF全文
Jens Geginat Moira Paroni Ilko Kastirr Paola Larghi Massimiliano Pagani Sergio Abrignani 《European journal of immunology》2016,46(10):2306-2310
Th17 cells are a heterogeneous population of pro‐inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune‐mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010–1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN‐γ‐producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL‐17‐producing capacities in the gut in a mouse model of colitis, and in response to TGF‐β and IL‐6 in vitro. TGF‐β induced Runx1, and together with IL‐6 was shown to render the ROR‐γt and IL‐17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co‐produce IL‐17 and IFN‐γ, and consider possible implications of this Th1‐to‐Th17‐cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens. 相似文献
18.
Jan D. Haas Frano H. Malinarich Gonzlez Susanne Schmitz Vijaykumar Chennupati Lisa Fhse Elisabeth Kremmer Reinhold Frster Immo Prinz 《European journal of immunology》2009,39(12):3488-3497
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells. 相似文献
19.
Stephanie J. Harris Loredana Ciuclan Peter M. Finan Matthias P. Wymann Christoph Walker John Westwick Stephen G. Ward Matthew J. Thomas 《European journal of immunology》2012,42(12):3394-3404
The signalling molecule PI3Kγ has been reported to play a key role in the immune system and the inflammatory response. In particular, it facilitates the migration of haemato‐poietic cells to the site of inflammation. In this study, we reveal a novel role for PI3Kγ in the regulation of the pro‐inflammatory cytokine IL‐17. Loss of PI3Kγ or expression of a catalytically inactive mutant of PI3Kγ in mice led to increased IL‐17 production both in vitro and in vivo in response to various stimuli. The kinetic profile was unaltered from WT cells, with no effect on proliferation or other cytokines. Elevated levels of IL‐17 were not due to an aberrant expansion of IL‐17‐producing cells. Furthermore, we also identified an increase in IL‐17RA expression on PI3Kγ?/? CD4+ T cells, yet these cells exhibited impaired PI3K‐dependent signalling in response to IL‐17A, and subsequent NF‐κB phosphorylation. In vivo, instillation of recombinant IL‐17 into the airways of mice lacking PI3Kγ signalling also resulted in reduced phosphorylation of Akt. Cell influx in response to IL‐17 was also reduced in PI3Kγ?/? lungs. These data demonstrate PI3Kγ‐dependent signalling downstream of IL‐17RA, which plays a pivotal role in regulating IL‐17 production in T cells. 相似文献
20.
Impaired NLRP3 inflammasome activity during fetal development regulates IL‐1β production in human monocytes 下载免费PDF全文
Ashish A. Sharma Roger Jen Bernard Kan Abhinav Sharma Elizabeth Marchant Anthony Tang Izabelle Gadawski Christof Senger Amanda Skoll Stuart E. Turvey Laura M. Sly Hélène C.F. Côté Pascal M. Lavoie 《European journal of immunology》2015,45(1):238-249
Interleukin‐1β (IL‐1β) production is impaired in cord blood monocytes. However, the mechanism underlying this developmental attenuation remains unclear. Here, we analyzed the extent of variability within the Toll‐like receptor (TLR)/NLRP3 inflammasome pathways in human neonates. We show that immature low CD14 expressing/CD16pos monocytes predominate before 33 weeks of gestation, and that these cells lack production of the pro‐IL‐1β precursor protein upon LPS stimulation. In contrast, high levels of pro‐IL‐1β are produced within high CD14 expressing monocytes, although these cells are unable to secrete mature IL‐1β. The lack of secreted IL‐1β in these monocytes parallels a reduction of NLRP3 induction following TLR stimulation resulting in a lack of caspase‐1 activity before 29 weeks of gestation, whereas expression of the apoptosis‐associated speck‐like protein containing a CARD and function of the P2×7 receptor are preserved. Our analyses also reveal a strong inhibitory effect of placental infection on LPS/ATP‐induced caspase‐1 activity in cord blood monocytes. Lastly, secretion of IL‐1β in preterm neonates is restored to adult levels during the neonatal period, indicating rapid maturation of these responses after birth. Collectively, our data highlight important developmental mechanisms regulating IL‐1β responses early in gestation, in part due to a downregulation of TLR‐mediated NLRP3 expression. Such mechanisms may serve to limit potentially damaging inflammatory responses in a developing fetus. 相似文献