首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low sensitivity of radiotherapy is the main cause of tumor tolerance against ionizing radiation (IR). However, the molecular mechanisms by which radiosensitivity is controlled remain elusive. Here, we observed that high expression of pellino E3 ubiquitin protein ligase 1 (PELI1) was correlated with improved prognosis in human esophageal squamous cell carcinoma stage III patients that received adjuvant radiotherapy. Moreover, we found PELI1‐mediated IR‐induced tumor cell apoptosis in vivo and in vitro. Mechanistically, PELI1 mediated the lysine 48 (Lys48)–linked polyubiquitination and degradation of NF‐κB–inducing kinase (NIK; also known as MAP3K14), the master kinase of the noncanonical NF‐κB pathway, thereby inhibiting IR‐induced activation of the noncanonical NF‐κB signaling pathway during radiotherapy. As a consequence, PELI1 inhibited the noncanonical NF‐κB–induced expression of the anti‐apoptotic gene BCL2 like 1 (Bclxl; also known as BCL2L1), leading to an enhancement of the IR‐induced apoptosis signaling pathway and ultimately promoting IR‐induced apoptosis in tumor cells. Therefore, Bclxl or NIK knockdown abolished the apoptosis‐resistant effect in PELI1‐knockdown tumor cells after radiotherapy. These findings establish PELI1 as a critical tumor intrinsic regulator in controlling the sensitivity of tumor cells to radiotherapy through modulating IR‐induced noncanonical NF‐κB expression.  相似文献   

2.
3.
Colitis‐associated colorectal cancer (CAC) arises due to prolonged inflammation and has distinct molecular events compared with sporadic colorectal cancer (CRC). Although inflammatory NF‐κB signaling was activated by pro‐inflammatory cytokines (such as TNFα) in early stages of CAC, Wnt/β‐catenin signaling later appears to function as a key regulator of CAC progression. However, the exact mechanism responsible for the cross‐regulation between these 2 pathways remains unclear. Here, we found reciprocal inhibition between NF‐κB and Wnt/β‐catenin signaling in CAC samples, and the Dvl2, an adaptor protein of Wnt/β‐catenin signaling, is responsible for NF‐κB inhibition. Mechanistically, Dvl2 interacts with the C‐terminus of tumor necrosis factor receptor 1 (TNFRI) and mediates TNFRI endocytosis, leading to NF‐κB signal inhibition. In addition, increased infiltration of the pro‐inflammatory cytokine interleukin‐13 (IL‐13) is responsible for upregulating Dvl2 expression through STAT6. Targeting STAT6 effectively decreases Dvl2 levels and restrains colony formation of cancer cells. These findings demonstrate a unique role for Dvl2 in TNFRI endocytosis, which facilitates the coordination of NF‐κB and Wnt to promote CAC progression.  相似文献   

4.
5.
High‐risk neuroblastomas harbor abundant myeloid cells that suppress antitumor immunity and support tumor growth. Macrophages lacking the inhibitory NF‐κB p50 subunit adopt a pro‐inflammatory phenotype. We now report that murine 9464D neuroblastoma cells, which express high levels of exogenous MYCN, grow slower in syngeneic p50(f/f);Lys‐Cre mice that lack p50 in macrophages and neutrophils, compared with p50(f/f) littermates. Tumors in p50(f/f);Lys‐Cre mice possess increased numbers of total and activated CD4+ and CD8+ T cells, and depletion of both of these T‐cell populations accelerates tumor growth. Anti‐PD‐1 T‐cell checkpoint blockade, or DNA methyltransferase and histone deacetylase inhibition, further slows tumor growth. In addition, adoptive transfer of immature myeloid cells lacking NF‐κB p50 (p50‐IMC), generated either from the bone marrow of p50−/− mice or via nucleofection of a p50 sgRNA:Cas9 complex into wild‐type hematopoietic progenitors, also slowed growth of MHC‐matched 9464D tumors but not of MHC‐mismatched Neuro2A tumors. These findings further validate the utility of targeting myeloid NF‐κB p50 as a strategy for cancer therapy and demonstrate activity of p50‐IMC generated by gene editing of syngeneic marrow cells, a cell product relevant to clinical translation.  相似文献   

