首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the degree of convergence of corticostriatal inputs from the primary motor cortex (MI) and the supplementary motor area (SMA), we analyzed the extent to which corticostriatal inputs from forelimb representations of these motor-related areas spatially overlap in the macaque monkey. Of particular interest was that corticostriatal input zones from SMA overlapped those from MI of the contralateral hemisphere more extensively than from MI of the ipsilateral hemisphere.  相似文献   

2.
The cingulate motor areas reside within regions lining the cingulate sulcus and are divided into rostral and caudal parts. Recent studies suggest that the rostral and caudal cingulate motor areas participate in distinct aspects of motor function: the former plays a role in higher-order cognitive control of movements, whereas the latter is more directly involved in their execution. Here, we investigated the organization of cingulate motor areas inputs to the basal ganglia in the macaque monkey. Identified forelimb representations of the rostral and caudal cingulate motor areas were injected with different anterograde tracers and the distribution patterns of labelled terminals were analysed in the striatum and the subthalamic nucleus. Corticostriatal inputs from the rostral and caudal cingulate motor areas were located within the rostral striatum, with the highest density in the striatal cell bridges and the ventrolateral portions of the putamen, respectively. There was no substantial overlap between these input zones. Similarly, a certain segregation of input zones from the rostral and caudal cingulate motor areas occurred along the mediolateral axis of the subthalamic nucleus. It has also been revealed that corticostriatal and corticosubthalamic input zones from the rostral cingulate motor area considerably overlapped those from the presupplementary motor area, while the input zones from the caudal cingulate motor area displayed a large overlap with those from the primary motor cortex. The present results indicate that a parallel design underlies motor information processing in the cortico-basal ganglia loop derived from the rostral and caudal cingulate motor areas.  相似文献   

3.
To understand how the information derived from different motor cortical areas representing different body parts is organized in the basal ganglia, we examined the neuronal responses in the subthalamic nucleus (STN), and the external (GPe) and internal (GPi) segments of the globus pallidus (input, relay and output nuclei, respectively) to stimulation of the orofacial, forelimb and hindlimb regions of the primary motor cortex (MI) and supplementary motor area (SMA) in macaque monkeys under the awake state. Most STN and GPe/GPi neurons responded exclusively to stimulation of either the MI or SMA, and one‐fourth to one‐third of neurons responded to both. STN neurons responding to the hindlimb, forelimb and orofacial regions of the MI were located along the medial–lateral axis in the posterolateral STN, while neurons responding to the orofacial region of the SMA were located more medially than the others in the anteromedial STN. GPe/GPi neurons responding to the hindlimb, forelimb and orofacial regions of the MI were found along the dorsal–ventral axis in the posterolateral GPe/GPi, and neurons responding to the corresponding regions of the SMA were similarly but less clearly distributed in more anteromedial regions. Moreover, neurons responding to the distal and proximal forelimb MI regions were found along the lateral–medial axis in the STN and the ventral–dorsal axis in the GPe/GPi. Most STN and GPe/GPi neurons showed kinaesthetic responses with similar somatotopic maps. These observations suggest that the somatotopically organized inputs from the MI and SMA are well preserved in the STN and GPe/GPi with partial convergence.  相似文献   

