首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate () supplementation resulting in higher plasma nitrite () is reported to lower resting mean arterial blood pressure (MAP) and oxygen uptake (VO2) during submaximal exercise in non‐athletic populations, whereas effects in general are absent in endurance‐trained individuals. To test whether physiologic effects of supplementation depend on local muscular training status or cardiovascular fitness, male endurance‐trained cyclists (CYC, n=9, VO2‐max: 64±3 mL/min/kg; mean±SD) and recreational active subjects serving as a control group (CON, n=8, 46±3 mL/min/kg), acutely consumed nitrate‐rich beetroot juice ([] ~9 mmol) (NIT) or placebo (PLA) with assessment of resting MAP and energy expenditure during moderate intensity (~50% VO2‐max) and incremental leg cycling (LEG‐ex) and arm‐cranking exercise (ARM‐ex). NIT increased (P<.001) resting plasma by ~1200% relative to PLA. Plasma increased ~25% (P<.01) with a significant change only in CYC. LEG‐ex VO2 (~2.60 L/min), ARM‐ex VO2 (~1.14 L/min), and resting MAP (~87 mm Hg) remained unchanged for CYC, and similarly for CON, no changes were observed for LEG‐ex VO2 (~2.03 L/min), ARM‐ex VO2 (~1.06 L/min), or resting MAP (~85 mm Hg). VO2‐max was not affected by supplementation, but incremental test peak power was higher (P<.05) in LEG‐ex for CYC in NIT relative to PLA (418±47 vs 407±46 W). In both CYC and CON, high initial baseline values and small increases in plasma after NIT may have lowered the effect of the intervention implying that muscular and cardiovascular training status is likely not the only factors that influence the physiologic effects of supplementation.  相似文献   

2.
We tested the hypothesis that participants with an oxygen uptake () plateau during incremental exercise exhibit a lower VO2‐deficit (VO2DEF)‐accumulation in the submaximal intensity domain due to faster ramp and square wave O2‐kinetics. Twenty‐six male participants performed a standard ramp test (increment: 30 W·min?1), a ramp test with an individualized ramp slope and a two‐step (moderate and severe) square wave exercise followed by a ‐verification bout. VO2DEF was calculated by the difference between individualized ramp test O2 and O2‐demand estimated from steady‐state O2‐kinetics. Twenty‐four participants verified their O2max in the verification test. Ten of them showed a plateau in the individualized ramp test. VO2DEF at the end of this ramp test (4.34 ± 0.60 vs 4.54 ± 0.43 L) was not different between the plateau and the non‐plateau group (P > 0.05). The plateau group had a significantly (P < 0.05) lower VO2DEF 2 minutes before termination of the individualized ramp test (2.24 ± 0.40 vs 2.78 ± 0.33 L). This coincided with a shorter mean response time (43 ± 9 vs 53 ± 7 seconds), a higher increase in O2 per W (10.1 ± 0.2 vs 9.2 ± 0.5 mL·min?1·W?1) at the individualized ramp test as well as shorter time constants of moderate (36 ± 6 vs 48 ± 7 seconds) and severe (62 ± 9 vs 86 ± 10 seconds) square wave kinetics (all P < 0.05). We conclude that the O2‐plateau occurrence requires a fast O2‐kinetics and a low VO2DEF‐accumulation at intensities below O2max.  相似文献   

