首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three recent studies have reported that fibrin in solution significantly inhibits the ability of heparin to catalyze the inhibition of thrombin by antithrombin III. In addition, heparin inhibits the release of fibrinopeptide A by clot-bound thrombin less effectively than it inhibits the release of fibrinopeptide A by thrombin in solution. We have also reported that dermatan sulfate, which catalyzes thrombin inhibition by heparin cofactor II, inhibits thrombus growth in rabbits more effectively than heparin. Because the results of these studies suggest that fibrin inhibits the reactivity of thrombin with antithrombin III-heparin but not with heparin cofactor II-dermatan sulfate, we compared the relative catalytic effects of heparin and dermatan sulfate on thrombin inhibition in plasma, both in the presence and absence of fibrin. We quantitated the rates of thrombin inhibition by antithrombin III and heparin cofactor II by specific enzyme-linked immunosorbent assays. When it was generated, fibrin was kept in solution by adding 2 mmol/L Gly-Pro-Arg-Pro to plasma. Fibrinogen-fibrin reduced the reactivity of thrombin with plasma antithrombin III, both in the presence of and in the absence of heparin. In contrast, the catalytic action of dermatan sulfate on thrombin inhibition by plasma heparin cofactor II was unimpaired by fibrinogen-fibrin. Based on the ability of dermatan sulfate to inhibit thrombus growth in rabbits, failure of fibrinogen-fibrin to moderate the catalytic action of dermatan sulfate may account for its greater antithrombotic effectiveness relative to that of heparin.  相似文献   

2.
The binding of thrombin to fibrin is thought to be an important mechanism by which thrombi exhibit procoagulant activity; however, the extent to which other procoagulants are associated with thrombi has not been previously defined. This study was designed to determine whether clotting factors other than thrombin are bound to whole-blood clots and can thereby contribute to significant procoagulant activity. Clots formed in vitro from human blood exhibited minimal thrombin activity when incubated in plasma depleted of vitamin K-dependent factors by barium-citrate adsorption, as indicated by increases in the concentration of fibrinopeptide A (FPA), a marker of fibrin formation, to 72 nM after 30 min. Incubation of clots in barium-absorbed plasma repleted with 0.9 microM human prothrombin under the same conditions resulted in marked increases in the concentration of FPA (> 1,000 nM) and clotting by 30 min. The increases in FPA were attributable to activation of the added prothrombin by clot-associated Factor Xa, judging from concomitant increases in the concentration of prothrombin fragment 1.2. Similar results were obtained with thrombi induced in the axillary arteries of dogs by vascular injury and incubated with plasma in vitro. Activation of prothrombin was inhibited in a dose-dependent manner by tick anticoagulant peptide, a direct inhibitor of Factor Xa, at concentrations of 0.5-5.0 microM. Clot-associated Factor Xa activity was resistant to inhibition by anti-thrombin III, judging from the lack of inhibition of prothrombin activation during incubation of clots in plasma containing heparin pentasaccharide, an anti-thrombin III-mediated inhibitor of Factor Xa. Thus, the activity of Factor Xa appears to be an important determinant of the procoagulant activity of whole-blood clots and arterial thrombi, and is resistant to inhibition by anti-thrombin III-dependent inhibitors.  相似文献   

3.
Inhibition of thrombin proteolysis of fibrinogen with D-phenylalanyl-L-propyl-L-arginine chloromethyl ketone (PPACK) results in irreversible inactivation of the thrombin catalytic site, but the PPACK-inhibited thrombin, through its exosite, retains its ability to bind to fibrinogen or fibrin. Hirudin inactivates thrombin at the catalytic site and also inhibits thrombin exosite binding to fibrin or fibrinogen. PPACK or hirudin was added to a clotting mixture of fibrinogen and active thrombin (enzyme-to-substrate ratio = 1:400 at ionic strength of 0.14; 1:800 at ionic strength of 0.09) before the onset of gelation. Subsequent fibrin assembly was evaluated by turbidity measurements at 350 nm and by determining the fibrin and fibrinogen content of the clots that ultimately formed. Polymerization rates and the fibrin-fibrinogen content of the clots that formed were greater in the PPACK-inhibited system than in the hirudin-inhibited system, and the effect was amplified at the lower ionic strength. PPACK-thrombin also promoted the polymerization of native or prepared mixtures of fibrin and fibrinogen. The results suggest that in addition to its well-recognized role in the proteolytic conversion of fibrinogen to fibrin, thrombin functions through exosite binding to fibrin as a cofactor in fibrin polymerization by accelerating fibrin clot assembly.  相似文献   