4.
The purpose of the present study was to determine if the cortical efferents from homologous body regions of the supplementary motor area (SMA) and the primary motor cortex (MI) project to separate or to overlapping regions in the striatum. In order to investigate the dual corticostriatal projections, we employed an anterograde double labeling paradigm in which two tracers could be simultaneously detected in the same histological section. Prior to the injections, the forelimb representation in the two cortical motor areas was identified by using intracortical microstimulation in four Japanese monkeys (Macaca fuscata). Multiple injections of biotinylated dextran amine (BDA) were made into the forelimb regions of MI and wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) was injected into the arm region of the SMA. In additional animals, the tracers were reversed such that BDA was injected into the SMA and WGA-HRP was injected into the MI. The tissue was processed sequentially using different chromogens in order to visualize both tracers in a single section. We analyzed the distribution of the ipsilateral anterograde label. The striatal labeling from each cortical area basically consisted of a wide band of patchy dense labeling interrupted by lighter labeling. The SMA striatal projections were located mainly within the putamen, distributing from the level of the anterior commissure to the most posterior extent of the putamen. At an intermediate level, the label spread obliquely from the ventrolateral edge of the putamen dorsomedially as far as the lateral edge of the caudate nucleus. The label from the MI was observed in comparable portions of the putamen, although the SMA projections were shifted more anterior and dorsomedial to the MI projections and the heaviest projections from the SMA and the MI were separately located. On the basis of the double anterograde labeling technique, we found considerable overlap mainly in the central portion of the putamen from the SMA and MI forelimb representation. These results suggest that the homologous body regions of the SMA and MI send widespread, and substantially overlapping projections, to portions of the striatum. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The aim of the present study was to define the origin of the thalamocortical projections to each of the mesial and superior area 6 areas. To this purpose, restricted injections of neuronal tracers were made into areas F3, F6, F2, and F7 after physiological identification of the injection sites. The results showed that each of these areas receives afferents from a set of thalamic nuclei and that this set differs, qualitatively and quantitatively, according to the injected area. The main inputs to F3 [supplementary motor area properly defined (SMA-proper)] originate in the nuclei ventral lateral, pars oralis (VLo), ventral posterior lateral, pars oralis (VPLo), and ventral lateral, pars caudalis (VLc) as well as in caudal parts of the VPLo and VLc (VPLo/VLc complex). F6 (pre-SMA) is mainly the target of nucleus ventral anterior, pars parvocellularis (VApc), and area X of Olszewski. The input to F2 originates mainly in the VPLo/VLc complex, in VLc, and in VLo. The dorsal part of F7 (supplementary eye field) mainly receives from area X, VApc, and nucleus ventral anterior, pars magnocellularis (VAmc), whereas the ventral F7 is connected with VApc, area X, VLc, and the VPLo/VLc complex. All of the injected areas receive a strong projection from the medial dorsal nucleus (MD). It is concluded that each cortical area is a target of both cerebellar and basal ganglia circuits. F3 and F2 are targets of the so-called “motor” basal ganglia circuit and a cerebellar circuit originating in dorsorostral sectors of dentate and interpositus nuclei. In contrast, F6 and ventral F7 receive a basal ganglia input mainly from the so-called “complex” circuit and a cerebellar input originating in the ventrocaudal sectors of dentate and interpositus nuclei. Finally, with respect to the rest of F7, dorsal F7 also receives a basal ganglia input from the “oculomotor circuit.” © 1996 Wiley-Liss, Inc.  相似文献   

6.
The sensory properties of neurons in the several forelimb areas of rat sensorimotor cortex were examined using the technique of extracellular single-unit recording in the awake, head-restrained rat. Cells with peripheral receptive fields were tested for the amount and modality of sensory input during joint manipulation and brushing and tapping of limbs, face and trunk. Input-output correlations were made on the basis of the results of receptive field mapping and intracortical microstimulation in the same electrode penetration. It was found that neurons (n = 117) in the rostral forelimb area receive virtually no sensory input while 30% of neurons (n = 114) in the caudal forelimb primary motor area do receive such input. The inputs to caudal forelimb motor area neurons were primarily (83%) from single joints; along perpendicular electrode penetrations the same joint that activated a cortical cell also moved when microstimulation was delivered along the same electrode penetration. In the granular and dysgranular zones of somatic sensory forelimb cortex, 70% of neurons (n = 82) were responsive to peripheral sensory inputs, with most of the cells in the granular cortex responsive to cutaneous inputs while cells in the dysgranular cortex were more responsive to deep inputs. The lack of sensory inputs to the rostral forelimb motor area is consistent with the proposal that this region may be a part of the supplementary motor area of the rat.  相似文献   