3.
To examine whether the menstrual or monophasic oral contraceptive cycle phases affect submaximal (oxygen uptake (O2) kinetics, maximal lactate steady-state (MLSS)) and maximal (O2max, time-to-exhaustion (TTE)) responses to exercise in healthy, active women. During the mid-follicular or inactive-pill phase and the mid-luteal or active-pill phase of the respective menstrual or oral contraceptive cycle, 15 non-oral contraceptive users (mean and standard deviation (SD) (±): 27 ± 6 years; 171 ± 5 cm; 65 ± 7 kg) and 15 monophasic oral contraceptive users (24 ± 4 years; 169 ± 10 cm; 68 ± 10 kg) performed: one O2 kinetics test; one ramp-incremental test; two to three 30-minute constant-load cycling trials to determine the power output corresponding to MLSS (MLSSp), followed by a TTE trial. The phase of the menstrual or oral contraceptive cycle did not affect the time constant of the O2 kinetics response (τO2) (mid-follicular, 20 ± 5 seconds and mid-luteal, 18 ± 3 seconds; inactive-pill, 22 ± 8 seconds and active-pill, 23 ± 6 seconds), O2max (mid-follicular, 3.06 ± 0.32 L min−1 and mid-luteal, 3.00 ± 0.33 L min−1; inactive-pill, 2.87 ± 0.39 L min−1 and active-pill, 2.87 ± 0.45 L min−1), MLSSp (mid-follicular, 181 ± 30 W and mid-luteal, 182 ± 29 W; inactive-pill, 155 ± 26 W and active-pill, 155 ± 27 W), and TTE (mid-follicular, 147 ± 42 seconds and mid-luteal, 128 ± 54 seconds; inactive-pill, 146 ± 70 seconds and active-pill, 139 ± 77 seconds) (P > .05). The rate of perceived exertion (RPE) at minute 30 of the MLSSp trials was greater in the mid-follicular phase (6.2 ± 1.5) compared with the mid-luteal phase (5.3 ± 1.4) for non-oral contraceptive users (P = .022). The hormonal fluctuations between the menstrual and oral contraceptive cycle phases had no detectable effects on submaximal and maximal exercise performance, even when RPE differed.  相似文献   

4.
This study investigated the acute glucose response to low‐intensity, moderate‐intensity, and high‐intensity interval exercise compared to no‐exercise in healthy insufficiently active males using a four‐arm, randomized, crossover design. Ten males (age: 37.3 ± 7.3 years, BMI : 29.3 ± 6.5 kg·m−2) completed four 30‐minute interventions at weekly intervals comprising low‐intensity exercise (LIE ) at ~35% O2R, moderate‐intensity exercise (MIE ) at ~50% O2R, high‐intensity interval exercise (HIIE ) at ~80% O2R, and a no‐exercise control. Participants performed cycle ergometer exercise 30 minutes after finishing breakfast. Glucose response was assessed using a continuous glucose monitor under free‐living conditions with dietary intake replicated. A significant effect for intensity on energy expenditure was identified (P  < .001) with similar energy cost in MIE (mean ± SD : 869 ± 148 kJ) and HIIE (806 ± 145 kJ ), which were both greater than LIE (633 ± 129 kJ). The pattern of glucose response between the interventions over time was different (P  = .02). Glucose was lower 25 minutes into each of the HIIE , MIE and LIE trials respectively (mean difference ± SD : −0.7 ± 1.1; −0.9 ± 1.1; −0.6 ± 0.9 mmol·L−1; P  < .05) than in the no‐exercise trial. Glucose response was not different between exercise intensities (P  > .05). Twenty‐four‐hour AUC was not affected by exercise intensity (P  = .75). There was a significant effect for exercise enjoyment (P  = .02), with LIE (69 ± 4) preferred less than HIIE (mean ± SD : 84 ± 14; P  = .02), MIE (73 ± 5; P  = .03), and no‐exercise (75 ± 4; P  = .03). Exercise at any intensity 30 minutes after a meal affects glycemic regulation equally in insufficiently active males. Moderate to vigorous exercise intensities were preferred, and therefore, the exercise guidelines appear appropriate for the prevention of cardiometabolic disease.  相似文献   