6.
7.
8.
Autophagy is an important mechanism involved in the regulation of acute myeloid leukemia (AML) chemoresistance. The long noncoding RNA (lncRNA) differentiation antagonizing non‐protein coding RNA (DANCR) exhibits oncogenic activity in several types of human cancers, including AML, but it remains unclear whether it regulates autophagy and chemoresistance in AML. We report here that cytarabine (Ara‐C) treatment elevates DANCR expression in human AML cells. In addition, DANCR overexpression confers and its knockdown diminishes Ara‐C resistance in human AML cells, suggesting that DANCR positively regulates AML chemoresistance to Ara‐C. Moreover, DANCR promotes autophagy in Ara‐C‐treated human AML cells and acts as a sponge to decrease miR‐20a‐5p expression, thereby upregulating the expression of ATG16L1, a critical component of the autophagy machinery. Importantly, ATG16L1 silencing abrogates DANCR‐promoted autophagy and markedly restores DANCR‐conferred Ara‐C resistance, suggesting that DANCR promotes MIR‐874‐3P/ATG16L1 axis‐regulated autophagy to confer Ara‐C resistance in human AML cells. Together, this study identifies DANCR as a positive regulator of Ara‐C resistance in human AML cells, suggesting this lncRNA as a potential target for overcoming Ara‐C resistance in AML chemotherapy.  相似文献   

9.
Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.

Abbreviations

CDS
coding sequence
ceRNAs
competitive endogenous RNAs
Drp1
dynamin‐related protein 1
FFPE
formalin‐fixed paraffin‐embedded
lncRNAs
long non‐coding RNAs
miRNAs
microRNAs
RACGAP1
Rac GTPase activating protein 1
TCGA
The Cancer Genome Atlas
  相似文献   

10.
Cadherin-17 (CDH17), as a structurally unique member of the cadherin superfamily, has been identified to predict a poor prognosis for gastric cancer (GC). Our previous study demonstrated the positive correlation between CDH17 and lymph node micrometastasis in GC. We sought to further identify the role of CDH17 in the tumorigenesis and lymphatic metastasis of GC. Hence, we inhibited the CDH17 expression in MKN-45 gastric cancer cells by using RNA interference. Consequently, the malignant potency of cancer cells was evaluated, and the change in NFκB signaling pathway was also probed. Tumor growth and lymphatic metastasis model were conducted in nude mice to confirm the hypothesis. Downregulation of CDH17 not only suppressed the proliferation, adherence and invasion potency of MKN-45 cells, but also induced cell cycle arrest. Meanwhile, the NFκB signaling pathway was inactivated as well, with the reductions of downstream proteins including VEGF-C and MMP-9. Moreover, silencing CDH17 inhibited tumor growth in vivo significantly, and there was no lymph node metastasis detected in the mice without CDH17 expression, as opposed to the positive nodes found in controls. CDH17 is a novel oncogene in gastric cancer cells, which is associated with lymphatic metastasis and proliferation strongly. The inactivation of NFκB signaling pathway might be involved in targeting CDH17 in GC. On the whole, CDH17 is proposed to serve as a biomarker and attractive therapeutic target in GC.  相似文献   

11.
Bone‐related events caused by breast cancer bone metastasis substantially compromise the survival and quality of life of patients. Because triple‐negative breast cancer (TNBC) lacks hormone receptors and Her2‐targeted therapeutic options, progress in the treatment of TNBC bone metastasis has been very slow. Intercellular adhesion molecule 1 (ICAM1) is highly expressed in various cancers and plays an important role in tumorigenesis and metastasis. However, the effect and mechanism of ICAM1 in TNBC bone metastasis are still unknown. We found that ICAM1 was highly expressed in TNBC and correlated with prognosis in TNBC patients. Cell lines with high expression of ICAM1 exhibited enhanced bone metastasis in tumor‐bearing mice, and silencing ICAM1 expression significantly inhibited bone metastasis in mice. ICAM1 interacted with integrins to activate the epithelial‐to‐mesenchymal transition program through TGF‐β/SMAD signaling, ultimately enhancing cell invasiveness. Therefore, the findings of the present study provide a strong rationale for the application of ICAM1‐targeted therapy in TNBC patients with bone metastasis.  相似文献   

