首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The renal insulin-like growth factor-I (IGF-I) system has been implicated in the pathogenesis of renal hypertrophy, altered hemodynamics, and extracellular matrix expansion associated with early diabetes. The relative abundance of IGF binding proteins (IGFBPs) in the renal microenvironment may modulate IGF-I actions. However, the precise IGFBPs expressed in the glomerular and tubulointerstitial compartments during diabetic renal growth have not been characterized. In the present study, in situ hybridization studies were performed to examine the expression of IGFBP-1 to -6 messenger RNAs (mRNAs) 3, 7, and 14 days after streptozotocin (STZ) injection in rats. In control, nondiabetic kidneys, all six IGFBP mRNAs were differentially expressed with a predominance of IGFBP-5. The onset of renal hypertrophy in STZ-induced diabetes was associated with a rapid and site-specific induction of IGFBP-1, -3, and -5 mRNAs. In contrast, basal expression of IGFBP-2, -4, and -6 mRNAs was not altered in diabetic rats. IGFBP-5 mRNA expression increased in diabetic glomeruli, cortical, and inner medullary peritubular interstitial cells at days 3, 7, and 14. Although normal glomeruli failed to express IGFBP-3, it was induced concomitantly with IGFBP-5 in diabetic glomeruli and cortical peritubular interstitial cells. IGFBP-1 mRNA levels also increased in cortical tubular cells at each time point tested. Peak induction of IGFBP-3 and -5 was observed at day 3, whereas IGFBP-1 was delayed until day 7. IGFBP-1, -3, and -5 mRNA levels declined by day 14, but remained persistently elevated above control. By immunoperoxidase staining, similar alterations in the pattern of IGFBP-3 and -5 protein expression were observed at each time point. The preferential and site-specific increase in IGFBP-1, -3, and -5 suggest that these IGFBPs may regulate the local autocrine and/or paracrine actions of IGF-I and contribute to the pathogenesis of the early manifestations of diabetic nephropathy.  相似文献   

2.
AIM: To examine the response of the insulinlike growth factor (IGF) system in the kidney during a state of extreme growth. METHODS: We studied the mRNA expression of IGF-I, IGF-I receptor, and IGF-binding proteins (BP) using sensitive RNase protection assays following subcutaneous implantation of growth hormone pituitary cells (GH(3)) in rats. RESULTS: Within 5 weeks, the serum GH levels increased from 18.0 +/- (SE) 5.0 ng/ml in control animals to 389.8 +/- 30.3 ng/ml in GH(3) rats (n = 5, p < 0.001). The circulating IGF-I levels were also elevated. The kidney weights increased from 0.74 +/- 0.01 g in controls to 1.06 +/- 0.03 g in GH(3) animals (n = 5, p < 0.001). Similar changes were observed at week 10. The renal IGF-I mRNA averaged 1.0 +/- (SD) 0.33 relative densitometry units in controls (n = 4) and increased to 2.11 +/- 0.13 relative densitometry units in GH(3) rats (n = 5, p < 0.001). On the other hand, mRNA for the type I IGF receptor decreased in hypersomatotropic rats. Messenger RNAs for IGFBP-1 and IGFBP-4, which have been localized to renal tubules, both decreased significantly following growth induction, while IGFBP-3, the mRNA of which has an interstitial localization, was increased at week 10. CONCLUSION: These data suggest that there is a dynamic relationship between tubular and interstitial compartments with regard to the IGF system in the kidney which may be important in the regulation of the cell mass.  相似文献   

3.
Diabetes-associated kidney enlargement is associated with increased kidney insulinlike growth factor I (IGF-I) binding. IGF-I binds to the type I IGF receptor, which mediates most of its actions, and to specific binding proteins (IGFBPs), which modulate its actions. To explore the nature and extent of IGF-I binding in the kidney, in vitro autoradiography was used to map the distribution of IGF binding in control and diabetic rat kidney. Specificity studies were performed with increasing concentrations of unlabeled IGF-I, IGF-II, des(1-3)IGF-I (an IGF-I derivative that binds to receptors normally but with decreased affinity to binding proteins), and insulin. In control rats, diffuse binding was found throughout the kidney with increased density in the papilla. Binding specificity in the cortex and outer medulla was typical of the type I IGF receptor (IGF-I = des[1-3]IGF-I greater than IGF-II much greater than insulin). Binding in the outer medulla of diabetic kidney was typical of the type I IGF receptor. A marked focal increase in proximal tubular binding occurred in 13 of 22 postpubertal diabetic rats. Binding specificity of the proximal tubular binding was consistent with the predominance of an IGF binding protein (IGF-I = IGF-II greater than des[1-3]IGF-I with minimal displacement by insulin). Northern-blot analysis revealed increased IGFBP-1 and IGFBP-3 mRNA in cortical tissue from diabetic rats displaying increased proximal tubular binding but not from diabetic rats not displaying this phenomenon. As cell surface association of IGFBPs is linked to potentiation of IGF activity, a possible mechanism for potentiation of local IGF-I action may be provided.  相似文献   

