首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopaminergic modulation of prefrontal cortex (PFC) is important for neuronal integration in this brain region known to be involved in cognition and working memory. Because of the complexity and heterogeneity of the effect of dopamine on synaptic transmission across layers of the neocortex, dopamine's net effect on local circuits in PFC is difficult to predict. We have combined whole cell patch-clamp recording and voltage-sensitive dye imaging to examine the effect of dopamine on the excitability of local excitatory circuits in rat PFC in vitro. Whole cell voltage-clamp recording from visually identified layer II/III pyramidal neurons in rat brain slices revealed that, in the presence of bicuculline (10 microM), bath-applied dopamine (30-60 microM) increased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by weak intracortical stimulus. The effect was mimicked by the selective D1 receptor agonist SKF 81297 (1 microM). Increasing stimulation resulted in epileptiform discharges. SKF 81297 (1 microM) significantly lowered the threshold stimulus required for generating epileptiform discharges to 83% of control. In the imaging experiments, bath application of dopamine or SKF 81297 enhanced the spatiotemporal spread of activity in response to weak stimulation and previously subthreshold stimulation resulted in epileptiform activity that spread across the whole cortex. These effects could be blocked by the selective D1 receptor antagonist SCH 23390 (10 microM) but not by the D2 receptor antagonist eticlopride (5 microM). These results indicate that dopamine, by a D1 receptor-mediated mechanism, enhances spatiotemporal spread of synaptic activity and lowers the threshold for epileptiform activity in local excitatory circuits within PFC.  相似文献   

2.
Application of group I metabotropic glutamate receptor (mGluR) agonists elicits seizure discharges in vivo and prolonged ictal-like activity in in vitro brain slices. In this study we examined 1) if group I mGluRs are activated by synaptically released glutamate during epileptiform discharges induced by convulsants in hippocampal slices and, if so, 2) whether the synaptically activated mGluRs contribute to the pattern of the epileptiform discharges. The GABA(A) receptor antagonist bicuculline (50 microM) was applied to induce short synchronized bursts of approximately 250 ms in mouse hippocampal slices. Addition of 4-aminopyridine (4-AP; 100 microM) prolonged these bursts to 0.7-2 s. The mGluR1 antagonist (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY 367385; 25-100 microM) and the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP; 10-50 microM), applied separately, significantly reduced the duration of the synchronized discharges. The effects of these antagonists were additive when applied together, suggesting that mGluR1 and mGluR5 exert independent actions on the epileptiform bursts. In phospholipase C beta1 (PLCbeta1) knockout mice, bicuculline and 4-AP elicited prolonged synchronized discharges of comparable duration as those observed in slices from wild-type littermates. Furthermore, mGluR1 and mGluR5 antagonists reduced the duration of the epileptiform discharges to the same extent as they did in the wild-type preparations. The results suggest that mGluR1 and mGluR5 are activated synaptically during prolonged epileptiform discharges induced by bicuculline and 4-AP. Synaptic activation of these receptors extended the duration of synchronized discharges. In addition, the data indicate that the synaptic effects of the group I mGluRs on the duration of epileptiform discharges were mediated by a PLCbeta1-independent mechanism.  相似文献   

3.
High-affinity glutamate transporters (GTs) play a major role in controlling the extracellular level of this excitatory neurotransmitter in the CNS. Here we have characterized, by means of in vitro patch-clamp recordings from medium spiny neurons (MSNs), the role of GTs in regulating corticostriatal glutamatergic synaptic transmission in the adult rat. Charge transfer and decay-time, but not amplitude, of excitatory postsynaptic currents (EPSCs) were enhanced by dl-threo-β-benzyloxyaspartate (TBOA), a broad inhibitor of GTs. Moreover, TBOA also potentiated currents induced by high-frequency stimulation (HFS) protocols. Interestingly, the effect of TBOA on EPSCs was lost when MSNs were clamped at +40 mV, a condition in which neuronal GTs, that are voltage-dependent, are blocked. However, in this condition TBOA was still able to enhance HFS-induced currents, suggesting that glial GT's role is to regulate synaptic transmission when glutamate release is massive. These data suggest that neuronal GTs, rather than glial, shape EPSCs' kinetics and modulate glutamate transmission at corticostriatal synapse. Moreover, the control of glutamate concentration in the synaptic cleft by GTs may play a role in a number of degenerative disorders characterized by the hyperactivity of corticostriatal pathway, as well as in synaptic plasticity.  相似文献   