5.
This study sought to determine the time course of training adaptations to two different sprint interval training programmes with the same sprint: rest ratio (1:8) but different sprint duration. Nine participants (M: 7; F: 2) were assigned to 15‐second training group (15TG) consisting of 4‐6 × 15‐second sprints interspersed with 2‐minute recovery, whereas eight participants (M: 5; F: 3) were assigned to 30‐second training group (30TG) consisting of 4‐6 × 30 second sprints interspersed with 4‐minute recovery. Both groups performed their respective training twice per week over 9 weeks and changes in peak oxygen uptake () and time to exhaustion (TTE) were assessed every 3 weeks. Additional eight healthy active adults (M: 6; F: 2) completed the performance assessments 9 weeks apart without performing training (control group, CON). Following 9 weeks of training, both groups improved (15TG: 12.1%; 30TG: 12.8%, P<.05) and TTE (15TG: 16.2%; 30TG: 12.8%, P<.01) to a similar extent. However, while both groups showed the greatest gains in at 3 weeks (15TG: 16.6%; 30TG: 17.0%, P<.001), those in TTE were greatest at 9 weeks. CON did not change any of performance variables following 9 weeks. This study demonstrated that while the changes in cardiorespiratory function plateau within several weeks with sprint interval training, endurance capacity (TTE) is more sensitive to such training over a longer time frame in moderately‐trained individuals. Furthermore, a 50% reduction in sprint duration does not diminish overall training adaptations over 9 weeks.  相似文献   

6.
We investigated the effects of supplement identification on exercise performance with caffeine supplementation. Forty‐two trained cyclists (age 37 ± 8 years, body mass [BM] 74.3 ± 8.4 kg, height 1.76 ± 0.06 m, maximum oxygen uptake 50.0 ± 6.8 mL/kg/min) performed a ~30 min cycling time‐trial 1 h following either 6 mg/kgBM caffeine (CAF) or placebo (PLA) supplementation and one control (CON) session without supplementation. Participants identified which supplement they believed they had ingested (“caffeine”, “placebo”, “don't know”) pre‐ and post‐exercise. Subsequently, participants were allocated to subgroups for analysis according to their identifications. Overall and subgroup analyses were performed using mixed‐model and magnitude‐based inference analyses. Caffeine improved performance vs PLA and CON (P ≤ 0.001). Correct pre‐ and post‐exercise identification of caffeine in CAF improved exercise performance (+4.8 and +6.5%) vs CON, with slightly greater relative increases than the overall effect of caffeine (+4.1%). Performance was not different between PLA and CON within subgroups (all P > 0.05), although there was a tendency toward improved performance when participants believed they had ingested caffeine post‐exercise (P = 0.06; 87% likely beneficial). Participants who correctly identified placebo in PLA showed possible harmful effects on performance compared to CON. Supplement identification appeared to influence exercise outcome and may be a source of bias in sports nutrition.  相似文献   

7.
The purpose of this study was to compare the effects of 3 weeks with three weekly sessions (ie, nine sessions in total) of short intervals (SI; n = 9; 3 series with 13 × 30-second work intervals interspersed with 15-second recovery and 3-minutes recovery between series) against effort-matched (rate of perceived effort based) long intervals (LI; n = 9; 4 series of 5-minute work intervals with 2.5-minutes recovery between series) on performance parameters in elite cyclists ( 73 ± 4 mL min−1 kg−1). There were no differences between groups in total volume and intensity distribution of training during the intervention period. SI achieved a larger (P < .05) relative improvement in peak aerobic power output than LI (3.7 ± 4.3% vs −0.3 ± 2.8%, respectively), fractional utilization of at 4 mmol L−1 [La] (3.0 ± 5.8 percent points vs −3.5 ± 2.7 percent points, respectively), and larger relative increase in power output at 4 mmol L−1 [La] (2.0 ± 6.7% vs −2.8 ± 3.4, respectively), while there was no group difference in change of . Improvements in performance measured as mean power output during 20-minute cycling test were greater (P < .01) in SI compared with LI (4.7 ± 4.4% vs −1.4 ± 2.2%, respectively). Mean effect size of the improvement in the above variables revealed a small to large effect of SI training vs LI training. The data thus demonstrate that the present SI protocol induces superior training adaptations compared with the present LI protocol in elite cyclists.  相似文献   