4.
he treatment of overuse tendon injuries with exogenous growth factors such as insulin-like growth factor-I (IGF-I) may facilitate an improved return to sustained athletic function. The biological effects of IGF-I are exerted under the control of a complex of IGF receptors, binding proteins, and proteases. This IGF system includes a family of six structurally related high-affinity IGF binding proteins (IGFBPs) that protect IGF-I from local proteases and restrict access of IGF-I to its receptor. This study describes the expression of the IGFBPs in flexor tendon after acute injury and during healing over time. Collagenase-induced lesions were created in the tensile region of the flexor digitorum superficialis tendon of both forelimbs of 14 horses. Tendons were harvested from euthanatized horses 1, 2, 4, 8, or 24 weeks following injury. Gene expression was quantitated by fluorescent real-time PCR, and protein expression was evaluated by Western ligand blot (WLB). Message for IGFBPs 2 to 6 was expressed in both normal and healing tendon. No IGFBP-1 mRNA was detected in equine tendon. Message expression for IGFBP-2, -3, and -4 increased following injury, whereas message expression for IGFBP-5 and -6 decreased. Protein expression for IGFBP-2, -3, and -4 was detected by WLB in normal tendon and showed a marked increase following injury. Protein for IGFBP-5 and -6 was not detectable by WLB in normal or healing tendon. The results of this study document the IGFBP response of flexor tendons to injury and healing, which provides information necessary for the design of protocols that may enhance tendon healing through manipulation of IGF-I ligand and binding protein levels.  相似文献   

5.
During pregnancy, IGFs and their binding proteins (IGFBPs) are important for the growth of fetal and maternal tissues. IGFBP-1 normally circulates as a single, highly phosphorylated species (hpIGFBP-1). However, in pregnancy there are lesser phosphorylated isoforms (lpIGFBP-1) with decreased affinity for IGF-I, allowing for increased IGF bioavailability. Because regulation of IGFBP-1 is abnormal in type 1 diabetes, we examined the impact of this on IGFBP-1 and its phosphorylation status in diabetic pregnancy. We assessed IGFBP-1 in relation to birth weight, maternal weight gain, duration of diabetes, glycemic control, and the presence or absence of retinopathy in 44 diabetic and 11 nondiabetic subjects. We found that in type 1 diabetic patients there was a significant negative relationship between hpIGFBP-1 and birth weight (r = -0.42, P < 0.01) and between the ratio of hpIGFBP-1 to lpIGFBP-1 and birth weight (r = -0.38, P = 0.02) by week 18 of gestation. Multiple regression analysis confirmed that hpIGFBP-1 was the best single predictor of birth weight (R2 = 0.3, P = 0.001) in diabetic subjects using models including other parameters known to influence fetal size. In contrast to hpIGFBP-1 levels, lpIGFBP-1 levels were not associated with birth weight, but were significantly related to initial maternal BMI and maternal weight throughout gestation in diabetic subjects (r = -0.57, P < 0.001). hpIGFBP-1 levels were positively related to duration of diabetes (r = 0.38, P < 0.01). Diabetic subjects had significantly higher hpIGFBP-1 and lpIGFBP-1 levels than nondiabetic subjects (hpIGFBP-1: 215 +/- 21 vs. 108 +/- 13 microg/l, P = 0.01; lpIGFBP-1: 139 +/- 12 vs. 66 +/- 5 microg/l, P < 0.001), but the ratio of hpIGFBP-1 to lpIGFBP-1 was similar in both groups (2.1 +/- 0.3 [diabetic] vs. 1.7 +/- 0.2 [nondiabetic], NS). In summary, maternal IGFBP-1 levels were higher in diabetic than in normal pregnancies. Diabetic subjects with prolonged duration of diabetes and retinopathy had higher total IGFBP-1 levels than those with shorter disease duration. Thus hpIGFBP-1 in diabetic pregnancy is positively related to the duration of diabetes and inversely related to fetal growth, with lpIGFBP-1 being related to maternal weight and BMI. The ratio of hpIGFBP-1 to lpIGFBP-1 may be a more robust indicator of fetal outcome, since it was consistent between diabetic and nondiabetic subjects. Measurement of the different phosphorylated isoforms of IGFBP-1 may increase the usefulness of IGFBP-1 as a predictor of fetal growth in both normal and diabetic pregnancy.  相似文献   