4.
Removal of neurotransmitter from the extracellular space is crucial for normal functioning of the central nervous system. In this study, we have used high-affinity metabotropic glutamate receptors (mGluRs) expressed by hippocampal CA1 pyramidal cells to test how far bath-applied glutamate penetrates into slice tissue before being removed by uptake mechanisms. Activation of group I mGluRs by 100 microM DHPG produced an inward current of -48+/-10pA (I(mGluR)), which was blocked by application of group I mGluR antagonists. In contrast, bath application of 100 microM glutamate in the presence of a ionotropic glutamate receptor antagonist and TTX did not activate I(mGluR) in CA1 cells patch-clamped at a depth of approximately 30 microm. Similarly, sole inhibition of glutamate transporters by the broad-spectrum glutamate transporter antagonist TBOA did not induce I(mGluR) under the same conditions. Only if glutamate was co-applied with TBOA an I(mGluR) of -39+/-8pA was recorded which was also blocked by group I antagonists. The data suggest that TBOA-sensitive uptake mechanisms are able to maintain a steep concentration gradient of glutamate to such a degree that a CA1 neuron at a depth of 30 microm is exposed to low extracellular glutamate levels that are not sufficient to induce a detectable activation of group I mGluRs (< 2 microM).  相似文献   

5.
The slow Ca2+-activated K+ current (sI(AHP)) plays a critical role in regulating neuronal excitability, but its modulation during abnormal bursting activity, as in epilepsy, is unknown. Because synaptic transmission is enhanced during epilepsy, we investigated the synaptically mediated regulation of the sI(AHP) and its control of neuronal excitability during epileptiform activity induced by 4-aminopyridine (4AP) or 4AP+Mg2+-free treatment in rat hippocampal slices. We used electrophysiological and photometric Ca2+ techniques to analyze the sI(AHP) modifications that parallel epileptiform activity. Epileptiform activity was characterized by slow, repetitive, spontaneous depolarizations and action potential bursts and was associated with increased frequency and amplitude of spontaneous excitatory postsynaptic currents and a reduced sI(AHP.) The metabotropic glutamate receptor (mGluR) antagonist (S)-alpha-methyl-4-carboxyphenylglycine did not modify synaptic activity enhancement but did prevent sI(AHP) inhibition and epileptiform discharges. The mGluR-dependent regulation of the sI(AHP) was not caused by modulated intracellular Ca2+ signaling. Histamine, isoproterenol, and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid reduced the sI(AHP) but did not increase synaptic activity and failed to evoke epileptiform activity. We conclude that 4AP or 4AP+Mg-free-induced enhancement of synaptic activity reduced the sI(AHP) via activation of postsynaptic group I/II mGluRs. The increased excitability caused by the lack of negative feedback provided by the sI(AHP) contributes to epileptiform activity, which requires the cooperative action of increased synaptic activity.  相似文献   

