首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Leptin, a hormone predominantly derived from adipose tissue, is well known to induce growth of breast cancer cells. However, its underlying mechanisms remain unclear. In this study, we examined the role of reprogramming of lipid metabolism and autophagy in leptin‐induced growth of breast cancer cells. Herein, leptin induced significant increase in fatty acid oxidation‐dependent ATP production in estrogen receptor‐positive breast cancer cells. Furthermore, leptin induced both free fatty acid release and intracellular lipid accumulation, indicating a multifaceted effect of leptin in fatty acid metabolism. These findings were further validated in an MCF‐7 tumor xenograft mouse model. Importantly, all the aforementioned metabolic effects of leptin were mediated via autophagy activation. In addition, SREBP‐1 induction driven by autophagy and fatty acid synthase induction, which is mediated by SREBP‐1, plays crucial roles in leptin‐stimulated metabolic reprogramming and are required for growth of breast cancer cell, suggesting a pivotal contribution of fatty acid metabolic reprogramming to tumor growth by leptin. Taken together, these results highlighted a crucial role of autophagy in leptin‐induced cancer cell‐specific metabolism, which is mediated, at least in part, via SREBP‐1 induction.

Abbreviations

2‐DG
2‐deoxyglucose
3‐MA
3‐methyladenine
ACC‐1
acetyl‐CoA carboxylase 1
ACLY
ATP citrate lyase
ER
estrogen receptor
FADS1
fatty acid desaturase 1
FADS2
fatty acid desaturase 2
FAO
fatty acid oxidation
FAS
fatty acid synthesis
FASN
fatty acid synthase
FFA
free fatty acid
IHC
immunohistochemistry
SCD‐1
stearoyl‐CoA desaturase‐1
SREBP‐1
sterol regulatory element‐binding protein 1
  相似文献   

3.
The WJOG8815L phase II clinical study involves patients with non‐small cell lung cancer (NSCLC) that harbored the EGFR T790M mutation, which confers resistance to EGFR tyrosine kinase inhibitors (TKIs). The purpose of this study was to assess the predictive value of monitoring EGFR genomic alterations in circulating tumor DNA (ctDNA) from patients with NSCLC that undergo treatment with the third‐generation EGFR‐TKI osimertinib. Plasma samples of 52 patients harboring the EGFR T790M mutation were obtained pretreatment (Pre), on day 1 of treatment cycle 4 (C4) or cycle 9 (C9), and at diagnosis of disease progression or treatment discontinuation (PD/stop). CtDNA was screened for EGFR‐TKI‐sensitizing mutations, the EGFR T790M mutation, and other genomic alterations using the cobas EGFR Mutation Test v2 (cobas), droplet digital PCR (ddPCR), and targeted deep sequencing. Analysis of the sensitizing—and T790M—EGFR mutant fractions (MFs) was used to determine tumor mutational burden. Both MFs were found to decrease during treatment, whereas rebound of the sensitizing EGFR MF was observed at PD/stop, suggesting that osimertinib targeted both T790M mutation‐positive tumors and tumors with sensitizing EGFR mutations. Significant differences in the response rates and progression‐free survival were observed between the sensitizing EGFR MF‐high and sensitizing EGFR MF‐low groups (cutoff: median) at C4. In conclusion, ctDNA monitoring for sensitizing EGFR mutations at C4 is suitable for predicting the treatment outcomes in NSCLC patients receiving osimertinib (Clinical Trial Registration No.: UMIN000022076).

Abbreviations

CIs
confidence intervals
ctDNA
circulating tumor DNA
ddPCR
droplet digital PCR
EGFR
epidermal growth factor receptor
MFs
mutant fractions
NGS
next‐generation sequencing
NSCLC
non‐small cell lung cancer
ORR
overall response rate
OS
overall survival
PD
progressive disease
PFS
progression‐free survival
PR
partial response
SD
stable disease
TKI
tyrosine kinase inhibitor
  相似文献   

4.
Several platforms for noninvasive EGFR testing are currently used in the clinical setting with sensitivities ranging from 30% to 100%. Prospective studies evaluating agreement and sources for discordant results remain lacking. Herein, seven methodologies including two next‐generation sequencing (NGS)‐based methods, three high‐sensitivity PCR‐based platforms, and two FDA‐approved methods were compared using 72 plasma samples, from EGFR‐mutant non‐small‐cell lung cancer (NSCLC) patients progressing on a first‐line tyrosine kinase inhibitor (TKI). NGS platforms as well as high‐sensitivity PCR‐based methodologies showed excellent agreement for EGFR‐sensitizing mutations (K = 0.80–0.89) and substantial agreement for T790M testing (K = 0.77 and 0.68, respectively). Mutant allele frequencies (MAFs) obtained by different quantitative methods showed an excellent reproducibility (intraclass correlation coefficients 0.86–0.98). Among other technical factors, discordant calls mostly occurred at mutant allele frequencies (MAFs) ≤ 0.5%. Agreement significantly improved when discarding samples with MAF ≤ 0.5%. EGFR mutations were detected at significantly lower MAFs in patients with brain metastases, suggesting that these patients risk for a false‐positive result. Our results support the use of liquid biopsies for noninvasive EGFR testing and highlight the need to systematically report MAFs.