6.
Children with chronic renal failure (CRF) often fail to attain an adult height consistent with their genetic potential. The growth hormone (GH)/insulin-like growth factor (IGF)/growth plate chondrocyte axis has been intensively studied in these children to determine the basis for this growth failure. Evidence suggests that hepatic GH resistance results in deficient expression of IGF-I. However, serum IGF-I levels are usually normal and it is IGF-I action on target tissues which is inhibited, possibly by the presence of excess high-affinity IGF binding proteins (IGFBPs) in CRF serum. In this paper we evaluate the roles of IGFBP-1, -2, and -3 as growth inhibitors in CRF children. The data support a role for each of these IGFBPs as growth inhibitors. Currently, IGFBP-1 meets most criteria expected of a growth inhibitor, but IGFBP-2 and -3 will likely also meet these criteria and may well be important contributors to the growth failure of CRF. Ultimately, many or all of the six IGFBPs may be found to contribute to the excess high-affinity IGF binding sites which are a hallmark of CRF serum and are possible contributors to the growth failure of CRF children.  相似文献   

7.
Disturbances of the somatotropic hormone axis play an important pathogenic role in growth retardation and catabolism in children with chronic renal failure (CRF). The apparent discrepancy between normal or elevated growth hormone (GH) levels and diminished longitudinal growth in CRF has led to the concept of GH insensitivity, which is caused by multiple alterations in the distal components of the somatotropic hormone axis. Serum levels of IGF-I and IGF-II are normal in preterminal CRF, while in end-stage renal disease (ESRD) IGF-I levels are slightly decreased and IGF-II levels slightly increased. In view of the prevailing elevated GH levels in ESRD, these serum IGF-I levels appear inadequately low. Indeed, there is both clinical and experimental evidence for decreased hepatic production of IGF-I in CRF. This hepatic insensitivity to the action of GH may be partly the consequence of reduced GH receptor expression in liver tissue and partly a consequence of disturbed GH receptor signaling. The actions and metabolism of IGFs are modulated by specific high-affinity IGFBPs. CRF serum has an IGF-binding capacity that is increased by seven- to tenfold, leading to decreased IGF bioactivity of CRF serum despite normal total IGF levels. Serum levels of intact IGFBP-1, -2, -4, -6 and low molecular weight fragments of IGFBP-3 are elevated in CRF serum in relation to the degree of renal dysfunction, whereas serum levels of intact IGFBP-3 are normal. Levels of immunoreactive IGFBP-5 are not altered in CRF serum, but the majority of IGFBP-5 is fragmented. Decreased renal filtration and increased hepatic production of IGFBP-1 and -2 both contribute to high levels of serum IGFBP. Experimental and clinical evidence suggests that these excessive high-affinity IGFBPs in CRF serum inhibit IGF action in growth plate chondrocytes by competition with the type 1 IGF receptor for IGF binding. These data indicate that growth failure in CRF is mainly due to functional IGF deficiency. Combined therapy with rhGH and rhIGF-I is therefore a logical approach.This work was presented in part at the IPNA Seventh Symposium on Growth and Development in Children with Chronic Kidney Disease: The Molecular Basis of Skeletal Growth, 1–3 April 2004, Heidelberg, Germany  相似文献   

8.
Addition of fibronectin fragments (Fn-fs) to cultured cartilage explants has been shown to mediate extensive cartilage matrix degradation followed by anabolic responses. OBJECTIVE: To determine whether specific Fn-fs regulate cartilage metabolism through a mechanism, in part, involving insulin-like growth factor (IGF) and insulin-like growth factor binding proteins (IGFBPs). METHODS: Primary bovine articular chondrocyte cultures were treated with Fn-fs. mRNA from the cultures was analysed by Northern blotting. Changes in the levels of IGFBPs in cellular extracts and conditioned media were analysed by Western ligand blotting. Explant cultures of bovine articular cartilage were used to assay release of exogenous IGF-I and IGFBP-2. An analog of IGF-I with altered affinity for IGFBPs was used to assay the effect of IGFBPs on proteoglycan synthesis. RESULTS: The Fn-fs increased protein levels of IGFBPs-2, -3 and -5 in conditioned media and of IGFBP-2 in cell extracts by as much as nine-fold. Conversely, the protein level of constitutively expressed IGBP-4 was decreased in conditioned medium. Northern blot analysis reflected increased IGFBP-3 mRNA but not decreased IGFBP-4 mRNA. The IGF-I analog was more effective at restoring PG synthesis suppression by Fn-fs than was wild type IGF-I. CONCLUSIONS: The Fn-fs increased levels of IGFBPs in cultures of bovine articular chondrocytes and elicited release of IGFBP-2 and IGF-I from articular cartilage. The increased level of IGFBPs may trap IGF-I and account in part for the initial suppression of PG synthesis. Induced proteinases may subsequently liberate IGF-I and cause greatly enhanced anabolic processes, contributing to cartilage repair.  相似文献   