6.
1. Neocortical brain slices were prepared from animals 8-15 days of age and maintained in vitro. Intracellular recordings were obtained from neurons in cortical layers 2-3. The role of synaptic activity and excitatory amino acid receptors in generation of picrotoxin-induced ictal-like epileptiform activity in the immature neocortex was investigated. D-2-amino-5-phosphonovaleric acid (D-APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were used as selective antagonists of N-methyl-D-aspartate (NMDA) and non-NMDA receptors, respectively. 2. Ictal-like epileptiform discharges were induced by bath application of the GABAA-receptor antagonist picrotoxin. Paroxysmal discharges, 7-25 s in duration, occurred spontaneously or could be evoked by electrical stimulation. These events consisted of an initial paroxysmal depolarizing shift (PDS) followed by a long-duration depolarization (LLD) with superimposed late PDSs. 3. The amplitudes of the initial PDS, LLD, and late PDSs were linearly dependent on membrane potential, increasing with hyperpolarization and diminishing on depolarization. All responses reversed polarity near 0 mV. Under voltage-clamp conditions, both transient and sustained currents were observed, coincident with PDSs and the LLD, respectively. The duration of the ictal-like events was similar under current- and voltage-clamp conditions, suggesting activation of intrinsic membrane currents did not significantly prolong epileptiform discharges. 4. Bath application of D-APV (20 microM) decreased the amplitude and duration of both the initial PDS and LLD without affecting the time-to-onset of epileptiform activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bijak M 《Neuroscience》2000,96(3):487-494
Neuropeptide Y reduced spontaneous and stimulation-evoked epileptiform discharges in rat frontal cortex slices perfused with a magnesium-free solution and with the GABA(A) receptor antagonist picrotoxin. To investigate the mechanism of that action, effects of neuropeptide Y on intrinsic membrane properties and synaptic responses of layer II/III cortical neurons were studied using intracellular recording. Neuropeptide Y (1 microM) had no detectable effect on the membrane properties of neurons. The evoked synaptic potentials were attenuated by neuropeptide Y. Moreover, the pharmacologically isolated excitatory postsynaptic potentials, mediated by N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors, were reversibly depressed by neuropeptide Y. The most pronounced inhibitory effect of neuropeptide Y was observed on late polysynaptic excitatory postsynaptic potentials. To assess a putative postsynaptic action of neuropeptide Y, N-methyl-D-aspartate was locally applied in the presence of tetrodotoxin. The N-methyl-D-aspartate-evoked depolarizations were unaffected by neuropeptide Y, which suggests that the depression of excitatory postsynaptic potentials was due to an action at sites presynaptic to the recorded neurons.These data show that neuropeptide Y attenuates epileptiform discharges and the glutamate receptor-mediated synaptic transmission in the rat frontal cortex. The above results indicate that neuropeptide Y may regulate neuronal excitability within the cortex, and that neuropeptide Y receptors are potential targets for an anticonvulsant therapy.  相似文献   

8.
Differential effects of metabotropic glutamate receptor antagonists on bursting activity in the amygdala. Metabotropic glutamate receptors (mGluRs) are implicated in both the activation and inhibition of epileptiform bursting activity in seizure models. We examined the role of mGluR agonists and antagonists on bursting in vitro with whole cell recordings from neurons in the basolateral amygdala (BLA) of amygdala-kindled rats. The broad-spectrum mGluR agonist 1S,3R-1-aminocyclopentane dicarboxylate (1S,3R-ACPD, 100 microM) and the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG, 20 microM) evoked bursting in BLA neurons from amygdala-kindled rats but not in control neurons. Neither the group II agonist (2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (L-CCG-I, 10 microM) nor the group III agonist L-2-amino-4-phosphonobutyrate (L-AP4, 100 microM) evoked bursting. The agonist-induced bursting was inhibited by the mGluR1 antagonists (+)-alpha-methyl-4-carboxyphenylglycine [(+)-MCPG, 500 microM] and (S)-4-carboxy-3-hydroxyphenylglycine [(S)-4C3HPG, 300 microM]. Kindling enhanced synaptic strength from the lateral amygdala (LA) to the BLA, resulting in synaptically driven bursts at low stimulus intensity. Bursting was abolished by (S)-4C3HPG. Further increasing stimulus intensity in the presence of (S)-4C3HPG (300 microM) evoked action potential firing similar to control neurons but did not induce epileptiform bursting. In kindled rats, the same threshold stimulation that evoked epileptiform bursting in the absence of drugs elicited excitatory postsynaptic potentials in (S)-4C3HPG. In contrast (+)-MCPG had no effect on afferent-evoked bursting in kindled neurons. Because (+)-MCPG is a mGluR2 antagonist, whereas (S)-4C3HPG is a mGluR2 agonist, the different effects of these compounds suggest that mGluR2 activation decreases excitability. Together these data suggest that group I mGluRs may facilitate and group II mGluRs may attenuate epileptiform bursting observed in kindled rats. The mixed agonist-antagonist (S)-4C3HPG restored synaptic transmission to control levels at the LA-BLA synapse in kindled animals. The different actions of (S)-4C3HPG and (+)-MCPG on LA-evoked bursting suggests that the mGluR1 antagonist-mGluR2 agonist properties may be the distinctive pharmacology necessary for future anticonvulsant compounds.  相似文献   