Abbreviations

BEAMing
beads, emulsion, amplification, and magnetics
cfDNA
circulating free DNA, cell‐free DNA
cobas
cobas® EGFR Mutation Test v2 (Roche Diagnostics)
ctDNA
circulating tumor DNA
CUSUM
cumulative sum
ddPCR
droplet digital polymerase chain reaction
dPCR
digital polymerase chain reaction
EGFR
epidermal growth factor receptor
FFPE
formalin‐fixed, paraffin‐embedded
ICC
intraclass correlation coefficient
MAF
mutant allele frequency
NGS platforms
Ion S5™ XL and GeneRead™
NGS
next‐generation sequencing
NSCLC
non‐small‐cell lung cancer
PNA‐Q‐PCR
peptic nucleic acid probe‐based real‐time polymerase chain reaction
Therascreen
Therascreen EGFR Plasma RGQ PCR Kit (QIAgen)
TKI
tyrosine kinase inhibitor
  相似文献   

5.
MLL3 histone methyltransferase, encoded by the KMT2C gene, is a tumor suppressor that has an essential role in cell‐type‐specific gene expression. We evaluated the prognostic significance of KMT2C promoter methylation as a circulating epigenetic biomarker in plasma cell‐free DNA (cfDNA) in non‐small cell lung cancer (NSCLC). We examined the methylation status of KMT2C promoter using a novel highly specific and sensitive real‐time methylation‐specific PCR (MSP) assay in (a) operable NSCLC: 48 fresh‐frozen NSCLC tissues, their corresponding adjacent non‐neoplastic tissues, and 48 matched plasma samples; (b) metastatic NSCLC: 91 plasma samples; and (c) 60 plasma samples from healthy donors (HD). KMT2C promoter methylation in plasma cfDNA was detected in 7/48 (14.6%) patients with operable and in 18/91 (19.8%) patients with advanced NSCLC but in none (0/60, 0%) of the plasma samples from HD. In operable NSCLC, in corresponding adjacent non‐neoplastic tissue samples, KMT2C promoter methylation was detected in 3/48 (6.3%) cases. Moreover, in operable NSCLC, KMT2C promoter methylation in plasma cfDNA was related to reduced disease‐free survival (ΗR = 0.239; P = 0.001) and worse overall survival (OS; HR = 0.342, P = 0.023). In metastatic NSCLC, KMT2C promoter methylation in plasma cfDNA was related to worse progression‐free survival (PFS; HR = 0.431; P = 0.005) and worse OS (HR = 0.306; P < 0.001). Our data strongly suggest that the detection of KMT2C promoter methylation in plasma cfDNA predicts poor prognosis in patients with both operable and metastatic NSCLCs. KMT2C promoter methylation in plasma cfDNA therefore merits further evaluation and validation as a noninvasive circulating epigenetic biomarker.

Abbreviations

cfDNA
cell‐free DNA
CTCs
circulating tumor cells
gDNA
genomic DNA
HD
healthy donors
MSP
methylation‐specific PCR
NSCLC
non‐small cell lung cancer
SB
sodium bisulfite
  相似文献   

6.
7.
8.
Long non‐coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up‐regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT‐PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA‐MB‐231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi‐1 could reduce the invasive ability of RACGAP1P‐overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR‐345‐5p against its parental gene RACGAP1, leading to the activation of dynamin‐related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1 pathway‐mediated mitochondrial fission.