9.
Serum levels of insulin-like growth factor-I (IGF-I), IGF-II, and IGF binding protein-1 (IGFBP-1), IGFBP-2, and IGFBP-3 were measured in 54 children with end-stage renal disease (ESRD). The results were compared with their respective age-dependent normal ranges. IGFs and IGFBPs were quantified by specific radioimmunoassay. Serum IGF-I in children with ESRD tended to cluster in the low-normal range. Mean age-related serum IGF-I levels were slightly, but significantly decreased (–1.08±0.17 SDS). In view of the prevailing elevated growth hormone levels in ESRD, these serum, IGF-I levels must be interpreted as inadequately low. In contrast to IGF-I, individual serum IGF-II levels were either in the uppernormal range or clearly elevated. Mean age-related IGF-II (1.09±0.15 SDS) was lightly, but significantly elevated. Mean age-related IGFBP-1 serum levels (2.20±0.10 SDS) were moderately increased, while mean age-related serum IGFBP-2 (5.65±0.36) and IGFBP-3 levels (3.60±0.19) were markedly elevated. Affinity cross-linking of125iodine-IGF-II to sera from patients with ESRD and immunoprecipitation with a specific antiserum showed that low molecular weight IGFBP-3 fragments in ESRD serum are capable of binding IGF. In patients with ESRD, a rapid and persistent decline of immunoreactive IGFBP-3 in response to restoration of renal function by renal transplantation was observed. This finding indicates that renal dysfunction contributes to high immunoreactive, IGFBP-3 levels in ESRD. In conclusion, the imbalance between normal total IGF levels and the excess of IGFBPs in ESRD is likely to play a role in growth failure in these children.  相似文献   

10.
Various arthritic disorders result from a disruption of the equilibrium between the synthesis and degradation of tissue matrix macromolecules. Growth factors, particularly insulin-like growth factor-I (IGF-I), are believed to play an important role in maintaining this equilibrium. In this study, we determined the levels of IGF-I, IGF-II, and characterized and measured the amount of IGF-binding proteins (IGFBPs) in the synovial fluid (SF) of osteoarthritis (OA), rheumatoid arthritis (RA) patients and normal individuals. Furthermore, we characterized the IGFBP found in these SFs. The levels of IGF-I, IGF-II and IGFBP-3 were determined by specific radioimmunoassays (RIAs). IGFBP identification and measurement were carried out using the Western ligand blot (WLB) technique, and characterization performed by Western immunoblot. IGFBP-3 proteolysis was analyzed by autoradiography after incubation of SF with radiolabeled IGFBP-3. Results showed a statistically significant increase (P < 0.001) in the IGF-I level in arthritic SF vs normal controls; 75 +/- 11 ng/ml and 82 +/- 11 ng/ml were recorded for RA (N = 8) and OA (N = 10), respectively, whilst normal controls (N = 9) were at 19 +/- 7 ng/ml. No difference in the level of IGF-II was recorded between the three groups studied. Human SF demonstrated the presence of IGFBP-1, -2, -3 and -4, but not that of IGFBP-5 and -6. The level of IGFBP-3 tested either by WLB or RIA was significantly higher (P < 0.001) in RA and OA patients. Moreover, a statistical and positive correlation between the levels of IGF-I and IGFBP-3 was noted. WLB analysis indicated that the amount of IGFBP-1 did not vary among the groups. The levels of IGFBP-2 and -4 were significantly increased (P < 0.02) solely in the RA SF. Further experiments demonstrated that a limited IGFBP-3 proteolysis occurred in human SF. Moreover, the ratio of total IGF over total bioactive IGFBPs was lower in RA (P < 0.05), and to a lesser extent in OA than normal specimens. This study showed the presence of four IGFBPs (1 4) in human SF for which the IGFBP-2, -3 and -4 were enhanced in arthritic fluid. Importantly, although proteolysis occurred in the SF, an increased amount of bioactive IGFBPs were present in arthritic SF, which may affect the bioavailability of IGF-I within the articular tissues.  相似文献   