7.
Rats have a complete body representation in the primary motor cortex (M1). Rostrally there are additional representations of the forelimb and whiskers, called the rostral forelimb area (RFA) and the rostral whisker area (RWA). Recently we showed that sources of thalamic inputs to RFA and RWA are similar, but they are different from those for the caudal forelimb area (CFA) and the caudal whisker area (CWA) of M1 (Mohammed and Jain [2014] J Comp Neurol 522:528–545). We proposed that RWA and RFA are part of a second motor area, the rostral motor area (RMA). Here we report ipsilateral cortical connections of whisker representation in RMA, and compare them with connections of CWA. Connections of RFA, CFA, and the caudally located hindlimb area (CHA), which is a part of M1, were determined for comparison. The most distinctive features of cortical inputs to RWA compared with CWA include lack of inputs from the face region of the primary somatosensory cortex (S1), and only about half as much inputs from S1 compared with the lateral somatosensory areas S2 (second somatosensory area) and the parietal ventral area (PV). A similar pattern of inputs is seen for CFA and RFA, with RFA receiving smaller proportion of inputs from the forepaw region of S1 compared with CFA, and receiving fewer inputs from S1 compared with those from S2. These and other features of the cortical input pattern suggest that RMA has a distinct, and more of integrative functional role compared with M1. J. Comp. Neurol. 524:3104–3123, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Linkage between the prefrontal cortex and the primary motor cortex is mediated by nonprimary motor-related areas of the frontal lobe. In an attempt to analyse the organization of the prefrontal outflow from area 46 toward the frontal motor-related areas, we investigated the pattern of projections involving the higher-order motor-related areas, such as the presupplementary motor area (pre-SMA) and the rostral cingulate motor area (CMAr). Tracer injections were made into these motor-related areas (their forelimb representation) on the medial wall that had been identified electrophysiologically. The following data were obtained from a series of tract-tracing experiments in Japanese monkeys. (i) Only a few neurons in area 46 were retrogradely labelled from the pre-SMA and CMAr; (ii) terminal labelling from area 46 occurred sparsely in the pre-SMA and CMAr; (iii) a dual labelling technique revealed that the sites of overlap of anterograde labelling from area 46 and retrograde labelling from the pre-SMA and CMAr were evident in the rostral parts of the dorsal and ventral premotor cortices (PMdr and PMvr); (iv) and tracer injections into the PMdr produced neuronal cell labelling in area 46 and terminal labelling in the pre-SMA and CMAr. The present results indicate that a large portion of the prefrontal signals from area 46 is not directly conveyed to the pre-SMA and CMAr, but rather indirectly by way of the PMdr and PMvr. This suggests that area 46 exerts its major influence on the cortical motor system via these premotor areas.  相似文献   

9.
The two subdivisions of the supplementary motor area (SMA), the pre-SMA (rostrally) and SMA-proper (caudally), exhibit distinct functional properties and clear differences with respect to their connectivity with the spinal cord, the thalamus, and other homolateral motor cortical areas. The goal of the present study was to establish in monkeys whether these subdivisions also differ with regard to their callosal connectivity. Two fluorescent retrograde tracers (Fast Blue and Diamidino Yellow) were injected in each animal, one in the pre-SMA and the second in the SMA-proper. Tracer injections in the pre-SMA or in SMA-proper resulted in significant numbers of labeled neurons in the opposite SMA, premotor cortex (PM), cingulate motor areas (CMA), and cingulate gyrus. Labeled neurons in M1 were rare, being observed only after injection in the SMA-proper. The two subdivisions of the SMA differed in the proportion of labeled neurons found across areas providing their callosal inputs. The SMA-proper receives about half of its callosal inputs from its counterpart in the other hemisphere (42-65% across monkeys). A comparable proportion of neurons was found in the pre-SMA after injection in the opposite pre-SMA (32-47%). The pre-SMA receives more callosal inputs from the rostral halves of the dorsal PM, the ventral PM, and the CMA than from their caudal halves. In addition, the pre-SMA, but not the SMA-proper, receives callosal inputs from the prefrontal cortex. The SMA-proper receives more callosal inputs from the caudal halves of the dorsal PM and ventral PM than from their rostral halves. The two subdivisions of the SMA receive callosal inputs from the same cortical areas (except the prefrontal cortex and M1), but they differ with respect to the quantitative contribution of each area of origin. In conclusion, quantitative data now support the notion that pre-SMA receives more transcallosal inputs than the SMA-proper.  相似文献   