9.
The release of glutamate from axon terminals is under the control of a variety of presynaptic receptors, including several metabotropic glutamate receptors (mGluRs). Synaptically released glutamate can activate mGluRs within the same synapse where it was released and also at a distance following its diffusion from the synaptic cleft. It is unknown, however, whether the release of glutamate is under the control of persistently active mGluRs. We tested the contribution of mGluR activation to the excitatory postsynaptic responses recorded from several types of GABAergic interneuron in strata oriens/alveus of the mouse hippocampus. The application of 1 microM (alphaS)-alpha-amino-alpha-[(1S,2S)-2-carboxycyclopropyl]xanthine-9-propanoic acid (LY341495), a broad-spectrum mGluR (subtypes 2/3/7/8) antagonist at this concentration, increased evoked-excitatory postsynaptic current (eEPSC) amplitudes by 60% (n = 33). On identified cell types, LY341495 had either no effect (7 of 14 basket and 7 of 13 oriens-lacunosum moleculare, O-LM cells) or resulted in a 32 +/- 30% (mean +/- SD) increase in EPSC amplitudes recorded from basket cells and a seven-times greater (216 +/- 102%) enhancement of EPSCs in O-LM cells. The enhancement of the first EPSC of a high-frequency train indicates persistent mGluR activation. During antagonist application, the relative increase in EPSC amplitude evoked by the second and subsequent pulses in the train was not larger than that of the first EPSC, showing no further receptor activation by the released transmitter. The effect of mGluR subtype selective agonists [3 microM L(+)-2-amino-4-phosphonobutyric acid (L-AP4): mGluR4/8; 600 microM L-AP4: mGluR4/7/8; 1 microM (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IU): mGluR2/3] and an antagonist (0.2 microM LY341495: mGluR2/3/8) suggests that persistently active mGluR2/3/8 control the excitability of hippocampal network.  相似文献   

10.
Weng HR  Chen JH  Pan ZZ  Nie H 《Neuroscience》2007,149(4):898-907
Glutamatergic synaptic transmission is a dynamic process determined by the amount of glutamate released by presynaptic sites, the clearance of glutamate in the synaptic cleft, and the properties of postsynaptic glutamate receptors. Clearance of glutamate in the synaptic cleft depends on passive diffusion and active uptake by glutamate transporters. In this study, we examined the role of glial glutamate transporter 1 (GLT-1) in spinal sensory processing. Excitatory postsynaptic currents (EPSCs) of substantia gelatinosa neurons recorded from spinal slices of young adult rats were analyzed before and after GLT-1 was pharmacologically blocked by dihydrokainic acid. Inhibition of GLT-1 prolonged the EPSC duration and the EPSC decay phase. The EPSC amplitudes were increased in neurons with weak synaptic input but decreased in neurons with strong synaptic input upon inhibition of GLT-1. We suggest that presynaptic inhibition, desensitization of postsynaptic AMPA receptors, and glutamate "spillover" contributed to the kinetic change of EPSCs induced by the blockade of GLT-1. Thus, GLT-1 is a key component in maintaining the spatial and temporal coding in signal transmission at the glutamatergic synapse in substantia gelatinosa neurons.  相似文献   

11.
Mateo Z  Porter JT 《Neuroscience》2007,146(3):1062-1072
Thalamocortical synapses provide a strong glutamatergic excitation to cortical neurons that is critical for processing sensory information. Unit recordings in vivo indicate that metabotropic glutamate receptors (mGluRs) reduce the effect of thalamocortical input on cortical circuits. However, it is not known whether this reduction is due to a reduction in glutamate release from thalamocortical terminals or from a decrease in cortical neuron excitability. To directly determine whether mGluRs act as autoreceptors on thalamocortical terminals, we examined the effect of mGluR agonists on thalamocortical synapses in slices. Thalamocortical excitatory postsynaptic currents (EPSCs) were recorded in layer IV cortical neurons in developing mouse brain slices. The activation of group II mGluRs with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) reduced thalamocortical EPSCs in both excitatory and inhibitory neurons, while the stimulation of group I or group III mGluRs had no effect on thalamocortical EPSCs. Consistent with a reduction in glutamate release, DCG IV increased the paired pulse ratio and the coefficient of variation of the EPSCs. The reduction induced by DCG IV was reversed by the group II mGluR antagonist, LY341495, and mimicked by another selective group II agonist, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC). The mGluR2 subtype appears to mediate the reduction of thalamocortical EPSCs, since the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), had no effect on the EPSCs. Consistent with this, we showed that mGluR2 is expressed in the barrels. Furthermore, blocking group II mGluRs with LY341495 reduced the synaptic depression induced by a short stimulus train, indicating that synaptically released glutamate activates these receptors. These results indicate that group II mGluRs modulate thalamocortical processing by inhibiting glutamate release from thalamocortical synapses. This inhibition provides a feedback mechanism for preventing excessive excitation of cortical neurons that could play a role in the plasticity and refinement of thalamocortical connections during this early developmental period.  相似文献   

