首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
These studies describe the normal anatomical distribution of neurons containing the mRNA coding for neurotensin (proneurotensin/neuromedin N) in the rat forebrain and midbrain and examine how that distribution is altered by acute administration of the dopamine antagonist haloperidol. A novel fluorescence detection method was developed and employed with biotinylated oligonucleotides to permit the rapid, sensitive visualization of in situ hybridization. The hybridization was temperature-sensitive, eliminated by ribonuclease, and co-localized in neurotensin-immunoreactive perikarya in the midbrain. In the forebrain of control rats, proneurotensin mRNA-containing neurons were found in the dorsomedial and ventrolateral caudate/putamen, in the nucleus accumbens, in the ventral striatum including the olfactory tubercles, and in the septal nuclei. Haloperidol induced significant increases in the frequencies and distributions of hybridization-positive neurons in the striatum and septal nuclei. In the midbrain, the highest frequency of hybridization-positive neurons occurred in the substantia nigra and the superior colliculus. Prominent populations were also present in the dorsal and ventral periaqueductal gray, the oculomotor region, and the medial longitudinal fasciculus. Less prominent were populations of neurons in the dorsomedial deep mesencephalic nuclei and the ventral tegmental area. Haloperidol induced only modest increases in the frequency of pro-neurotensin mRNA-containing neurons in the ventral tegmental area, and had no effects elsewhere in the midbrain. These results show that the fluorescent detection techniques used in this analysis provide a very rapid, reliable method for localizing hybridized mRNA in the rat brain. This study also suggests that a subpopulation of striatal neurons begin to express proneurotensin mRNA in response to haloperidol treatment. This effect of haloperidol on striatal neurons contrasts with results from additional studies of enkephalin mRNA in the striatum, suggesting that the mechanisms of haloperidol stimulation may differ between neurotensin and enkephalin-containing neurons.  相似文献   

3.
The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.  相似文献   

4.
Striatal spiny neurons are selectively vulnerable in Huntington's disease (HD) and ischemia, whereas large aspiny (LA) cholinergic interneurons of the striatum are spared in these pathological conditions. We have investigated whether a different sensitivity to ionotropic glutamatergic agonists might account for this differential vulnerability. Intracellular recordings were obtained from morphologically identified striatal spiny neurons and LA cholinergic interneurons by using a rat brain slice preparation. The two striatal neuronal subtypes had strikingly different intrinsic membrane properties. Both subtypes responded to cortical stimulation with excitatory postsynaptic potentials: these potentials, however, had a different time course and pharmacology in the two classes of cells. Interestingly, membrane depolarizations and inward currents produced by exogenous glutamate receptor agonists (AMPA, kainate, and NMDA) were remarkably larger in spiny neurons than in LA interneurons. Moreover, concentrations of agonists producing reversible membrane changes in LA interneurons caused irreversible depolarizations in spiny cells. Our data suggest that the different physiological responses induced by the activation of ionotropic glutamate receptors may account for the cell type-specific vulnerability of striatal neurons in ischemia and HD.  相似文献   

5.
Recent findings in adult rodents have provided evidence for the formation of new striatal neurons from subventricular zone (SVZ) precursors following stroke. Little is known about which factors determine the magnitude of striatal neurogenesis in the damaged brain. Here we studied striatal neurogenesis following an excitotoxic lesion to the adult rat striatum induced by intrastriatal quinolinic acid (QA) infusion. New cells were labeled with the thymidine-analogue 5-bromo-2'-deoxyuridine (BrdU) and their identity was determined immunocytochemically with various phenotypic markers. The unilateral lesion gave rise to increased cell proliferation mainly in the ipsilateral SVZ. At 2 weeks following the insult, there was a pronounced increase of the number of new neurons co-expressing BrdU and a marker of migrating neuroblasts, doublecortin, in the ipsilateral striatum, particularly its non-damaged medial parts. About 80% of the new neurons survived up to 6 weeks, when they expressed the mature neuronal marker NeuN and were preferentially located in the outer parts of the damaged area. Lesion-generated neurons expressed phenotypic markers of striatal medium spiny neurons (DARPP-32) and interneurons (parvalbumin or neuropeptide Y). The magnitude of neurogenesis correlated to the size of the striatal damage. Our data show for the first time that an excitotoxic lesion to the striatum can trigger the formation of new striatal neurons with phenotypes of both projection neurons and interneurons.  相似文献   