Abbreviations

CDS
coding sequence
ceRNAs
competitive endogenous RNAs
Drp1
dynamin‐related protein 1
FFPE
formalin‐fixed paraffin‐embedded
lncRNAs
long non‐coding RNAs
miRNAs
microRNAs
RACGAP1
Rac GTPase activating protein 1
TCGA
The Cancer Genome Atlas
  相似文献   

9.
10.
Circulating tumor cell (CTC) analysis holds great potential to be a noninvasive solution for clinical cancer management. A complete workflow that combined CTC detection and single‐cell molecular analysis is required. We developed the ChimeraX®‐i120 platform to facilitate negative enrichment, immunofluorescent labeling, and machine learning‐based identification of CTCs. Analytical performances were evaluated, and a total of 477 participants were enrolled to validate the clinical feasibility of ChimeraX®‐i120 CTC detection. We analyzed copy number alteration profiles of isolated single cells. The ChimeraX®‐i120 platform had high sensitivity, accuracy, and reproducibility for CTC detection. In clinical samples, an average value of > 60% CTC‐positive rate was found for five cancer types (i.e., liver, biliary duct, breast, colorectal, and lung), while CTCs were rarely identified in blood from healthy donors. In hepatocellular carcinoma patients treated with curative resection, CTC status was significantly associated with tumor characteristics, prognosis, and treatment response (all P < 0.05). Single‐cell sequencing analysis revealed that heterogeneous genomic alteration patterns resided in different cells, patients, and cancers. Our results suggest that the use of this ChimeraX®‐i120 platform and the integrated workflow has validity as a tool for CTC detection and downstream genomic profiling in the clinical setting.

Abbreviations

ADABOOST
AdaBoost classification trees
AFP
alpha‐fetoprotein
AUC
areas under the curve
BC
breast cancer
BCLC
barcelona clinic liver cancer
BHL
benign hepatic lesion
CCD
charge‐coupled device
CHB
chronic hepatitis B
CK
cytokeratin
CNA
copy number alteration
CNLC
Chinese staging for liver cancer
CRC
colorectal cancer
CTC
circulating tumor cell
CTM
circulating tumor microemboli
CV
coefficient of variation
DAPI
4’,6‐diamidine‐2’‐phenylindole dihydrochloride
EpCAM
epithelial cell adhesion molecule
FPR
false‐positive rate
GBM
stochastic gradient boosting
HCC
hepatocellular carcinoma
HD
healthy donor
ICC
intrahepatic cholangiocarcinoma
LC
liver cirrhosis
LCA
lung cancer
LOD
limit of detection
PBS
phosphate‐buffered saline
PCR
polymerase chain reaction
RF
random forest
ROC
receiver operating characteristic
SVM
support vector machines
TCGA
The Cancer Genome Atlas
TPR
true‐positive rate
TTR
time to recurrence
WBC
white blood cell
WGA
whole‐genome amplification
WGS
whole‐genome sequencing
XGB
extreme gradient boosting
  相似文献   

11.
12.
Circular RNAs (circRNAs) have been shown to modulate gene expression and participate in the development of multiple malignancies. The purpose of this study was to investigate the role of circ_0008039 in breast cancer (BC). The expression of circ_0008039, miR‐140‐3p, and spindle and kinetochore‐associated protein 2 (SKA2) was detected by qRT‐PCR. Cell viability, colony formation, migration, and invasion were evaluated using methylthiazolyldiphenyl‐tetrazolium bromide (MTT) assay, colony formation assay, and transwell assay, respectively. Glucose consumption and lactate production were measured using commercial kits. Protein levels of hexokinase II (HK2) and SKA2 were determined by western blot. The interaction between miR‐140‐3p and circ_0008039 or SKA2 was verified by dual‐luciferase reporter assay. Finally, a mouse xenograft model was established to investigate the roles of circ_0008039 in BC in vivo. We found that circ_0008039 and SKA2 were upregulated in BC tissues and cells, while miR‐140‐3p was downregulated. Knockdown of circ_0008039 suppressed BC cell proliferation, migration, invasion, and glycolysis. Moreover, miR‐140‐3p could bind to circ_0008039 and its inhibition reversed the inhibitory effect of circ_0008039 interference on proliferation, migration, invasion, and glycolysis in BC cells. SKA2 was verified as a direct target of miR‐140‐3p and its overexpression partially inhibited the suppressive effect of miR‐140‐3p restoration in BC cells. Additionally, circ_0008039 positively regulated SKA2 expression by sponging miR‐140‐3p. Consistently, silencing circ_0008039 restrained tumor growth via increasing miR‐140‐3p and decreasing SKA2. In conclusion, circ_0008039 downregulation suppressed BC cell proliferation, migration, invasion, and glycolysis partially through regulating the miR‐140‐3p/SKA2 axis, providing an important theoretical basis for treatment of BC.