12.
Schizophrenia is considered to be associated with an abnormal functioning of the hippocampal output. The high clinical potency of antipsychotics that act as antagonists at dopamine (DA) receptors indicate a hyperfunction of the dopaminergic system. The subiculum obtains information from area CA1 and the entorhinal cortex and represents the major output region of the hippocampal complex. To clarify whether an enhanced dopaminergic activity alters the hippocampal output, the effect of DA on alveus- and perforant path-evoked excitatory postsynaptic currents (EPSCs) in subicular neurons was examined using conventional intracellular and whole cell voltage-clamp recordings. Dopamine (100 microM) depressed alveus-elicited (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs to 56 +/- 8% of control while perforant path-evoked EPSCs were attenuated to only 76 +/- 7% of control. Dopamine had no effect on the EPSC kinetics. Dopamine reduced the frequency of spontaneous miniature EPSCs without affecting their amplitudes. The sensitivity of subicular neurons to the glutamate receptor agonist (S)-alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid was unchanged by DA pretreatment, excluding a postsynaptic mechanism for the observed reduction of excitatory synaptic transmission. The effect of DA on evoked EPSCs was mimicked by the D1 receptor agonist SFK 38393 and partially antagonized by the D1 receptor antagonist SCH 23390. While the D2 receptor agonist quinelorane failed to reduce the EPSCs, the D2 receptor antagonist sulpiride did not block the action of DA. The results indicate that DA strongly depresses the hippocampal and the entorhinal excitatory input onto subicular neurons by decreasing the glutamate release following activation of presynaptic D1-like DA receptors.  相似文献   

13.
Zhu W  Pan ZZ 《Neuroscience》2005,133(1):97-103
The central nucleus of the amygdala (CeA) plays an important role both in stimulus-reward learning for the reinforcing effects of drugs of abuse and in environmental condition-induced analgesia. Both of these two CeA functions involve the opioid system within the CeA. However, the pharmacological profiles of its opioid receptor system have not been fully studied and the synaptic actions of opioid receptors in the CeA are largely unknown. In this study with whole-cell voltage-clamp recordings in brain slices in vitro, we examined actions of opioid agonists on glutamate-mediated excitatory postsynaptic currents (EPSCs) in CeA neurons. Opioid peptide methionine-enkephalin (ME; 10 microM) produced a significant inhibition (38%) in the amplitude of evoked EPSCs, an action mimicked by the mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO; 1 microM, 44%). Both effects of ME and DAMGO were abolished by the mu receptor antagonist CTAP (1 microM), suggesting a mu receptor-mediated effect. Neither delta-opioid receptor agonist [D-Pen(2),D-Pen(5)]-enkephalin (1 microM) nor kappa-opioid receptor agonist U69593 (300 nM) had any effect on the glutamate EPSC. ME significantly increased the paired-pulse ratio of the evoked EPSCs and decreased the frequency of miniature EPSCs without altering the amplitude of miniature EPSCs. Furthermore, the mu-opioid inhibition of the EPSC was blocked by 4-aminopyridine (4AP; 100 microM), a voltage-dependent potassium channel blocker, and by phospholipase A(2) inhibitors AACOCF(3) (10 microM) and quinacrine (10 microM). These results indicate that only the mu-opioid receptor is functionally present on presynaptic glutamatergic terminals in normal CeA neurons, and its activation reduces the probability of glutamate release through a signaling pathway involving phospholipase A(2) and the presynaptic, 4AP-sensitive potassium channel. This study provides evidence for the presynaptic regulation of glutamate synaptic transmission by mu-opioid receptors in CeA neurons.  相似文献   