10.
In primates, the motor cortex consists of at least seven different areas, which are involved in movement planning, coordination, initiation, and execution. However, for rats, only the primary motor cortex has been well described. A rostrally located second motor area has been proposed, but its extent, organization, and even definitive existence remain uncertain. Only a rostral forelimb area (RFA) has been definitively described, besides few reports of a rostral hindlimb area. We have previously proposed existence of a second whisker area, which we termed the rostral whisker area (RWA), based on its differential response to intracortical microstimulation compared with the caudal whisker area (CWA) in animals under deep anesthesia (Tandon et al. [2008] Eur J Neurosci 27:228). To establish that RWA is distinct from the caudally contiguous CWA, we determined sources of thalamic inputs to the two proposed whisker areas. Sources of inputs to RFA, caudal forelimb area (CFA), and caudal hindlimb region were determined for comparison. The results show that RWA and CWA can be distinguished based on differences in their thalamic inputs. RWA receives major projections from mediodorsal and ventromedial nuclei, whereas the major projections to CWA are from the ventral anterior, ventrolateral, and posterior nuclei. Moreover, the thalamic nuclei that provide major inputs to RWA are the same as for RFA, and the nuclei projecting to CWA are same as for CFA. The results suggest that rats have a second rostrally located motor area with RWA and RFA as its constituents. J. Comp. Neurol. 522:528–545, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The relative numbers and locations of neurons projecting to the "forelimb" region of the precentral motor cortex were studied in three monkeys by using the retrograde transport of horseradish peroxidase. Within the forelimb area of the motor cortex itself, there are extensive and profuse interconnections. However, regions within this area receive afferents from very few neurons in other parts of the motor cortex representing hindlimb or head movements. Most of the motor cortical representation of the forelimb in the anterior bank of the central sulcus is devoid of callosal connections. In both the ipsilateral and contralateral hemispheres, the premotor (lateral area 6) and supplementary motor (medial area 6) areas dominate quantitatively the inputs to the motor cortical representation of the forelimb. The afferents from the premotor area are restricted and come from a region immediately behind the arcuate spur and adjacent parts of the superior and inferior limbs of the arcuate sulcus in the floor, caudal bank, and caudal lip of that sulcus. From the supplementary motor area (SMA), afferents originate from its whole rostrocaudal extent. Thalamic nuclear regions projecting to a restricted zone in the anterior bank of the central sulcus are recipients of cerebellar and somatosensory outputs. Involvement of more anterior parts of the motor cortex by the tracer labels thalamocortical cells, which are targets of pallidal output also. Within the first somatosensory cortex, cytoarchitectonic areas 1, 2, and 3a project to area 4. The projection from area 3a may provide one pathway by which short-latency peripheral inputs, especially from muscles, reach the motor cortex.  相似文献   

12.
We have used retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase to examine the origin of the thalamic input to the two premotor areas with the densest projections to the motor cortex. These are: arcuate premotor area (APA) and the supplementary motor area (SMA). Retrograde transport demonstrated that the two premotor areas and the motor cortex each receive thalamic input from separate, cytoarchitectonically well-defined subdivisions of the ventrolateral thalamus. According to the nomenclature of Olszewski (1952), input to the APA originates largely from area X; input to the SMA originates largely from the pars oralis subdivision of the nucleus ventralis lateralis (VLo); and that to the motor cortex is largely from the pars oralis subdivision of the nucleus ventralis posterior lateralis (VPLo). These observations, when combined with prior studies on the termination of various subcortical efferents in the thalamus, lead to the following scheme of projections: rostral portions of the deep cerebellar nuclei project to motor cortex via VPLo, caudal portions of the deep cerebellar nuclei project to the APA via area X; and the globus pallidus projects to the SMA via VLo. Thus each thalamocortical pathway is associated with a distinct subcortical input.  相似文献   