4.
Serum amyloid P-component (SAP) is a normal plasma constituent in man with a circulating concentration of approximately 40 micrograms/ml. Supraphysiological amounts of SAP (150-300 micrograms/ml) have been reported to affect coagulation. We have investigated this further by studying the effect of SAP upon clot times in both the absence and presence of heparin, a suggested ligand for SAP and itself a modulator of coagulation processes. In the absence of heparin, SAP (5-125 micrograms/ml) had no effect on clot times generated by Activated Thrombofax Reagent, brain thromboplastin, Russell's Viper Venom or thrombin when assessed in normal citrated plasma. However, in the presence of amounts of heparin that had only a minor effect upon clot times, SAP (5-40 micrograms/ml) greatly prolonged clot formation, with the thrombin time the most sensitive to SAP. This suggested that the primary effect of SAP was at this distal level of the coagulation pathway. Evaluation by radioimmunoassay revealed that supraphysiological concentrations of SAP (150-300 micrograms/ml) alone reduced by approximately 25% the release of fibrinopeptide A (FPA) from fibrinogen. In the presence of heparin, substantial synergism was observed with maximal reductions of approximately 70% in FPA production requiring only 25-50 micrograms/ml SAP. This inhibition correlated with increased thrombin clot time but was unrelated to any direct modulation in either the activities of anti-thrombin III or activated Factor XIII, and was independent of an alteration in the rate of fibrinolysis. Further, while SAP itself did not interfere with the process of spontaneous fibrin polymerization, in the presence of heparin a prolonged polymerization time (greater than 145%) was observed. We believe that these data reflect the primary mechanisms by which serum amyloid P component influences blood coagulation.  相似文献   

5.
Summary.  Rebound thrombin generation after successful thrombolysis might be related to (i) too short-term anticoagulant therapy and to (ii) the inability of heparin derivatives to inhibit clot-bound thrombin. To meet these shortcomings, a compound was synthesized, which consists of a pentasaccharide conjugated to a direct thrombin inhibitor. This compound (Org 42675) has a 10 times longer half-life compared with the original half-life of the direct thrombin inhibitor, while the thrombin inhibitory activity is maintained. An extra advantage of this product is the inhibitory activity on thrombin generation via antithrombin III (AT)-mediated factor (F)Xa inhibition. Org 42675 inhibited in vitro clot-bound thrombin with similar activity to the direct thrombin inhibitor argatroban. In experimental models in rats, Org 42675 showed on a molar base similar antithrombotic activity to unfractionated heparin, was more active than argatroban and was more active than fondaparinux sodium (AT-mediated FXa inhibitor) in arterial thrombosis. Finally, Org 42675 was far more active than the three reference compounds in an experimental thrombolysis model in rabbits. These properties of Org 42675, with its FXa and (clot-bound) thrombin inhibitory activity in combination with its long half-life, make this compound a powerful drug that is likely to be effective in the prevention of re-occlusion after successful thrombolysis in man.  相似文献   