Abbreviations

ANOVA
analysis of variance
BC
breast cancer
circRNAs
circular RNAs
DMSO
dimethyl sulfoxide
ECAR
extracellular acidification rate
ECL
enhanced chemiluminescence
FBS
fetal bovine serum
HK2
hexokinase II
MEGM
mammary epithelial growth medium
miR‐140‐3p
microRNA‐140‐3p
MTT
methylthiazolyldiphenyl‐tetrazolium bromide
PBS
phosphate‐buffered saline
PRKAR1B
protein kinase A regulatory subunit R1‐beta
SD
standard ± deviation
SKA2
spindle and kinetochore‐associated protein 2
  相似文献   

13.
Epstein–Barr virus (EBV)‐associated nasopharyngeal carcinoma (NPC) is one of the most common human cancers in South‐East Asia exhibiting typical features of lipid accumulation. EBV‐encoded latent membrane protein 2A (LMP2A) is expressed in most NPCs enhancing migration and invasion. We recently showed an increased accumulation of lipid droplets in NPC, compared with normal nasopharyngeal epithelium. It is important to uncover the mechanism behind this lipid metabolic shift to better understand the pathogenesis of NPC and provide potential therapeutic targets. We show that LMP2A increased lipid accumulation in NPC cells. LMP2A could block lipid degradation by downregulating the lipolytic gene adipose triglycerol lipase (ATGL). This is in contrast to lipid accumulation due to enhanced lipid biosynthesis seen in many cancers. Suppression of ATGL resulted in enhanced migration in vitro, and ATGL was found downregulated in NPC biopsies. The reduced expression level of ATGL correlated with poor overall survival in NPC patients. Our findings reveal a new role of LMP2A in lipid metabolism, correlating with NPC patient survival depending on ATGL downregulation.

Abbreviations

ATGL
adipose triglycerol lipase
EBV
Epstein–Barr virus
ECAR
extracellular acidification rate
EIF4E
eukaryotic translation initiation factor 4E gene
FASN
fatty acid synthase
FCCP
carbonyl cyanide 4‐(trifluoromethoxy) phenylhydrazone
HSL
hormone‐sensitive lipase
IHC
immunohistochemistry
LC‐MC
liquid chromatography–mass spectrometry
LMP2A
latent membrane protein 2A
MGLL
monoglycerol lipase
NNE
normal nasopharyngeal epithelium
NPC
nasopharyngeal carcinoma
OCR
oxygen consumption rate
PEDF
pigment epithelium‐derived factor
PLS‐DA
partial least squares discriminant analysis
ROS
reactive oxygen species
siRNA
small interfering RNA
  相似文献   

14.
More effective therapy for patients with either muscle‐invasive or high‐risk non‐muscle‐invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known. Cationic amphiphilic drugs (CADs) dose‐dependently decreased the viability of a panel of human UCB lines in vitro. CADs induced lysosomal puncta formation, a hallmark of lysosomal leakage. Intravesical instillation of the CAD penfluridol in an orthotopic mouse xenograft model of human UCB resulted in significantly reduced intravesical tumor growth and metastatic progression. Furthermore, treatment of patient‐derived ex vivo cultured human UCB tissue caused significant partial or complete antitumor responses in 97% of the explanted tumor tissues. In conclusion, penfluridol represents a promising treatment option for bladder cancer patients and warrants further clinical evaluation.

Abbreviations

CAD
cationic amphiphilic drug
MIBC
muscle‐invasive bladder carcinoma
NMIBC
non‐muscle‐invasive bladder carcinoma
TS
explanted tumor tissue slices
TURBT
transurethral resection of the bladder tumor
UCB
urothelial carcinoma of the bladder
  相似文献   

15.
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12''s role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.

Abbreviations

AR
androgen receptor
ATP
adenosine triphosphate
CN
copy number
CPT1
carnitine palmitoyltransferase I
CS
citrate synthase
EMT
epithelial–mesenchymal transition
ET
electron transfer‐state
FABP
fatty acid‐binding protein
LD
lipid droplet
OA
oleic acid
PCa
prostate cancer
PPAR
peroxisome proliferator‐activated receptor
PPRE
peroxisome proliferator‐activated receptor response element
TZD
thiazolidinediones
  相似文献   

16.
17.
Circular RNAs (circRNAs) are single‐stranded RNAs which form a covalently closed continuous loop. Although originally shown to be non‐protein‐coding, some circRNAs can give rise to micropeptides. circRNAs have also been shown to play essential regulatory roles in a variety of developmental and disease processes. In a previous study, hsa_circ_0030998 was identified as a circRNA downregulated in lung cancer, but its potential implications and mechanisms in lung cancer were not addressed. Here, we showed that overexpressing circ_0030998 decreased proliferation, migration, and invasion of lung cancer cells, while also dampening resistance to Taxol, a classical antitumor drug. Depleting circ_0030998 reversed these phenotypic effects. A high circ_0030998 expression was correlated with a high survival rate in lung cancer patients. Additionally, we found circ_0030998 could downregulate miR‐558 expression, serving as a microRNA sponge. In conclusion, our data support that hsa_circ_0030998 can slow down the progression of lung cancer by targeting miR‐558 and suppress malignant phenotypes such as proliferation, migration, and invasion progression of lung cancer cells. Therefore, we highlight that circ_0030998 could be a novel tumor suppressor of lung cancer.