13.
Intracortical microstimulation of 40–50 points in the frontal cortex of ketamine-anesthetized rats using perpendicular penetrations has demonstrated a second forelimb area located rostrally near the frontal pole as well as confirming the existence of a more caudally located forelimb area just anterior to bregma. Cortex where neck and/or vibrissae movements were evoked separated the two forelimb areas. The rostral and caudal forelimb areas defined by microstimulation correspond with patches of corticospinal neurons labeled with HRP following injections of this tracer into the cervical enlargement. Digit movements were commonly evoked from the rostral forelimb area but were rarely elicited from the caudal forelimb area. The question of whether the rostral forelimb region is part of primary or supplementary motor cortex is not yet able to be answered.  相似文献   

14.
The ipsilateral connections of motor areas of galagos were determined by injecting tracers into primary motor cortex (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF). Other injections were placed in frontal cortex and in posterior parietal cortex to define the connections of motor areas further. Intracortical microstimulation was used to identify injection sites and map motor areas in the same cases. The major connections of M1 were with premotor cortex, SMA, cingulate motor cortex, somatosensory areas 3a and 1, and the rostral half of posterior parietal cortex. Less dense connections were with the second (S2) and parietal ventral (PV) somatosensory areas. Injections in PMD labeled neurons across a mediolateral belt of posterior parietal cortex extending from the medial wall to lateral to the intraparietal sulcus. Other inputs came from SMA, M1, PMV, and adjoining frontal cortex. PMV injections labeled neurons across a large zone of posterior parietal cortex, overlapping the region projecting to PMD but centered more laterally. Other connections were with M1, PMD, and frontal cortex and sparsely with somatosensory areas 3a, 1-2, S2, and PV. SMA connections were with medial posterior parietal cortex, cingulate motor cortex, PMD, and PMV. An FEF injection labeled neurons in the intraparietal sulcus. Injections in posterior parietal cortex revealed that the rostral half receives somatosensory inputs, whereas the caudal half receives visual inputs. Thus, posterior parietal cortex links visual and somatosensory areas with motor fields of frontal cortex.  相似文献   

15.
《Brain stimulation》2020,13(1):229-238
BackgroundBoth pre-supplementary motor area (pre-SMA) and SMA-proper (SMA) must play important roles in visuomotor sequence learning. However, functional differences between the pre-SMA and SMA have not been well studied in humans.ObjectiveTo elucidate the functional differences between the pre-SMA and SMA in sequence learning in humans.MethodsTo induce LTP/LTD, we administered quadripulse transcranial magnetic stimulation (QPS) with an inter-stimulus interval of 5 or 50 ms (QPS-5/50) over the pre-SMA or SMA in healthy volunteers. The sham stimulation was also done as a control. We studied the effects of LTP/LTD in the pre-SMA/SMA on a new sequence learning and the performance of well-learned sequence by using sequence learning task called the “2 × 10 task”. Effects on the simple choice reaction time task were also studied for comparison.ResultsQPS-5 over the pre-SMA increased the error rate without any changes in movement speed. When administered over the SMA, QPS-5 decreased, and QPS-50 increased the rate of reaction time reduction across trials without changes in the error rate. QPS over neither the pre-SMA nor SMA affected the performances of a well-learned sequence or a simple choice reaction time task.ConclusionsOur findings that QPS over the pre-SMA correlated with sequence learning performance and that over the SMA with execution speed are consistent with the previous results in animals and humans. Our results lend further support to the utility of QPS for modulating motor learning in humans.  相似文献   