14.
Shen KZ  Johnson SW 《Neuroscience》2008,151(4):1029-1033
The subthalamic nucleus (STN) plays a pivotal role in normal and abnormal motor function. We used patch pipettes to study effects of 5-HT on synaptic currents evoked in STN neurons by focal electrical stimulation of rat brain slices. 5-HT (10 microM) reduced glutamate-mediated excitatory postsynaptic currents (EPSCs) by 35+/-4%. However, a much higher concentration of 5-HT (100 microM) was required to inhibit GABA-mediated inhibitory postsynaptic currents (IPSCs) to a comparable extent. Concentration-response curves showed that the 5-HT inhibitory concentration 50% (IC50) for inhibition of IPSCs (20.2 microM) was more than fivefold greater than the IC50 for inhibition of EPSCs (3.4 microM). The 5-HT-induced reductions in EPSCs and IPSCs were accompanied by increases in paired-pulse ratios, indicating that 5-HT acts presynaptically to inhibit synaptic transmission. The 5-HT1B receptor antagonist NAS-181 significantly antagonized 5-HT-induced inhibitions of EPSCs and IPSCs. These studies show that 5-HT inhibits synaptic transmission in the STN by activating presynaptic 5-HT1B receptors.  相似文献   

15.
In the brain the extracellular concentration of glutamate is controlled by glial transporters that restrict the neurotransmitter action to synaptic sites and avoid excitotoxicity. Impaired transport of glutamate occurs in many cases of amyotrophic lateral sclerosis, a devastating motoneuron disease. Motoneurons of the brainstem nucleus hypoglossus are among the most vulnerable, giving early symptoms like slurred speech and dysphagia. However, the direct consequences of extracellular glutamate build-up, due to uptake block, on synaptic transmission and survival of hypoglossal motoneurons remain unclear and have been studied using the neonatal rat brainstem slice preparation as a model. Patch clamp recording from hypoglossal motoneurons showed that, in about one-third of these cells, inhibition of glutamate transport with the selective blocker dl- threo-β-benzyloxyaspartate (TBOA; 50 μ m ) unexpectedly led to the emergence of rhythmic bursting consisting of inward currents of long duration with superimposed fast oscillations and synaptic events. Synaptic inhibition block facilitated bursting. Bursts had a reversal potential near 0 mV, and were blocked by tetrodotoxin, the gap junction blocker carbenoxolone, or antagonists of AMPA, NMDA or mGluR1 glutamate receptors. Intracellular Ca2+ imaging showed bursts as synchronous discharges among motoneurons. Synergy of activation of distinct classes of glutamate receptor plus gap junctions were therefore essential for bursting. Ablating the lateral reticular formation preserved bursting, suggesting independence from propagated network activity within the brainstem. TBOA significantly increased the number of dead motoneurons, an effect prevented by the same agents that suppressed bursting. Bursting thus represents a novel hallmark of motoneuron dysfunction triggered by glutamate uptake block.  相似文献   