12.
The recurrence risk of estrogen receptor (ER)‐positive breast cancer remains high for a long period of time, unlike other types of cancer. Late recurrence reflects the ability of cancer cells to remain dormant through various events, including cancer stemness acquisition, but the detailed mechanism is unknown. ESR1 locus enhancing and activating noncoding RNAs (ELEANORS) are a cluster of nuclear noncoding RNAs originally identified in a recurrent breast cancer cell model. Although their functions as chromatin regulators in vitro are well characterized, their roles in vivo remain elusive. In this study, we evaluated the clinicopathologic features of ELEANORS, using primary and corresponding metastatic breast cancer tissues. The ELEANOR expression was restricted to ER‐positive cases and well‐correlated with the ER and progesterone receptor expression levels, especially at the metastatic sites. ELEANORS were detected in both primary and metastatic tumors (32% and 29%, respectively), and frequently in postmenopausal cases. Interestingly, after surgery, patients with ELEANOR‐positive primary tumors showed increased relapse rates after, but not within, 5 years. Multivariate analysis showed that ELEANORS are an independent recurrence risk factor. Consistently, analyses with cell lines, mouse xenografts, and patient tissues revealed that ELEANORS upregulate a breast cancer stemness gene, CD44, and maintain the cancer stem cell population, which could facilitate tumor dormancy. Our findings highlight a new role of nuclear long noncoding RNAs and their clinical potential as predictive biomarkers and therapeutic targets for late recurrence of ER‐positive breast cancer.  相似文献   

13.
14.
The abnormal expression of adipocyte enhancer binding protein 1 (AEBP1) has been implicated in the carcinogenesis and progression of various types of human tumors. However, the role of AEBP1 in colon adenocarcinoma (COAD) remains largely unelucidated. In this study, we explored the clinical significance and biological function of AEBP1 in COAD. We observed that AEBP1 was overexpressed in COAD tissues and cells and that the expression of AEBP1 was correlated with tumor size, the level of histologic differentiation, lymph node metastasis, and cancer stage in COAD patients. In addition, univariate and multivariate Cox regression analyses revealed that high AEBP1 expression suggested poor prognosis in COAD. Moreover, AEBP1 silencing suppressed COAD cell proliferation, migration, and invasion, whereas the upregulation of AEBP1 promoted these behaviors. Additionally, mechanistic studies further demonstrated that AEBP1 promoted COAD cell proliferation, migration, and invasion by upregulating the expression of matrix metalloproteinase‐2, vimentin, and TWIST whereas downregulating that of E‐cadherin through the nuclear factor‐κB pathway. Collectively, these data indicated that AEBP1 may be a new prognostic factor and a potential gene therapy target in COAD.  相似文献   

15.
Ovarian cancer is the leading cause of death in gynecological malignancies worldwide. Our previous studies have proved that metformin inhibited the proliferation and invasion of ovarian cancer in vitro and in vivo. However, the underlying mechanisms have not been fully elucidated. Immunohistochemistry was carried out to detect the expression of tripartite motif‐containing 37 (TRIM37), Ki‐67, and MMP‐9 in ovarian cancer and normal tissues. The influence of TRIM37 on the proliferation and invasion of ovarian cancer cells was verified by the real‐time cellular analysis proliferation test, colony formation test, and Transwell assay. Western blot analysis and immunoprecipitation were used to detect the expression of the nuclear factor‐κB (NF‐κB) pathway and the interaction between TRIM37 and tumor necrosis factor receptor‐associated factor 2 (TRAF2). Ubiquitination detection was carried out to detect the ubiquitination level of TRAF2. The present study revealed that TRIM37 expression was significantly increased in ovarian cancer tissues compared with normal control tissues, and its overexpression was closely associated with proliferation and metastasis. Metformin inhibited the NF‐κB signaling pathway by downregulating TRIM37. Metformin also inhibited the ubiquitination of TRAF2 induced by TRIM37 overexpression. Metformin inhibits the proliferation and invasion of ovarian cancer cells by suppressing TRIM37‐induced TRAF2 ubiquitination.  相似文献   

16.
Tumor‐associated macrophages (TAMs), one of the most common cell components in the tumor microenvironment, have been reported as key contributors to cancer‐related inflammation and enhanced metastatic progression of tumors. To explore the underlying mechanism of TAM‐induced tumor progression, TAMs were isolated from colorectal cancer patients, and the functional interaction with colorectal cancer cells was analyzed. Our study found that coculture of TAMs contributed to a glycolytic state in colorectal cancer, which promoted the stem‐like phenotypes and invasion of tumor cells. TAMs produced the cytokine transforming growth factor‐β to support hypoxia‐inducible factor 1α (HIF1α) expression, thereby upregulating Tribbles pseudokinase 3 (TRIB3) in tumor cells. Elevated expression of TRIB3 resulted in activation of the β‐catenin/Wnt signaling pathway, which eventually enhanced the stem‐like phenotypes and cell invasion in colorectal cancer. Our findings provided evidence that TAMs promoted colorectal cancer progression in a HIF1α/TRIB3‐dependent manner, and blockade of HIF1α signals efficiently improved the outcome of chemotherapy, describing an innovative approach for colorectal cancer treatment.  相似文献   