6.
BACKGROUND: Fibrinogen (Fg) has been considered essential for platelet aggregation. However, we recently demonstrated formation of occlusive thrombi in Fg-deficient mice and in mice doubly deficient for Fg and von Willebrand factor (Fg/VWF(-/-)). METHODS AND RESULTS: Here we studied Fg/VWF-independent platelet aggregation in vitro and found no aggregation in citrated platelet-rich plasma of Fg/VWF(-/-) mice. Surprisingly, in Fg/VWF(-/-) plasma without anticoagulant, adenosine diphosphate induced robust aggregation of Fg/VWF(-/-) platelets but not of beta(3)-integrin-deficient (beta(3) (-/-)) platelets. In addition, beta(3) (-/-) platelets did not significantly incorporate into thrombi in Fg/VWF(-/-) mice. This Fg/VWF-independent aggregation was blocked by thrombin inhibitors (heparin, hirudin, PPACK), and thrombin or thrombin receptor activation peptide (AYPGKF-NH(2)) induced aggregation of gel-filtered Fg/VWF(-/-) platelets in 1 mm Ca(2+) PIPES buffer. Notably, aggregation in PIPES buffer was only 50-60% of that observed in Fg/VWF(-/-) plasma. Consistent with the requirement for thrombin in vitro, hirudin completely inhibited thrombus formation in Fg/VWF(-/-) mice. These data define a novel pathway of platelet aggregation independent of both Fg and VWF. Although this pathway was not detected in the presence of anticoagulants, it was observed under physiological conditions in vivo and in the presence of Ca(2+)in vitro. CONCLUSIONS: beta(3) integrin, thrombin, and Ca(2+) play critical roles in this Fg/VWF-independent aggregation, and both plasma and platelet granule proteins contribute to this process.  相似文献   

7.
The ecarin chromogenic assay (ECA) was developed for quantitative determination of direct thrombin inhibitors. As a further development of the ecarin clotting time (ECT), the ECA is based on the same principle, the activation of prothrombin by ecarin a snake venom from Echis carinatus. In the ECA the prothrombin activation products meizothrombin and meizothrombin-desF1 cleave a chromogenic substrate, whereas in the clotting assay ECT plasma fibrinogen is converted to fibrin. The activity of meizothrombin/meizothrombin-desF1 is inhibited in a concentration-dependent fashion by direct thrombin inhibitors. The ECA can be used as ECA-H for quantitative determination of hirudin and as ECA-T for determination of synthetic thrombin inhibitors. As shown for hirudin, argatroban and melagatran, the ECA turned out as a very precise and sensitive method, which combines the advantages of ECT with those of chromogenic assays. In ECA very low interindividual variations were found compared to aPTT and even ECT. The ECA is independent of the variations of the coagulation variables prothrombin and fibrinogen.  相似文献   

8.
Recently, we demonstrated that tissue plasminogen activator directly releases fibrinopeptides A and B (FPA and FPB) from fibrinogen. The purpose of this study was to determine whether urokinase has similar activity. Incubation of urokinase with fibrinogen or heparinized plasma results in concentration-dependent FPB release unaccompanied by FPA cleavage. For equivalent amidolytic activity, high molecular weight urokinase releases twofold more FPB than the low molecular weight species. In contrast, prourokinase does not release FPB until activated to urokinase. Contaminating thrombin or plasma is not responsible for urokinase-mediated FPB release because this activity is unaccompanied by FPA or B beta 1-42 cleavage, and is unaffected by heparin, hirudin, a monospecific antibody against thrombin, aprotinin, or alpha 2-antiplasmin. FPB release reflects a direct action of urokinase on fibrinogen because release is completely inhibited by a monospecific antibody against the enzyme. Further, urokinase releases FPB from the FPB-containing substrate B beta 1-42, thus confirming its specificity for the B beta 14 (Arg)-B beta 15 (Gly) bond. In addition to FPB release, SDS-PAGE analysis of the time course of urokinase-mediated fibrinogenolysis indicates progressive proteolysis of both the A alpha- and B beta-chains of fibrinogen that occurs after FPB release is completed. As a consequence of urokinase-mediated fibrinogenolysis, there is progressive prolongation of the thrombin clotting time. These studies indicate that urokinase has direct catalytic activity against fibrinogen. By releasing FPB, a potent chemoattractant, and by rendering fibrinogen less clottable by thrombin, urokinase may participate in processes extending beyond fibrinolysis.  相似文献   