16.
The atypical antipsychotic drug clozapine effectively alleviates both negative and positive symptoms of schizophrenia via unclear cellular mechanisms. Clozapine may modulate both glutamatergic and dopaminergic transmission in the prefrontal cortex (PFC) to achieve part of its therapeutic actions. Using whole cell patch-clamp techniques, current-clamp recordings in layers V-VI pyramidal neurons from rat PFC slices showed that stimulation of local afferents (in 2 microM bicuculline) evoked mixed [AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors] glutamate receptor-mediated excitatory postsynaptic potentials (EPSPs). Clozapine (1 microM) potentiated polysynaptically mediated evoked EPSPs (V(Hold) = -65 mV), or reversed EPSPs (rEPSP, V(Hold) = +20 mV) for >30 min. The potentiated EPSPs or rEPSPs were attenuated by elevating [Ca(2+)](O) (7 mM), by application of NMDA receptor antagonist 2-amino5-phosphonovaleric acid (50 microM), or by pretreatment with dopamine D1/D5 receptor antagonist SCH23390 (1 microM) but could be further enhanced by a dopamine reuptake inhibitor bupropion (1 microM). Clozapine had no significant effect on pharmacologically isolated evoked NMDA-rEPSP or AMPA-rEPSPs but increased spontaneous EPSPs without changing the steady-state resting membrane potential. Under voltage clamp, clozapine (1 microM) enhanced the frequency, and the number of low-amplitude (5-10 pA) AMPA receptor-mediated spontaneous EPSCs, while there was no such changes with the mini-EPSCs (in 1 microM TTX). Taken together these data suggest that acute clozapine can increase spike-dependent presynaptic release of glutamate and dopamine. The glutamate stimulates distal dendritic AMPA receptors to increase spontaneous EPSCs and enabled a voltage-dependent activation of neuronal NMDA receptors. The dopamine released stimulates postsynaptic D1 receptor to modulate a lasting potentiation of the NMDA receptor component of the glutamatergic synaptic responses in the PFC neuronal network. This sequence of early synaptic events induced by acute clozapine may comprise part of the activity that leads to later cognitive improvement in schizophrenia.  相似文献   

17.
Functional segregation along the dorso-ventral axis of the hippocampus is a developing concept. The higher susceptibility of the ventral hippocampus to epileptic activity compared with dorsal hippocampus is one of the main features, which still has obscure mechanisms. Using the model of magnesium-free medium and field recordings, single epileptiform discharges displayed higher incidence (77% vs 57%), rate (41.7+/-3.1 vs 13.5+/-0.7 events/min), duration (173.9+/-17.7 vs 116.8+/-13.6 ms) and intensity (coastline, 25.4+/-2.5 vs 9.5+/-1.8) in ventral compared with dorsal rat hippocampal slices. In addition, the decay phase of the evoked synaptic potentials was 110% slower in ventral slices. The N-methyl-D-aspartate (NMDA) receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (50-100 microM) decreased the discharge rate and coastline similarly in ventral and dorsal slices, but it shortened the discharges in ventral slices (by 40%) only. The NMDA receptor antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 microM) decreased the rate in both groups and additionally shortened discharges in both kinds of slices, an effect which was greater in ventral ones (31% vs 13%). Furthermore, both drugs shortened the evoked potentials more in ventral (77%) than in dorsal slices (52%). On the other hand, 1 microM of 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid shortened the discharges and evoked synaptic potentials only in ventral slices, and slowed down the discharge rate only in dorsal slices. Addition of NMDA, in the magnesium-free medium, enhanced activity in both kinds of slices. At 5 and 10 microM of NMDA 51% of the ventral but only 9% of the dorsal slices displayed persistent epileptiform discharges, which were recorded for at least one hour after reintroduction of magnesium in the medium. At 10-20 microM the enhancement of activity was transient, followed by suppression of discharges in 40% and 76% of the ventral and dorsal slices, respectively. Most of the slices having experienced suppression did not develop persistent activity. We propose that the NMDA receptors contribute to the higher susceptibility of the ventral hippocampus to expression and long-term maintenance of epileptiform discharges. This diversification may be related to other aspects of hippocampal dorso-ventral functional segregation.  相似文献   

18.
Picrotoxin, an antagonist of GABA(A) receptor-mediated activity, elicited 320- to 475-ms synchronized bursts from the CA3 region of the guinea pig hippocampal slice. The addition of the selective group I metabotropic glutamate receptor (mGluR) agonist (S)-3, 5-dihydroxyphenylglycine (DHPG, 50 microM; 20- to 45-min application) gradually increased the burst duration to 1-4 s; this effect persisted 2-3 h after agonist removal. To determine whether the induction of this long-lasting effect required ongoing synchronized activity during mGluR activation, DHPG application in a second set of experiments took place in the presence of CNQX and (R, S)-CPP, antagonists of AMPA/kainate and NMDA receptors, respectively. In these experiments, synchronized bursting was silenced during the mGluR agonist application, yet after wash out of the DHPG and the ionotropic glutamate receptor (iGluR) blockers, epileptiform discharges 1-10 s in duration appeared and persisted at least 2 h after wash out of the mGluR agonist. The potentiated bursts were reversibly shortened by application of 500-1,000 microM (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) or (S)-4-carboxyphenylglycine (4CPG), agents with group I mGluR antagonist activity. These data suggest that transient activation of group I mGluRs, even during silencing of synchronized epileptiform activity, may have an epileptogenic effect, converting brief interictal-length discharges into persistent seizure-length events. The induction process is iGluR independent, and the maintenance is largely mediated by the action of endogenous glutamate on group I mGluRs, suggesting that autopotentiation of the group I mGluR-mediated response may underlie the epileptogenesis seen here.  相似文献   