16.
The exact knowledge on spatial organization of information sources from the thalamus to the supplementary motor area (SMA) and to the primary motor cortex (MI) has not been established. We investigated the distribution of thalamocortical neurons projecting to forelimb representations of the SMA and the MI using a multiple retrograde labeling technique in the monkey. The forelimb area of the SMA, and the distal and proximal forelimb areas of the MI were identified by electrophysiological techniques of intracortical microstimulation and single neuron recording. Injections were made into these three representations with three different dyes in the same animal (horseradish peroxidase conjugated to wheat germ agglutinin, diamidino yellow, and fast blue), and the thalamic neurons were retrogradely labeled. Injections into the SMA densely labeled thalamic neurons in nuclei ventralis lateralis pars oralis (VLo), ventralis lateralis pars medialis (VLm) and ventralis lateralis pars caudalis (VLc), but not in nucleus ventralis posterior lateralis pars oralis (VPLo). Injections into the MI labeled thalamic neurons primarily in VLo, VLc, and VPLo. We found that the distribution of projection neurons to the three areas was largely separate in the thalamus. However, in the middle part of VLo, and in a limited portion of VLc, thalamic neurons projecting to the SMA partially overlapped with those to the distal forelimb area of the MI. They overlapped little with those to the proximal forelimb area of the MI. We noted no overlap between the distributions of thalamic projection neurons to the distal and proximal forelimb areas of the MI. These findings suggest that the SMA and MI receive separate information from the thalamus, while sharing minor sources of common inputs. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.  相似文献   

18.
The mesial sector of primate area 6 is usually described as consisting of two distinct areas: the supplementary motor area (SMA or SMA proper) and the pre-SMA. Recent human brain imaging studies showed, however, that this subdivision is not completely satisfactory and that, most likely, SMA proper consists of two functionally distinct parts. In order to elucidate whether this hypothesis has an anatomical counterpart, we examined the cytoarchitectonic organization of human mesial area 6 in three brains of subjects deceased without any previous sign of neurological disorders. The data showed that human mesial area 6 consists of three separate cytoarchitectonic areas. Two of them are located mostly caudal to the vertical line transversing the anterior commissure (VCA line), the third one is located rostral to it. Given the location and some architectonic similarities between the two caudal areas, we named them caudal SMA (SMAc) and rostral SMA (SMAr). The area rostral to the VCA line is referred to as pre-SMA. The possible functional role of the three areas is discussed.  相似文献   

19.
In the present study, we determined where thalamic neurons projecting to the pre-supplementary motor area (pre-SMA) are located relative to pallidothalamic and cerebellothalamic inputs and nuclear boundaries. We employed a triple-labeling technique in the same owl monkey (Aotus trivirgatus). The cerebellothalamic projections were labeled with injections of wheat germ agglutinin conjugated to horseradish peroxidase, and the pallidothalamic projections were labeled with biotinylated dextran amine. The pre-SMA was identified by location and movement patterns evoked by intracortical microstimulation and injected with the retrograde tracer cholera toxin subunit B. Brain sections were processed sequentially using different chromogens to visualize all three tracers in the same section. Alternate sections were processed for Nissl cytoarchitecture or acetylcholinesterase chemoarchitecture for nuclear boundaries. The cerebellar nuclei primarily projected to posterior (VLp), medial (VLx), and dorsal (VLd) divisions of the ventral lateral nucleus; the pallidum largely projected to the anterior division (VLa) of the ventral lateral nucleus and the parvocellular part of the ventral anterior nucleus (VApc). However, we also found zones of overlapping projections, as well as interdigitating foci of pallidal and cerebellar label, particularly in border regions of the VLa and VApc. Thalamic neurons labeled by pre-SMA injections occupied a wide band and were especially concentrated in the VLx and VApc, cerebellar and pallidal territories, respectively. Labeled thalamocortical neurons overlapped cerebellar inputs in the VLd and VApc and overlapped pallidal inputs in the VLa and the ventral medial nucleus. The results demonstrate that inputs from both the cerebellum and globus pallidus are relayed to the pre-SMA.  相似文献   

20.
The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher‐order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage‐sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb‐evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb‐related sensory inputs would be transmitted to the RFA from the CFA via the cortico‐cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher‐order motor cortex in primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号