9.
Summary. Background: As a regulator of the penultimate step in the coagulation cascade, thrombin represents a principal target of direct and specific anticoagulants. Objective: A potent thrombin inhibitor complexed with a colloidal nanoparticle was devised as a first‐in‐class anticoagulant with prolonged and highly localized therapeutic impact conferred by its multivalent thrombin‐absorbing particle surface. Methods: PPACK (Phe[D]‐Pro‐Arg‐Chloromethylketone) was secured covalently to the surface of perfluorocarbon‐core nanoparticle structures. PPACK and PPACK nanoparticle inhibition of thrombin were assessed in vitro via thrombin activity against a chromogenic substrate. In vivo antithrombotic activity of PPACK, heparin, non‐functionalized nanoparticles and PPACK nanoparticles was assessed through intravenous (i.v.) administration prior to acute photochemical injury of the common carotid artery. Perfluorocarbon particle retention in extracted carotid arteries from injured mice was assessed via 19F magnetic resonance spectroscopy (MRS) and imaging (MRI) at 11.7 T. Activated partial thromboplastin time (APTT) measurements determined the systemic effects of the PPACK nanoparticles at various times after injection. Results: An optical assay verified that PPACK nanoparticles exceeded PPACK’s intrinsic activity against thrombin. Application of an in vivo acute arterial thrombosis model demonstrated that PPACK nanoparticles outperformed both heparin (P = 0.001) and uncomplexed PPACK (P = 0.0006) in inhibiting thrombosis. 19F MRS confirmed that PPACK nanoparticles specifically bound to sites of acute thrombotic injury. APTT normalized within 20 min of PPACK nanoparticles injection. Conclusions: PPACK nanoparticles present thrombin‐inhibiting surfaces at sites of acutely forming thrombi that continue to manifest local clot inhibition even as systemic effects rapidly diminish and thus represent a new platform for localized control of acute thrombosis.  相似文献   

10.
The relationship between platelet release and fibrinopeptide A cleavage from fibrinogen to form fibrin I in vitro was examined in blood allowed to clot undisturbed or with gentle agitation. In undisturbed or agitated blood platelet release and fibrin I formation occurred simultaneously. When hirudin was added to undisturbed blood it prevented platelet release as well as fibrin I formation. In contrast, hirudin added to agitated blood had little effect on platelet release despite complete inhibition of fibrin I formation. Collagen added to either undisturbed or agitated blood increased platelet release and then fibrin I formation, and ADP added to undisturbed blood caused an initial burst of platelet release followed by slight acceleration of fibrinopeptide A cleavage. Prostaglandin E1 and theophylline prevented platelet release in both undisturbed and agitated blood, but did not affect fibrin I formation. The results with inhibitors in agitated blood suggest that fibrin I formation and platelet release can occur independently in the presence of the increased interactions induced by agitation. Addition of thrombin or tissue thromboplastin to undisturbed blood accelerated fibrin I formation with little effect on platelet release. Finally, initial thrombin formation in undisturbed blood appeared to be associated with the platelet surface. These relationships suggest that thrombin formation via the intrinsic system leads to thrombin generation on the platelet surface and simultaneous platelet release and fibrin I formation, while thrombin generated via tissue thromboplastin leads to thrombin formation in the plasma and fibrin I formation preceding platelet release. Activation by interaction of blood with collagen causes initial acceleration of platelet release and later acceleration of fibrin I formation.  相似文献   

11.
The platelet injury produced by bacterial endotoxin and thrombin have been compared in studies utilizing citrated rabbit platelet-rich plasma. Endotoxin-induced platelet injury is characterized by a lag period, is progressive, and does not produce gross clot formation. Thrombin-induced platelet injury is immediate, non-progressive, and is associated with clot formation. The quantity of thrombin required to produce clot formation in this citrated system is less than that required to produce release of platelet 5-hydroxytryptamine. The endotoxin-induced platelet injury required extremely large quantities of heparin for inhibition. The platelet injury induced by thrombin can be inhibited by small quantities of heparin. It is concluded that the injurious effects of endotoxin on platelets is mediated through some mechanism other than thrombin formation.  相似文献   