19.
The role of group III metabotropic glutamate receptors (mGluRs) in modulating excitatory synaptic transmission was investigated in the rat entorhinal cortex (EC) in vitro. AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) were recorded in the whole cell configuration of the patch-clamp technique from visually identified neurons in layers V and II. In layer V, bath application of the specific group III mGluR agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 500 microM) resulted in a marked facilitation of both spontaneous and activity-independent "miniature" (s/mEPSC) event frequency. The facilitatory effect of L-AP4 (100 microM) on sEPSC frequency prevailed in the presence of DL-2-amino-5-phosphonopentanoic acid (100 microM) but was abolished by the group III antagonist (RS)-cyclopropyl-4-phosphonophenylglycine (20 microM). These data confirmed that group III mGluRs, and not N-methyl-D-aspartate (NMDA) receptors were involved in the response to L-AP4. Bath application of the specific mGluR4a agonist (1S,3R,4S)-1-aminocyclopentane-1,2, 4-tricarboxylic acid (20 microM) also had a facilitatory effect on sEPSC frequency, suggesting involvement of mGluR4a. In layer II neurons, L-AP4 caused a reduction in sEPSC frequency but did not affect mEPSCs recorded in the presence of tetrodotoxin. These findings suggest that a group III mGluR with mGluR4a-like pharmacology is involved in modulating synaptic transmission in layer V cells of the EC. The effect on mEPSCs suggests that this receptor is located presynaptically and that its activation results in a direct facilitation of glutamate release. This novel facilitatory effect is specific to layer V and, to our knowledge, is the first report of a direct facilitatory action of group III mGluRs on synaptic transmission. In layer II, L-AP4 had an inhibitory effect on glutamate release similar to that reported in other brain regions.  相似文献   

20.
Activation of N-methyl-D-aspartate (NMDA) receptors by synaptically released glutamate in the nervous system is usually studied using evoked events mediated by a complex mixture of AMPA, kainate, and NMDA receptors. Here we have characterized pharmacologically isolated spontaneous NMDA receptor-mediated synaptic events and compared them to stimulus evoked excitatory postsynaptic currents (EPSCs) in the same cell to distinguish between various modes of activation of NMDA receptors. Spontaneous NMDA receptor-mediated EPSCs recorded at 34 degrees C in dentate gyrus granule cells (DGGC) have a frequency of 2.5 +/- 0.3 Hz and an average peak amplitude of 13.2 +/- 0.8 pA, a 10-90% rise time of 5.4 +/- 0.3 ms, and a decay time constant of 42.1 +/- 2.1 ms. The single-channel conductance estimated by nonstationary fluctuation analysis was 60 +/- 5 pS. The amplitudes (46.5 +/- 6.4 pA) and 10-90% rise times (18 +/- 2.3 ms) of EPSCs evoked from the entorhinal cortex/subiculum border are significantly larger than the same parameters for spontaneous events (paired t-test, P < 0.05, n = 17). Perfusion of 50 microM D(-)-2-amino-5-phosphonopentanoic acid blocked all spontaneous activity and caused a significant baseline current shift of 18.8 +/- 3.0 pA, thus identifying a tonic conductance mediated by NMDA receptors. The NR2B antagonist ifenprodil (10 microM) significantly reduced the frequency of spontaneous events but had no effect on their kinetics or on the baseline current or variance. At the same time, the peak current and charge of stimulus-evoked events were significantly diminished by ifenprodil. Thus spontaneous NMDA receptor-mediated events in DGGC are predominantly mediated by NR2A or possibly NR2A/NR2B receptors while the activation of NR2B receptors reduces the excitability of entorhinal afferents either directly or through an effect on the entorhinal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号