8.
The purpose of this study was to examine the propulsion asymmetries of wheelchair athletes while sprinting on an instrumented, dual‐roller ergometer system. Eighteen experienced wheelchair rugby players (8 low point (LP ) (class ≤1.5) and 10 high point (HP ) (class ≥2.0)) performed a 15‐second sprint in their sports wheelchair on the instrumented ergometer. Asymmetry was defined as the difference in distance and power output (PO ) between left and right sides when the best side reached 28 m. Propulsion techniques were quantified based on torque and velocity data. HP players covered an average 3 m further than the LP players (=  .002) and achieved faster sprint times than LP players (6.95 ± 0.89 vs 8.03 ± 0.68 seconds, =  .005) and at the time the best player finished (5.96 seconds). Higher peak PO s (667 ± 108 vs 357 ± 78 W, =  .0001) and greater peak speeds that were also evident were for HP players (4.80 ± 0.71 vs 4.09 ± 0.45 m/s, =  .011). Greater asymmetries were found in HP players for distance (1.86 ± 1.43 vs 0.70 ± 0.65 m, =  .016), absolute peak PO (=  .049), and speed (0.35 ± 0.25 vs 0.11 ± 0.10 m/s, P =  .009). Although HP players had faster sprint times over 28 m (achieved by a higher PO ), high standard deviations show the heterogeneity within the two groups (eg, some LP players were better than HP players). Quantification of asymmetries is important not only for classifiers but also for sports practitioners wishing to improve performance as they could be addressed through training and/or wheelchair configuration.  相似文献   

9.
Bovine colostrum (COL) has been advocated as a nutritional countermeasure to exercise‐induced immune dysfunction. The aims of this study were to identify the effects of 4 weeks of COL supplementation on neutrophil responses and mucosal immunity following prolonged exercise. In a randomized double‐blind, parallel group design, participants [age 28 ± 8 years; body mass 79 ± 7 kg; height 182 ± 6 cm; maximal oxygen uptake () 55 ± 9 mL/kg/min] were assigned to 20 g per day of COL (n = 10) or an isoenergetic/isomacronutrient placebo (PLA; n = 10) for 4 weeks. Venous blood and unstimulated saliva samples were obtained before and after 2.5 h of cycling at 15% Δ (~55–60% ). A significantly greater formyl‐methionyl‐leucyl phenylalanine‐stimulated oxidative burst was observed in the COL group compared with PLA group (P < 0.05) and a trend toward a time × group interaction (P = 0.06). However, there was no effect of COL on leukocyte trafficking, phorbol‐12‐myristate‐13‐acetate‐stimulated oxidative burst, bacterial‐stimulated neutrophil degranulation, salivary secretory IgA, lactoferrin or lysozyme (P > 0.05). These findings provide further evidence of the beneficial effects of COL on receptor‐mediated stimulation of neutrophil oxidative burst in a model of exercise‐induced immune dysfunction.  相似文献   

10.
The use of nicotine administered through smokeless tobacco (snus) has increased among athletes. The purpose of this study was to investigate the ergogenic effects of snus on aerobic performance during exercise until exhaustion in athletes after abstinence or satiety nicotine conditions. The study utilized a randomized, controlled, within‐subject design experiment. Sixteen male snus‐user athletes completed an exercise until exhaustion at a constant load of their 80% of (calculated by a maximal incremental test) in two separate sessions, corresponding to nicotine conditions: 12‐hour overnight abstinence and satiety. A portion of 1 g of snus (~8 mg/g of nicotine) was administered 25 minutes before each experimental test. In each session, time to exhaustion (TTE), global rating of perceived exertion, cardiovascular and metabolic responses, and muscle and cerebral oxygenation were measured. Nicotine and cotinine analysis confirmed session conditions (abstinence or satiety). Snus induced a significant increase (+13.1%) of TTE following abstinence (24.1 ± 10.7 minutes) compared to satiety condition (20.9 ± 8.0 minutes; P = 0.0131). The baseline values revealed that abstinence of snus induced significant increase in the oxygenation of the muscular tissues (+4%), in metabolic values and in cardiovascular parameters, when compared to satiety condition. Our results indicate an increase of exercise performance (+13.1% TTE) due to snus administration in an abstinence condition. Considering that twelve hours of abstinence from snus‐contained nicotine affected metabolic, cardiovascular and muscular tissue oxygenation, we suggest that snus administration at test time might relieve these withdrawal changes and yield an increase in time to exhaustion.  相似文献   