12.
During a period when screening for hepatitis B surface antigen (HBsAg) was performed by immunodiffusion using dextran-containing agarose gel, a diffuse precipitation (DP) zone was observed when citrate plasma samples were reacted with certain serum specimens. The DP reaction was noted with a significantly larger number of sera from patients with renal disorders, hepatitis, or certain other virus infections than with sera from apparently healthy blood donors, indicating that it was associated with some type of pathological condition. Highly purified fibrinogen used as detector reagent instead of plasma was sufficient to elicit a precipitation zone similar to that of the DP reaction. In the presence of coagulation inhibitors such as heparin, hirudin and antithrombin III the DP reaction was inhibited, suggesting that the precipitation zone represents coagulation. Cross-linked fibrin was demonstrated in the precipitates of DP-positive sera but not in the corresponding zone of a DP-negative serum.  相似文献   

13.
OBJECTIVE: To examine whether administration of activated protein C or antithrombin reduces local splanchnic derangement of coagulation and inflammation and attenuates intestinal dysfunction and injury following intestinal ischemia/reperfusion. DESIGN: Randomized prospective animal study. SETTING: University research institute. SUBJECTS: Adult male Wistar rats, weighing 300-325 g (n = 72). INTERVENTIONS: Rats were subjected to superior mesenteric artery occlusion consisting of 20 or 40 mins of ischemia and 3 hrs of reperfusion. A randomized intravenous administration of vehicle (0.9% NaCl), heparin, antithrombin, or activated protein C was performed during ischemia, 15 mins before reperfusion. Coagulation and fibrinolysis variables obtained from portal blood were correlated with mucosal fibrin deposition (determined by anti-rat fibrin antibody staining), intestinal function (glucose/water clearance), and intestinal injury (histologic evaluation by Park/Chiu score). MEASUREMENTS AND MAIN RESULTS: Activated protein C- or antithrombin-treated animals demonstrated less ischemia/reperfusion-induced intestinal dysfunction and histologic changes compared with control animals, whereas intravenous administration of heparin only showed less histologic derangement. Activated protein C- or antithrombin-treated animals showed less thrombin generation, fibrin degradation products, and fibrin deposition compared with control animals, as confirmed by histologic examination, whereas heparin administration showed only a limited reduction of portal fibrin degradation product concentrations. Furthermore, activated protein C or antithrombin administration markedly inhibited the inflammatory response, as reflected by reduced interleukin-6 plasma concentrations to baseline values, whereas heparin had no effect. CONCLUSIONS: Administration of activated protein C or antithrombin inhibited local and systemic derangement of coagulation and inflammation following intestinal ischemia/reperfusion, diminished mucosal fibrin deposition, and attenuated ischemia/reperfusion-induced intestinal injury. These observations suggest that activated protein C or antithrombin reduces ischemia/reperfusion-induced intestinal injury, both through their anticoagulant and anti-inflammatory effects.  相似文献   

14.
Heparin cofactor II is a plasma protein that inhibits thrombin rapidly in the presence of either heparin or dermatan sulfate. We have determined the effects of two glycosaminoglycan-binding proteins, i.e., histidine-rich glycoprotein and platelet factor 4, on these reactions. Inhibition of thrombin by heparin cofactor II and heparin was completely prevented by purified histidine-rich glycoprotein at the ratio of 13 micrograms histidine-rich glycoprotein/microgram heparin. In contrast, histidine-rich glycoprotein had no effect on inhibition of thrombin by heparin cofactor II and dermatan sulfate at ratios of less than or equal to 128 micrograms histidine-rich glycoprotein/microgram dermatan sulfate. Removal of 85-90% of the histidine-rich glycoprotein from plasma resulted in a fourfold reduction in the amount of heparin required to prolong the thrombin clotting time from 14 s to greater than 180 s but had no effect on the amount of dermatan sulfate required for similar anti-coagulant activity. In contrast to histidine-rich glycoprotein, purified platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of either heparin or dermatan sulfate at the ratio of 2 micrograms platelet factor 4/micrograms glycosaminoglycan. Furthermore, the supernatant medium from platelets treated with arachidonic acid to cause secretion of platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of heparin or dermatan sulfate. We conclude that histidine-rich glycoprotein and platelet factor 4 can regulate the antithrombin activity of heparin cofactor II.  相似文献   