11.
BACKGROUND: The insulin-like growth factor (IGF) system plays a key role in regulation of bone formation. In patients with renal osteodystrophy, an elevation of some IGF binding proteins (IGFBPs) has been described, but there is no study measuring serum levels of both IGF-I and IGF-II as well as IGFBP-1 to -6 in different forms of renal osteodystrophy and hyperparathyroidism. METHODS: In a cross-sectional study, we investigated 319 patients with mild (N = 29), moderate (N = 48), preuremic (N = 37), and end-stage renal failure (ESRF; N = 205). The ESRF group was treated by hemodialysis (HD; N = 148), peritoneal dialysis (PD; N = 27), or renal transplantation (RTX; N = 30). As controls without renal failure, we recruited age-matched healthy subjects (N = 87) and patients with primary hyperparathyroidism (pHPT; N = 25). Serum levels of total and free IGF-I, IGF-II, IGFBP-1 to -6, and biochemical bone markers including intact parathyroid hormone (PTH), bone alkaline phosphatase (B-ALP), and osteocalcin (OSC) were measured by specific immunometric assays. IGF system components and bone markers were correlated with clinical and bone histologic findings. Mean values +/- SEM are given. RESULTS: With declining renal function a significant increase was measured for IGFBP-1 (range 7- to 14-fold), IGFBP-2 (3- to 8-fold), IGFBP-3 (1.5- to 3-fold), IGFBP-4 (3- to 19-fold), and IGFBP-6 (8- to 25-fold), whereas IGFBP-5 levels tended to decrease (1.3- to 1. 6-fold). In contrast, serum levels of IGF-I, free IGF-I, and IGF-II remained constant in most patients. Compared with renal failure patients, pHPT patients showed a similar decline in IGFBP-5 levels and less elevated levels of IGFBP-1 (3.5-fold), IGFBP-2 (2-fold), IGFBP-3 (1.2-fold), and IGFBP-6 (4-fold) but no elevation of IGFBP-4 levels. In all subjects, free and total IGF-I levels showed significant negative correlations with IGFBP-1, IGFBP-2, and IGFBP-4 (that is, inhibitory IGF system components) and significant positive correlations with IGFBP-3 and IGFBP-5 (that is, stimulatory IGF system components). A positive correlation was observed between IGF-II and IGFBP-6. ESRF patients with mixed uremic bone disease and histologic evidence for osteopenia revealed significantly (P < 0.05) higher levels of IGFBP-2 and IGFBP-4 but lower IGFBP-5 levels. Histologic parameters of bone formation showed significant positive correlations with serum levels of IGF-I, IGF-II, and IGFBP-5. In contrast, IGFBP-2 and IGFBP-4 correlated positively with indices of bone loss. Moreover, dialysis patients with low bone turnover (N = 24) showed significantly (P < 0.05) lower levels of IGFBP-5, PTH, B-ALP, and OSC than patients with high bone turnover. CONCLUSION: Patients with primary and secondary hyperparathyroidism showed lower levels of the putative stimulatory IGFBP-5 but higher levels of IGFBP-1, -2, -3, and -6, whereas total IGF-I and IGF-II levels were not or only moderately increased. The marked increase in serum levels of IGFBP-4 appeared to be characteristic for chronic renal failure. IGFBP-5 correlated with biochemical markers and histologic indices of bone formation in renal osteodystrophy patients and was not influenced by renal function. Therefore, IGFBP-5 may gain significance as a serological marker for osteopenia and low bone turnover in long-term dialysis patients.  相似文献   