11.
Visceral fat loss in response to four‐cycle ergometer training regimens with explicit differences in exercise intensity and modality was compared. Fifty‐nine obese young women (body fat percentage ≥ 30%) were randomized to a 12‐week intervention consisting of either all‐out sprint interval training (SITall‐out, n = 11); supramaximal SIT (SIT120, 120% O2peak, n = 12); high‐intensity interval training (HIIT90, 90% O2peak, n = 12), moderate‐intensity continuous training (MICT, 60% O2peak, n = 11), or no training (CON, n = 13). The total work done per training session in SIT120, HIIT90, and MICT was confined to 200 kJ, while it was deliberately lower in SITall‐out. The abdominal visceral fat area (AVFA) was measured through computed tomography scans. The whole‐body and regional fat mass were assessed through dual‐energy X‐ray absorptiometry. Pre‐, post‐, and 3‐hour post‐exercise serum growth hormone (GH), and epinephrine (EPI) were measured during selected training sessions. Following the intervention, similar reductions in whole‐body and regional fat mass were found in all intervention groups, while the reductions in AVFA resulting from SITall‐out, SIT120, and HIIT90 (>15 cm2) were greater in comparison with MICT (<3.5 cm2, P < .05). The AVFA reductions among the SITs and HIIT groups were similar, and it was concomitant with the similar exercise‐induced releases of serum GH and EPI. CON variables were unchanged. These findings suggest that visceral fat loss induced by interval training at or above 90% O2peak appeared unresponsive to the change in training intensity. Nonetheless, SITall‐out is still the most time‐efficient strategy among the four exercise‐training regimes for controlling visceral obesity.  相似文献   

12.
The main aim of the present study was to compare skeletal maturity level and physical capacities between male Norwegian soccer players playing at elite, sub-elite and non-elite level. Secondary, we aimed to investigate the association between skeletal maturity level and physical capacities. One hundred and two U14 soccer players (12.8-14.5 years old) recruited from four local clubs, and a regional team were tested for bone age and physical capacities. Bone age was estimated with x-ray of their left hand and used to indicate maturation of the skeleton. Players went through a comprehensive test battery to assess their physical capacities. Between-groups analysis revealed no difference in chronological age, skeletal maturity level, leg strength, body weight, or stature. However, elite players were superior to sub-elite and non-elite players on important functional characteristics as intermittent-endurance capacity (running distance: 1664 m ± 367 vs 1197 m ± 338 vs 693 m ± 235) and running speed (fastest 10 m split time: 1.27 seconds ± 0.06 vs 1.33 seconds ± 0.10 vs 1.39 seconds ± 0.11), in addition to maximal oxygen uptake (), standing long jump, and upper body strength (P < .05 for all comparisons). Medium-to-large correlations were found between skeletal maturity level and peak force (r = 695, P < .01), power (r = 684, P < .01), sprint (= −.471, P<.001), and jump performance (= .359, P < .01), but no correlation with upper body strength, , or intermittent-endurance capacity. These findings imply that skeletal maturity level does not bias the selection of players, although well-developed physical capacity clearly distinguishes competitive levels. The superior physical performance of the highest-ranked players seems related to an appropriate training environment.  相似文献   