15.
Summary.  Antithrombin and its cofactor, heparin, target both the product of prothrombin activation by prothrombinase, thrombin, as well as the enzyme responsible for the reaction, factor (F)Xa. These studies were carried out to quantify the effects of each of the prothrombinase components on the half-life of FXa in the presence of antithrombin and the low-molecular-weight heparins (enoxaparin, Aventis, Laval, Quebec, Canada) or the heparin pentasaccharide (fondaparinux, Organon Sanofi-Synthelabo, Cypress, TX, USA). Experiments were carried out using a recombinant form of prothrombin in which the active site serine has been mutated to cysteine and subsequently labeled with fluorescein. This mutant allowed calculation of the second order rate constant for inhibition of FXa by antithrombin in such a way that competition for antithrombin by thrombin is eliminated and competition for FXa by prothrombin is accounted for. Intrinsic rate constants for the inhibition of FXa by antithrombin–enoxaparin and antithrombin–fondaparinux, in the presence of the various prothrombinase components, were calculated. Addition of phospholipid had no significant effect on the second order rate constant for inhibition of FXa by antithrombin, while addition of FVa appeared to be mildly protective. Further addition of prothrombin however, caused profound protection of FXa, increasing its half-life from 1.1 to 353 s in the case of fondaparinux, and from 0.4 to 42 s in the case of enoxaparin. Similar results were reported for unfractionated heparin previously [ 1 ]. Therefore, in the presence of unfractionated heparin, fondaparinux, or enoxaparin, prothrombinase is profoundly protected from antithrombin.  相似文献   

16.
Interactions between standard heparin and the physiological anticoagulant plasma protein, activated protein C (APC) were studied. The ability of heparin to prolong the activated partial thromboplastin time and the factor Xa- one-stage clotting time of normal plasma was markedly enhanced by addition of purified APC to the assays. Experiments using purified clotting factors showed that heparin enhanced by fourfold the phospholipid-dependent inactivation of factor V by APC. In contrast to factor V, there was no effect of heparin on inactivation of thrombin-activated factor Va by APC. Based on SDS-PAGE analysis, heparin enhanced the rate of proteolysis of factor V but not factor Va by APC. Coagulation assays using immunodepleted plasmas showed that the enhancement of heparin action by APC was independent of antithrombin III, heparin cofactor II, and protein S. Experiments using purified proteins showed that heparin did not inhibit factor V activation by thrombin. In summary, heparin and APC showed significant anticoagulant synergy in plasma due to three mechanisms that simultaneously decreased thrombin generation by the prothrombinase complex. These mechanisms include: first, heparin enhancement of antithrombin III-dependent inhibition of factor V activation by thrombin; second, the inactivation of membrane-bound FVa by APC; and third, the proteolytic inactivation of membrane-bound factor V by APC, which is enhanced by heparin.  相似文献   

17.
A simple amidolytic method for the determination of the concentration of functionally active antithrombin III is described. Plasma is diluted with buffer containing EDTA and Polybrene®. In stage I, diluted plasma is incubated with thrombin. EDTA retards fibrin polymerization, and plasma fibrinogen does not influence the assay. Polybrene makes the assay result independent of heparin. In stage II, remaining thrombin is determined with the chromogenic substrate benzoyl-Phe-Arg-p-NA. The method is simpler and has a higher accuracy than clotting methods. There is a close correlation between the results obtained with this assay and with immunoassay of antithrombin III.  相似文献   