Abbreviations

circRNA
circular RNA
IP
immunoprecipitation
LAMP1
lysosomal‐associated membrane protein 1
miRNA
microRNA
MMP
matrix metalloproteinase
NC
negative control
  相似文献   

18.
The oncogenic fusion protein nucleophosmin‐anaplastic lymphoma kinase (NPM‐ALK), found in anaplastic large‐cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM‐ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM‐ALK interacted with Epstein–Barr virus nuclear antigen 1‐binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM‐ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0/G1‐phase cell cycle arrest in Ba/F3 cells transformed by NPM‐ALK and ALCL patient‐derived Ki‐JK cells, but not ALCL patient‐derived SUDH‐L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM‐ALK and Ki‐JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC‐0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt‐mTORC1 pathway in NPM‐ALK‐positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.

Abbreviations

ALCL
anaplastic large‐cell lymphoma
EBP2
EBNA1‐binding protein 2
IMT
inflammatory myofibroblastic tumors
mTOR
mechanistic target of rapamycin
mTORC1
mTOR complex 1
NoLS
nucleolar localization signal
NPM1
nucleophosmin 1
NPM‐ALK
nucleophosmin‐anaplastic lymphoma kinase
NSCLC
non‐small cell lung cancer
TPM3
tropomyosin 3
  相似文献   

19.
《Molecular oncology》2021,15(5):1412
The cellular receptor Notch1 is a central regulator of T‐cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T‐cell acute lymphoblastic leukemia (T‐ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T‐ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti‐Notch therapies in T‐ALL models. In this work, we report that Notch1 upregulation in T‐ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1‐driven T‐ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1‐induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1‐driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1‐driven leukemia.

Abbreviations

7‐AAD
7‐Aminoactinomycin D
BPTES
bis‐2‐(5‐phenylacetamido‐1,2,4‐thiadiazol‐2‐yl)ethyl sulfide
DON
diazo‐5‐oxo‐L‐norleucine
ECAR
extracellular acidification rate
GDH
glutamate dehydrogenase
GLS
glutaminase
GS
glutamine synthetase
GSI
γ‐secretase inhibitor
MSO
L‐methionine sulfoximine
mTORC1
mammalian target of rapamycin complex 1
NICD
Notch intracellular domain
PI
propidium iodide
RAP
rapamycin
T‐ALL
T‐cell acute lymphoblastic leukemia
TCA
tricarboxylic acid
αKG
α‐ketoglutarate
  相似文献   

20.
The study of extracellular vesicles (EVs), especially in the liquid biopsy field, has rapidly evolved in recent years. However, most EV studies have focused on RNA or protein content and DNA in EVs (EV‐DNA) has largely been unnoticed. In this review, we compile current evidence regarding EV‐DNA and provide an extensive discussion on EV‐DNA biology. We look into EV‐DNA biogenesis and mechanisms of DNA loading into EVs, as well as describe the particularly significant function of DNA‐carrying EVs in the maintenance of cellular homeostasis, intracellular communication, and immune response modulation. We also examine the current role of EV‐DNA in the clinical setting, specifically in cancer, infections, pregnancy, and prenatal diagnosis.

Abbreviations

BBB
blood–brain barrier
cfDNA
cell‐free DNA
cGAS
cyclic GMP‐AMP synthase
ctDNA
circulating tumor DNA
ds
double‐stranded
EGFR
epidermal growth factor receptor
EV‐DNA
DNA in extracellular vesicles
EV‐mtDNA
mtDNA in extracellular vesicles
EVs
extracellular vesicles
gDNA
genomic DNA
HBV
hepatitis B virus
HPV
human papillomavirus
IFN1
interferon type 1
ILVs
intraluminal vesicles
MAFs
mean frequencies
MN
micronuclei
mtDNA
mitochondrial DNA
MVBs
multivesicular bodies
NGS
next‐generation sequencing
NSCLC
non‐small‐cell lung cancer
PCR
polymerase chain reaction
PDAC
pancreatic ductal adenocarcinoma
ss
single‐stranded
STING
stimulator of interferon genes
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号