12.
IGF-I mRNA and signaling in the diabetic retina   总被引:3,自引:0,他引:3  
IGF-I promotes the survival of multiple cell types by activating the IGF-I receptor (IGF-IR), which signals downstream to a serine/threonine kinase termed Akt. Because in diabetes vascular and neural cells of the retina undergo accelerated apoptosis, we examined IGF-I synthesis and signaling in the human and rat diabetic retina. In retinas obtained postmortem from six donors aged 64 +/- 8 years with a diabetes duration of 7 +/- 5 years, IGF-I mRNA levels were threefold lower than in the retinas of six age-matched nondiabetic donors (P = 0.005). In the retinas of rats with 2 months' duration of streptozotocin-induced diabetes, IGF-I mRNA levels were similar to those of control rats, but after 5 months of diabetes they failed to increase to the levels recorded in age-matched controls (P < 0.02). Retinal IGF-I expression was not altered by hypophysectomy, proving to be growth-hormone independent. IGF-IR levels were modestly increased in the human diabetic retinas (P = 0.02 vs. nondiabetic retinas) and were unchanged in the diabetic rats. Phosphorylation of the IGF-IR could be measured only in the rat retina, and was not decreased in the diabetic rats (94 +/- 18% of control values). In the same diabetic rats, phosphorylation of Akt was 123 +/- 21% of control values. There was not yet evidence of increased apoptosis of retinal microvascular cells after 5 months of streptozotocin-induced diabetes. Hence, in the retina of diabetic rats, as in the retina of diabetic human donors, IGF-I mRNA levels are substantially lower than in age-matched nondiabetic controls, whereas IGF-IR activation and signaling are not affected, at least for some time. This finding suggests that in the diabetic retina, the activation of the IGF-IR is modulated by influences that compensate for, or are compensated by, decreased IGF-I synthesis.  相似文献   

13.
OBJECTIVES: Muscle mass and muscle mRNA levels for certain growth factors are reduced in maintenance hemodialysis (MHD) patients. This study tested the hypothesis that in MHD patients endurance exercise training (EET) increases mRNA levels for insulin-like growth factors and reduces myostatin mRNA. DESIGN: Biopsies of the right vastus lateralis muscle were performed before and at the end of 8.9 +/- 0.9 (SEM) weeks of EET in MHD patients. Muscle tissue was analyzed histologically by electron microscopy and for fiber cross-sectional area, and, in 8 pairs of biopsies, muscle was examined for mRNA levels for the following proteins: myostatin, insulin-like growth factor-I (IGF-I), IGF-I receptor (IGF-IR), IGF binding proteins (IGFBPs)-1, -2, -3, -4, and -5, and IGF-binding protein-related protein-1 (IGFBP-rP1). SETTING: Outpatient MHD centers. PATIENTS: This was a pilot study conducted in sedentary clinically stable MHD patients undergoing EET with no control group. INTERVENTION: EET that was carefully supervised by exercise trainers. MAIN OUTCOME MEASURE: Skeletal muscle mRNA levels, especially myostatin mRNA. RESULTS: With EET, skeletal muscle myostatin mRNA decreased by 51%, mRNA levels increased significantly for IGF-IR (by 41%), IGFBP-2, -4, and -5, and IGFBP-rP1. IGF-I mRNA increased by 35%; this change was not significant. IGFBP-3 mRNA did not change, and IGFBP-1 mRNA was undetectable. There were mild to moderate alterations in skeletal muscle ultrastructure that did not change significantly with EET. Muscle fiber size, measured in 5 patients, did not change. CONCLUSION: In MHD patients who undergo approximately 9 weeks of EET, skeletal muscle mRNA for myostatin decreases and mRNA for IGF-IR, IGFBPs -2, -4, and -5 and IGFBP-rP1 increases. These changes may indicate mechanisms by which EET improves muscle exercise capacity in MHD patients.  相似文献   

14.
BACKGROUND: Advanced glycation end-products (AGEs) contribute to the pathogenesis of diabetic glomerulopathy. The role of AGEs in non-diabetic renal damage is not well characterized. First, we studied whether renal AGE accumulation occurs in non-diabetic proteinuria-induced renal damage and whether this is ameliorated by renoprotective treatment. Secondly, we investigated whether renal AGE accumulation was due to intrarenal effects of local protein trafficking. METHODS: Pentosidine was measured (by high-performance liquid chromatography) in rats with chronic bilateral adriamycin nephropathy (AN), untreated and treated with lisinopril. Age-matched healthy rats served as negative controls. Secondly, we compared renal pentosidine in mild proteinuric and non-proteinuric kidneys of unilateral AN and in age-matched controls at 12 and 30 weeks. Intrarenal localization of pentosidine was studied by immunohistochemistry. RESULTS: Renal pentosidine was elevated in untreated AN (0.14+/-0.04 micromol/mol valine) vs healthy controls (0.04+/-0.01 micromol/mol valine, P<0.01). In lisinopril-treated AN, pentosidine was lower (0.09+/-0.02 micromol/mol valine) than in untreated AN (P<0.05). In unilateral proteinuria, pentosidine was similar in non-proteinuric and proteinuric kidneys. After 30 weeks of unilateral proteinuria, pentosidine was increased in both kidneys (0.26+/-0.10 micromol/mol valine) compared with controls (0.18+/-0.06 micromol/mol valine, P<0.05). Pentosidine (AN, week 30) was also increased compared with AN at week 12 (0.16+/-0.06 micromol/mol valine, P<0.01). In control and diseased kidneys, pentosidine was present in the collecting ducts. In proteinuric kidneys, in addition, pentosidine was present in the brush border and cytoplasm of dilated tubular structures, i.e. at sites of proteinuria-induced tubular damage. CONCLUSION: Pentosidine accumulates in non-diabetic proteinuric kidneys in damaged tubules, and renoprotective treatment by angiotensin-converting enzyme (ACE) inhibitors inhibits AGE accumulation, supporting a relationship between abnormal renal protein trafficking, proteinuria-induced tubular damage and tubular pentosidine accumulation. Future studies, applying specific AGE inhibitors, should be conducted to provide insight into the pathophysiological significance of renal AGEs in non-diabetic renal disease.  相似文献   