17.
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor in the oral and maxillofacial regions, and long noncoding RNAs (lncRNAs) play crucial roles in the occurrence and progression of HNSCC. The lncRNA lncH2AFV1 was found to be upregulated in HNSCC tissues; however, the function of lncH2AFV1 in regulating HNSCC proliferation and the potential molecular mechanism is unclear. The present study evaluated the expression of lncH2AFV1 in HNSCC tissues using quantitative real‐time PCR (qPCR) and associated abundant lncH2AFV1 expression with tumor size. Functionally, lncH2AFV1 significantly promoted the proliferation of HNSCC cells in vitro and in vivo. Quantified N6‐methyladenosine (m6A) RNA methylation and dot blot assays revealed that total m6A methylation in HNSCC cells was accompanied by lncH2AFV1 expression. Western blotting showed that the expression of methyltransferase‐like (METTL) 3 and METTL14 was consistent with that of lncH2AFV1, whereas the expression of demethylase fat mass and obesity‐associated (FTO) was contrary to that of lncH2AFV1. Methylated RNA immunoprecipitation sequencing (MeRIP‐seq) and MeRIP‐qPCR revealed that lncH2AFV1 overexpression led to the elevated expression and maximal m6A methylation of intraflagellar transport (IFT) 80 in HNSCC. In addition, METTL3/14 knockdown decreased IFT80 expression. Thus, our findings suggested that lncH2AFV1 might be a biomarker that alters m6A modification by regulating the m6A methylases METTL3/14 and FTO and then mediating the downstream target IFT80 to promote HNSCC progression.  相似文献   

18.
Gastric cancer is the second leading cause of cancer deaths worldwide, and more understanding of its molecular basis is urgently needed. Gastric gland mucin secreted from pyloric gland cells, mucous neck cells, and cardiac gland cells of the gastric mucosa harbors unique O‐glycans carrying terminal α1,4‐linked N‐acetylglucosamine (αGlcNAc) residues. We previously reported that αGlcNAc loss correlated positively with poor outcomes for patients with differentiated‐type gastric cancer. However, the molecular mechanisms underlying these outcomes remained poorly understood. Here, we examined the effects of upregulated αGlcNAc expression on malignant phenotypes of the differentiated‐type gastric cancer cell lines, AGS and MKN7. Upregulation of αGlcNAc following ectopic expression of its biosynthetic enzyme attenuated cell proliferation, motility, and invasiveness of AGS and MKN7 cells in vitro. Moreover, AGS cell tumorigenicity was significantly suppressed by αGlcNAc overexpression in a xenograft model. To define the molecular mechanisms underlying these phenotypes, we investigated αGlcNAc binding proteins in AGS cells and identified Mucin‐1 (MUC1) and podocalyxin. Both proteins were colocalized with αGlcNAc on human gastric cancer cells. We also found that αGlcNAc was bound to MUC1 in murine normal gastric mucosa. When we assessed the effects of αGlcNAc binding to MUC1, we found that αGlcNAc blocked galectin‐3 binding to MUC1, phosphorylation of the MUC1 C‐terminus, and recruitment of Src and β‐catenin to that C‐terminus. These results suggest that αGlcNAc regulates cancer cell phenotypes by dampening MUC1 signal transduction.  相似文献   

19.
20.
Hypoxia is a main feature of most solid tumors, but how melanoma cells under hypoxic conditions exploit tumor microenvironment (TME) to facilitate tumor progression remains poorly understood. In this study, we found that hypoxic melanoma‐derived small extracellular vesicles (sEVs) could improve the proangiogenic capability of cancer‐associated fibroblasts (CAFs). This improvement was due to the activation of the IKK/IκB/NF‐κB signaling pathway and upregulation of CXCL1 expression and secretion in CAFs. By proteomic analysis, we verified that hypoxia could promote enrichment of chaperone HSP90 and client protein phosphorylated IKKα/β (p‐IKKα/β) in melanoma‐derived sEVs. Delivery of the HSP90/p‐IKKα/β complex by sEVs could activate the IKK/IκB/NF‐κB/CXCL1 axis in CAFs and promote angiogenesis in vitro and in vivo. Taken together, these findings deepen the understanding of hypoxic response in melanoma progression and provide potential targets for melanoma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号