13.
The purpose of this investigation was to determine whether the magnitude of adaptation to integrated ballistic training is influenced by initial strength level. Such information is needed to inform resistance training guidelines for both higher‐ and lower‐level athlete populations. To this end, two groups of distinctly different strength levels (stronger: one‐repetition‐maximum (1RM ) squat = 2.01 ± 0.15 kg·BM−1; weaker: 1.20 ± 0.20 kg·BM−1) completed 10 weeks of resistance training incorporating weightlifting derivatives, plyometric actions, and ballistic exercises. Testing occurred at pre‐, mid‐, and post‐training. Measures included variables derived from the incremental‐load jump squat and the 1RM squat, alongside muscle activity (electromyography), and jump mechanics (force‐time comparisons throughout the entire movement). The primary outcome variable was peak velocity derived from the unloaded jump squat. It was revealed that the stronger group displayed a greater (=  .05) change in peak velocity at mid‐test (baseline: 2.65 ± 0.10 m/s, mid‐test: 2.80 ± 0.17 m/s) but not post‐test (2.85 ± 0.18 m/s) when compared to the weaker participants (baseline 2.43 ± 0.09, mid‐test. 2.47 ± 0.11, post‐test: 2.61 ± 0.10 m/s). Different changes occurred between groups in the force‐velocity relationship (=  .001‐.04) and jump mechanics (  .05), while only the stronger group displayed increases in muscle activation (=  .05). In conclusion, the magnitude of improvement in peak velocity was significantly influenced by pre‐existing strength level in the early stage of training. Changes in the mechanisms underpinning performance were less distinct.  相似文献   

14.
While beta2‐adrenoceptor stimulation has been shown to increase lean mass and to alter metabolic properties of skeletal muscle, adaptations in muscle oxidative enzymes and maximal oxygen uptake (O2max) in response to beta2‐adrenergic agonist treatment are inadequately explored in humans, particularly in association with resistance training. Herein, we investigated beta2‐adrenergic‐induced changes in O2max, leg and arm composition, and muscle content of oxidative enzymes in response to treatment with the selective beta2‐adrenergic agonist terbutaline with and without concurrent resistance training in young men. Forty‐six subjects were randomized to 4 weeks of lifestyle maintenance (n = 23) or resistance training (n = 23). Within the lifestyle maintenance and resistance training group, subjects received daily terbutaline (8 × 0.5 mg) (n = 13) or placebo (n = 10) treatment. No apparent treatment by training interactions was observed during the study period. Terbutaline increased leg and arm lean mass with the intervention, whereas no treatment differences were observed in absolute O2max and incremental peak power output (iPPO). Treatment main effects were observed for O2‐reserve (P < .05), O2max relative to body mass (P < .05), O2max relative to leg lean mass (P < .01), and iPPO relative to leg lean mass, in which terbutaline had a negative effect compared with placebo. Furthermore, content of electron transport chain complex I‐V decreased by 11% (P < .05) for terbutaline compared with placebo. Accordingly, chronic treatment with the selective beta2‐adrenergic agonist terbutaline may negatively affect O2max and iPPO in relative terms, but not in absolute.  相似文献   