15.
We previously found that serum levels of insulin-like growth factor I (IGF-I) and IGF-binding protein (IGFBP)-3, but not IFGBP-2, were associated with bone mineral density (BMD) and the risk of vertebral fractures. The aim of the present study was to investigate the roles of IGFBP-4 and -5 in age-dependent bone loss and vertebral fracture risk in postmenopausal Japanese women and to compare them with those of IGF-I and IGFBP-3. One hundred and ninety-three Japanese women aged 46–88 years (mean 62.5) were enrolled in the cross-sectional study. BMD was measured at the lumbar spine, femoral neck, ultradistal radius (UDR), and total body by dual-energy X-ray absorptiometry. Serum levels of IGFBP-4 and -5 as well as IGF-I and IGFBP-3 were measured by radioimmunoassay. Serum levels of IGF-I, IGFBP-3, and IGFBP-5 declined with age, while serum IGFBP-4 increased with age. Multiple regression analysis was performed between BMD at each skeletal site and serum levels of IGF-I and IGFBPs adjusted for age, body weight, height, and serum creatinine. BMD at the UDR was significantly and positively correlated with all serum levels of IGF-I and IGFBPs measured (P < 0.01), while BMD at the femoral neck was correlated with none of them. Serum IGF-I level was significantly and positively correlated with BMD at all sites except the femoral neck (P < 0.01), while serum IGFBP-3 and -4 levels were significantly and positively correlated with only radial BMD (P < 0.01). Serum IGFBP-5 level was positively correlated with UDR BMD (P < 0.001) and negatively correlated with total BMD (P < 0.05). Serum IGF-I, IGFBP-3, and IFGBP-5 levels were significantly lower in women with vertebral fractures than in those without fractures (mean ± SD: 97.1 ± 32.1 vs. 143.9 ± 40.9 ng/dl, P < 0.0001; 2.18 ± 1.02 vs. 3.23 ± 1.07 μg/ml, P < 0.0001; 223.6 ± 63.3 vs. 246.5 ± 71.5 ng/ml, P = 0.0330, respectively). When multivariate logistic regression analysis was performed with the presence of vertebral fractures as a dependent variable and serum levels of IGF-I and IGFBPs adjusted for age, body weight, height, serum creatinine, and serum alubumin as independent variables, IGF-I and IGFBP-3 were selected as indices affecting the presence of vertebral fractures [odds ratio (OR) = 0.29, 95% confidential interval (CI) 0.15–0.57 per SD increase, P = 0.0003 and OR = 0.31, 95% CI 0.16–0.61 per SD increase, P = 0.0007, respectively]. To compare the significance values, IGF-I, IGFBP-3, and age were simultaneously added as independent variables in the analysis. IGFBP-3 was more strongly associated with the presence of vertebral fractures than IGF-I and age (P = 0.0006, P = 0.0148, and P = 0.0013, respectively). Thus, after comprehensive measurements of serum levels of IGF-I and IGFBPs, it seems that serum IGF-I level is most efficiently associated with bone mass and that serum IGFBP-3 level is most strongly associated with the presence of vertebral fractures in postmenopausal women among the IGF system components examined.  相似文献   