18.
Summary. Background: Although heparin possesses multiple mechanisms of action, enhanced factor Xa inhibition by antithrombin is accepted as the predominant therapeutic mechanism. The contribution of FIXa inhibition to heparin activity in human plasma remains incompletely defined. Objectives: To determine the relevance of FIXa as a therapeutic target for heparins, particularly serpin‐independent inhibition of intrinsic tenase (FIXa–FVIIIa) activity. Patients/Methods: Thrombin generation was detected by fluorogenic substrate cleavage. The inhibitory potencies (EC50s) of low molecular weight heparin (LMWH), super‐sulfated LMWH (ssLMWH), fondaparinux and unfractionated heparin (UFH) were determined by plotting concentration vs. relative velocity index (ratio ± heparin). Inhibition was compared under FIX‐dependent and FIX‐independent conditions (0.2 or 4 pm tissue factor [TF], respectively) in normal plasma, and in mock‐depleted or antithrombin/FIX‐depleted plasma supplemented with recombinant FIX. Results: UFH and fondaparinux demonstrated similar potency under FIX‐dependent and FIX‐independent conditions, whereas LMWH (2.9‐fold) and ssLMWH (5.1‐fold) demonstrated increased potency with limiting TF. UFH (62‐fold) and fondaparinux (42‐fold) demonstrated markedly increased EC50 values in antithrombin‐depleted plasma, whereas LMWH (9.4‐fold) and ssLMWH (two‐fold) were less affected, with an EC50 within the therapeutic range for LMWH. The molecular target for LMWH/ssLMWH was confirmed by supplementing FIX/antithrombin‐depleted plasma with 90 nm recombinant FIX possessing mutations in the heparin‐binding exosite. Mutated FIX demonstrated resistance to inhibition of thrombin generation by LMWH and ssLMWH that paralleled the effect of these mutations on intrinsic tenase inhibition. Conclusions: Therapeutic LMWH concentrations inhibit plasma thrombin generation via antithrombin‐independent interaction with the FIXa heparin‐binding exosite.  相似文献   

19.
Investigations of a family predisposed to recurrent venous thromboses disclosed a hereditary antithrombin III deficiency. The reactive antithrombin III concentration in plasma was reduced approximately 50%, and the antigen concentration of the inhibitor was normal. Antithrombin III from two members of this family was purified by dextran sulfate precipitation, affinity chromatography on heparin-Sepharose, and ion-exchange chromatography on DEAE-Sephadex A-50. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and crossed immunoelectrophoresis showed that only approximately half of the purified antithrombin III was capable of forming a complex with thrombin. This corroborated the finding that approximately twice as much purified antithrombin III from these patients compared with antithrombin III from normal humans was needed for titration of a given amount of thrombin. The nonreactive as well as the reactive population of antithrombin III bound heparin with the same affinity as normal antithrombin III. This was shown by crossed immunoelectrophoresis using heparin in the first dimension, by the elution pattern during salt gradient elution of antithrombin III from heparin-Sepharose, and by heparin enhancement of intrinsic fluorescence. Kinetic studies in the absence and in the presence of heparin indicated that the fraction of antithrombin III that could inactivate thrombin was functionally normal. The affected family members appeared to be heterozygotes with two autosomal codominant alleles that encode a normal and an abnormal antithrombin III protein, respectively.  相似文献   

20.
Effect of Heparin and Heparin Fractions on Platelet Aggregation   总被引:19,自引:2,他引:19       下载免费PDF全文
Porcine intestinal mucosal heparin induced aggregation of platelets in citrated platelet-rich plasma and enhanced platelet aggregation and serotonin secretion induced by other agents. This action of heparin was blocked by substances that elevate platelet cyclic AMP and by EDTA but not by inhibitors of platelet cyclooxygenase. The effect was not inhibited by apyrase or by N-amylthio-5'-AMP and therefore did not require the action of ADP, nor was there activation of platelet phospholipase. Platelet aggregation by heparin required a plasma cofactor different from the cofactor required for ristocetin.Fractionation of heparin yielded preparations that varied in molecular weight and, within a given molecular weight fraction, in affinity for antithrombin III. Fractions of high molecular weight (average 20,000) were more reactive with platelets than were fractions of low molecular weight (7,000). Anticoagulant activity did not parallel the platelet reactivity of heparin fractions. Among high molecular weight fractions, preparations of high or low antithrombin affinity were equally active in induction of platelet aggregation. In low molecular weight fractions, there was an inverse relationship between platelet reactivity and anticoagulant activity in normal platelet-rich plasma, but, in platelet-rich plasma depleted of antithrombin, low molecular weight fractions of high and low antithrombin affinity reacted equally with platelets. These results suggest that formation of an antithrombin-heparin complex protected platelets from aggregation by heparin.Selection of heparin fractions of low molecular weight and high antithrombin affinity may improve anticoagulant therapy and development of thromboresistant heparin-coated artificial materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号