15.
Debilitating gastrointestinal symptoms is a common feature of endurance running and may be exacerbated by and/or limit the ability to tolerate carbohydrate intake during exercise. The study aimed to determine whether two weeks of repetitive gut‐challenge during running can reduce exercise‐associated gastrointestinal symptoms and carbohydrate malabsorption. Endurance runners (n =18) performed an initial gut‐challenge trial (GC 1) comprising 2‐hour running exercise at 60% VO 2max (steady state) while consuming a formulated gel‐disk containing 30 g carbohydrates (2:1 glucose‐fructose, 10% w/v ) every 20 minutes, followed by a 1‐hour running effort bout. Gastrointestinal symptoms, feeding tolerance, and breath hydrogen (H2) were determined along the gut‐challenge trial. After GC 1, participants were randomly assigned to a blinded carbohydrate (CHO , 90 gCHO  hour−1) or placebo (PLA , 0 gCHO  hour−1) gut‐training group. This comprised of consuming the group‐specific feeding intervention during 1‐hour running exercise at 60% VO 2max equivalent, daily over a period of two weeks. Participants then repeated the gut‐challenge trial (GC 2). In GC 2, a reduced gut discomfort (P =.012), total (P =.009), upper‐ (P =.015), and lower‐gastrointestinal (P =.008) symptoms, and nausea (P =.05) were observed on CHO , but not PLA . Feeding tolerance did not differ between GC 1 and GC 2 on CHO and PLA . H2 peak was attenuated in GC 2 (6±3 ppm) compared to GC 1 (13±6 ppm) on CHO (P =.004), but not on PLA (GC 1 11±7 ppm, and GC 2 10±10 ppm). The effort bout distance was greater in GC 2 (12.3±1.3 km) compared with GC 1 (11.7±1.5 km) on CHO (P =.035) only. Two weeks of repetitive gut‐challenge improve gastrointestinal symptoms and reduce carbohydrate malabsorption during endurance running, which may have performance implications.  相似文献   

16.
The present study examined if an elevated nitrate intake would improve VO2 kinetics, endurance, and repeated sprint capacity in elite endurance athletes. Ten highly trained cyclists (72 ± 4 mL O2/kg/min, mean ± standard deviation) underwent testing for VO2 kinetics (3 × 6 min at 298 ± 28 W), endurance (120 min preload followed by a 400‐kcal time trial), and repeated sprint capacity (6 × 20 s sprints, recovery 100 s) during two 6‐day periods in randomized order with a daily ingestion of either 0.5 L beetroot (BR) juice to increase nitrate levels or a 0.5 L placebo (PLA) drink with blackcurrant juice. Plasma NOx (nitrate + nitrite) levels were higher (P < 0.01) in BR (147 ± 102 and 159 ± 103 μM after 4 and 6 days of beverage intake, respectively) compared with PLA (41 ± 10 and 40 ± 7 μM). VO2 kinetics and exercise economy were the same in BR and PLA. Time‐trial performance was similar with an average completion time of 18:20 and 18:37 min:s in BR and PLA, respectively, with average power outputs of 290 ± 43 W in BR and 285 ± 44 W in PLA. Peak and mean power during repeated sprinting were similar in BR and PLA. In contrast to observations in moderately trained subjects intake of BR juice had no effect on VO2 kinetics and performance in elite cyclists.  相似文献   

17.
The aim of the study was to compare myocellular damage, metabolic stress, and inflammatory responses as well as circulating sodium (Na+) and potassium (K+) between a single sprint swimming and running training. Eighteen subjects regularly involved in swimming and running training for at least 2 years were recruited. The subjects performed 8 × 30 seconds “all out” exercise on different days either by running or by swimming in a random order. Blood was collected before each training session, after the cessation of exercise (post) and after 2 hours of rest (2 hours). We then analyzed tumor necrosis factor alpha (TNF ‐α), interleukin 10 (IL ‐10), interleukin 6 (IL ‐6), cortisol, creatine kinase MB isoform (CK ‐MB ), lactate dehydrogenase (LDH ), K+, and Na+. Neither TNF ‐α nor IL ‐10 differed between swimming and running. Most of the subjects showed a non‐statistically significant increase of LDH and CK ‐MB after swimming. On the other hand, IL ‐6 (<  .05) and cortisol (<  .05) were significantly lower after 2 hours of swimming than after running. In addition, post‐exercise K+ was significantly lower (<  .001) for swimming than for running. Our results provide evidence of similar inflammatory responses between exercise modes but lower metabolic stress in response to swimming than in response to running.  相似文献   