16.
17.
L A Bach  G Jerums 《Diabetes》1990,39(5):557-562
Prepubertal subjects have a low incidence of diabetic nephropathy compared with duration-matched postpubertal subjects. At puberty, there is an increase in insulinlike growth factor I (IGF-I) levels, and because IGF-I has been implicated in the early kidney enlargement of experimental diabetes, we studied the development of kidney enlargement and kidney IGF-I levels in prepubertal (aged 5 wk) and postpubertal (aged 13 wk) Sprague-Dawley rats during the 7 days after induction of diabetes with streptozocin. Kidney weight in postpubertal diabetic animals was significantly greater than in postpubertal controls by day 2 (1.46 +/- 0.06 vs. 1.16 +/- 0.09 g, P less than 0.05), and by day 7, kidney weight had increased by 36% (1.61 +/- 0.07 vs. 1.18 +/- 0.08 g, P less than 0.001). Despite comparable blood glucose levels in the prepubertal and postpubertal diabetic rats, kidney weight in prepubertal diabetic animals was significantly greater than in prepubertal controls by 14% on day 7 only (0.84 +/- 0.01 vs. 0.73 +/- 0.03 g, P less than 0.05). Kidney IGF-I content was significantly elevated in diabetic postpubertal rats, peaking on day 1 (diabetic vs. control, 1082 +/- 156 vs. 543 +/- 21 ng/g, P less than 0.001) and day 2 but not in prepubertal diabetic rats. Thus, prepubertal diabetic rats have reduced and retarded kidney growth and attenuated kidney IGF-I levels, suggesting that local IGF-I accumulation may play an important role in diabetes-associated kidney enlargement.  相似文献   

18.
19.
Profibrotic cytokines and the formation of advanced-glycation end products (AGE) have both been implicated in the pathogenesis of glomerulosclerosis in diabetic kidney disease. However, tubulointerstitial pathology is also an important determinant of progressive renal dysfunction in diabetic nephropathy. This study sought to investigate the expression of profibrotic growth factors and matrix deposition in the glomerulus and the tubulointerstitium and to examine the effect of blocking AGE formation in experimental diabetic nephropathy. Thirty-six male Sprague-Dawley rats were randomized into control and diabetic groups. Diabetes was induced in 24 rats by streptozotocin. Twelve diabetic rats were further randomized to receive the inhibitor of AGE formation, aminoguanidine (1 g/l drinking water). At 6 mo, experimental diabetes was associated with a three-fold increase in expression of transforming growth factor (TGF)-beta1 (P < 0.01 versus control) and five-fold increase in platelet-derived growth factor (PDGF)-B gene expression (P < 0.01 versus control) in the tubulointerstitium. In situ hybridization demonstrated a diffuse increase in both TGF-beta1 and PDGF-B mRNA in renal tubules. Aminoguanidine attenuated not only the overexpression of TGF-beta1 and PDGF-B but also reduced type IV collagen deposition in diabetic rats (P < 0.05). TGF-beta1 and PDGF mRNA within glomeruli were also similarly increased with diabetes and attenuated with aminoguanidine. The observed beneficial effects of aminoguanidine on the tubulointerstitium in experimental diabetes suggest that AGE-mediated expression of profibrotic cytokines may contribute to tubulointerstitial injury and the pathogenesis of diabetic nephropathy.  相似文献   

20.
IGF-I shares structural homology and in vitro metabolic activity with insulin. Laboratory models suggest that IGF-I and its binding proteins IGFBP-1 and IGFBP-2 have potentially beneficial effects on diabetes risk, whereas IGFBP-3 may have adverse effects. We therefore conducted a prospective nested case-control investigation of incident diabetes (n = 742 case subjects matched 1:1 to control subjects) and its associations with IGF-axis protein levels in the Nurses' Health Study, a cohort of middle-aged women. The median time to diabetes was 9 years. Statistical analyses were adjusted for multiple risk factors, including insulin and C-reactive protein. Diabetes risk was fivefold lower among women with baseline IGFBP-2 levels in the top versus bottom quintile (odds ratio [OR](q5-q1) = 0.17 [95% CI 0.08-0.35]; P trend < 0.0001) and was also negatively associated with IGFBP-1 levels (OR(q5-q1) = 0.37 [0.18-0.73]; P trend = 0.0009). IGFBP-3 was positively associated with diabetes (OR(q5-q1) = 2.05 [1.20-3.51]; P trend = 0.002). Diabetes was not associated with total IGF-I levels, but free IGF-I and diabetes had a significant association that varied (P interaction = 0.003) by insulin levels above the median (OR(q5-q1) = 0.48 [0.26-0.90]; P trend = 0.0001) versus below the median (OR(q5-q1) = 2.52 [1.05-6.06]; P trend < 0.05). Thus, this prospective study found strong associations of incident diabetes with baseline levels of three IGFBPs and free IGF-I, consistent with hypotheses that the IGF axis might influence diabetes risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号