18.
This pilot study investigated whether a 10‐week running program (10wkRP), which reduced the oxygen cost of running, affected resultant ground reaction force (GRF), leg axis alignment, joint moment characteristics, and gear ratios. Ten novice, female runners completed a 10wkRP. Running kinematics and kinetics, in addition to oxygen consumption () during steady‐state running, were recorded pre‐ and post‐10wkRP. decreased (8%) from pre‐10wkRP to post‐10wkRP. There was a better alignment of the resultant GRF and leg axis at peak propulsion post‐10wkRP compared with pre‐10wkRP (10.8 ± 4.9 vs 1.6 ± 1.2°), as the resultant GRF vector was applied 7 ± 0.6° (P = 0.008) more horizontally. There were shorter external ankle moment arms (24%) and smaller knee extensor moments (23%) at peak braking post‐10wkRP. The change in was associated with the change in alignment of the resultant GRF and leg axis (rs = 0.88, P = 0.003). As runners became more economical, they exhibited a more aligned resultant GRF vector and leg axis at peak propulsion. This appears to be a self‐optimization strategy that may improve performance. Additionally, changes to external ankle moment arms indicated beneficial low gear ratios were achieved at the time of peak braking force.  相似文献   

19.
We investigated the effect of hypoxic acclimatization per se, without any concomitant influence of strenuous physical activity on muscle and cerebral oxygenation. Eight healthy male subjects participated in a crossover‐designed study. In random order, they conducted a 10‐day normoxic (CON) and a 10‐day hypoxic (EXP) confinement. Pre and post both CON and EXP confinements, subjects conducted two incremental‐load cycling exercises to exhaustion; one under normoxic, and the other under hypoxic (FIO2 = 0.154) conditions. Oxygen uptake (), ventilation (), and relative changes in regional hemoglobin oxygenation (Δ([HbO2]) in the cerebral cortex and in the serratus anterior (SA) and vastus lateralis (VL) muscles were measured. No changes were observed in the CON confinement. Peak work rate and were similar pre and post in the EXP confinement, whereas increased in the EXP post normoxic and hypoxic trials (P < 0.05). The exercise‐induced drop in VL Δ[HbO2] was less in the post‐ than pre‐EXP trial by 4.0 ± 0.4 and 4.2 ± 0.6 μM during normoxic and hypoxic exercise, respectively. No major changes were observed in cerebral or SA oxygenation. These results demonstrate that a 10‐day hypoxic exposure without any concomitant physical activity had no effect on normoxic or hypoxic , despite the enhanced VL oxygenation.  相似文献   

20.
This study investigated carbohydrate ingestion of varied doses and frequencies during a simulated cross‐country skiing time trial. Ten men and three women (age: 30 ± 7 years; : 59.6 ± 5.7 mL/kg/min) completed four, 30‐km classic technique roller skiing time trials on a treadmill. A 1:1 maltodextrin‐fructose carbohydrate solution was provided at high (2.4 g/min; HC) and moderate (1.2 g/min; MC) ingestion rates, each at high (six feeds; HF) and low (two feeds; LF) frequencies. In the LF trials, blood glucose was elevated following carbohydrate ingestion (at 4 and 19 km) but was reduced at 14 and 29 km compared with HF strategies (P ≤ 0.05). Gastrointestinal discomfort was higher in HC‐LF compared with all other trials (P ≤ 0.05). Whole‐body lipid oxidation was lower and carbohydrate oxidation was higher in LF compared with HF trials (P ≤ 0.05). While performance time was not significantly different between trials (140:11 ± 15:31, 140:43 ± 17:40, 139:12 ± 15:32 and 140:33 ± 17:46 min:s in HC‐HF, HC‐LF, MC‐HF, and MC‐LF, respectively; P > 0.05), it was improved with trial order (P < 0.001). There was no effect of order on any other variable (P > 0.05). Altering carbohydrate dose or frequency does not affect cross‐country ski performance. However, low‐frequency carbohydrate ingestion resulted in poorer maintenance of euglycemia, reduced lipid oxidation, and increased gastrointestinal discomfort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号