6.
Phencyclidine (PCP), a non-competitive antagonist of the NMDA subtype of glutamate receptor, which also acts as an indirect dopamine agonist and at sigma sites, can induce a long lasting psychotic state when taken acutely. It is well established that PCP is toxic to specific limbic structures and we have recently demonstrated that it induces apoptosis of a subpopulation of striatal neurons. These neurons lie predominantly in the dorsomedial striatum and project to the globus pallidus. The mechanisms mediating this neuronal death are unclear though manipulations of dopamine transmission can induce striatal c-fos expression and continuous c-fos expression has been implicated in the molecular cascades controlling apoptosis. We accordingly undertook a series of experiments to determine the action of PCP on striatal Fos-like immunoreactivity (FLI). PCP (80 mg/kg, s.c.) elicited FLI in three distinct striatal areas, namely dorsomedial, dorsolateral and the nucleus accumbens. The level of PCP-induced FLI was consistently attenuated by the co-administration of the D-1 antagonist, SCH 23390. Vehicle injections also induced modest levels of FLI in the dorsomedial striatum and the nucleus accumbens which again were attenuated by SCH 23390. The type of striatal neuron in which PCP-induced FLI was determined by the use of a retrograde anatomical tracer. A colloidal gold tracer was thus injected into the major areas of termination of striatal projection neurons prior to the administration of PCP. This procedure demonstrated that the majority of the FLI positive striatal cells were striatopallidal neurons, though some FLI positive striatoentopeduncular neurons were also seen. The potential pharmacological mechanisms underlying the results are discussed. It is argued that the complex pattern of PCP-induced striatal FLI might be accounted for by a differential action upon extracellular dopamine levels whereby they are elevated in some striatal areas and simultaneously reduced in others.  相似文献   

7.
Medium spiny neurons are the projection neurons of the striatum. They receive the majority of striatal afferents, and they make up the vast majority of all neurons in the striatum. These densely spiny cells thus constitute a major substrate for input-output processing in the striatum. In the experiments described here we analyzed the dendritic fields of spiny neurons in the squirrel monkey striatum and plotted their orientations with respect to the borders between striosomes and matrix. Medium-sized spiny neurons in the caudate nucleus were filled intracellularly in a fixed-slice preparation with the fluorescent dye Lucifer Yellow. Dendritic arbors were reconstructed following immunostaining of the injected neurons with antiserum to Lucifer Yellow and counterstaining for striosome/matrix compartments. A majority of the medium spiny neurons studied had dendritic arborizations that remained within their compartment of origin. Thus the striosome/matrix subdivision not only partitions neurotransmitter molecules and extrinsic striatal connections into two domains in the primate caudate nucleus, but also constrains the dendritic arbors of many projection neurons there. Other medium spiny neurons, however, in both striosomes and matrix, had dendrites that crossed from one compartment into the other. About a quarter of the spiny neurons reconstructed had at least one such crossing dendrite. These results suggest that compartmentalization of afferent and efferent processing by projection neurons in the primate striatum is not absolute. For a subpopulation of spiny neurons in striosomes and matrix, inputs to one compartment could have a direct influence on output cells of the other. © 1993 Wiley-Liss,Inc.  相似文献   

8.
Transplants of embryonic striatal tissue are characteristically heterogeneous, containing patches (P-zones) of striatal medium spiny projection neurons. It is not yet known how this morphology develops, and whether the striatal neurons in the grafts are derived from post-mitotic neuroblasts in the embryonic brain or from striatal progenitors that continue to divide after transplantation. To address this question we labelled dividing cells in the transplants with bromodeoxyuridine (BrdU), either prior to or after transplantation into the adult lesioned rat striatum. Cells for transplantation were either pre-labelled in utero by intraperitoneal (i.p.) injections of BrdU, or post-labelled after transplantation by i.p. injections to the hosts. Either two or six months after transplantation the brains were processed using double immunohistochemical techniques to detect BrdU and calbindin-positive neurons in the transplants. In the transplants pre-labelled with BrdU, approximately 30% of calbindin-positive cells were heavily labelled with BrdU, suggesting these had undergone a final division prior to transplantation. In transplants where cells had been labelled post-transplantation, approximately 17% of calbindin cells were heavily BrdU labelled. These results suggest that whereas a proportion of striatal medium spiny neurons in the striatal grafts were post-mitotic at the time of transplantation, other striatal progenitor cells can continue to divide after transplantation, and then complete an appropriate neuronal maturation programme in the adult host brain environment.  相似文献   

9.
The GABA-synthesizing enzymes glutamate decarboxylase (GAD)1 and GAD2 are universally contained in GABAergic neurons in the central nervous system of the mouse and rat. The two isoforms are almost identically expressed throughout the brain and spinal cord. By using in situ hybridization, we found that the mouse lateral striatum concentrates medium-sized projection neurons with high-level expression of GAD1, but not of GAD2, mRNA. This was confirmed with several types of riboprobe, including those directed to the 5'-noncoding, 3'-noncoding and coding regions. Immunohistochemical localization of GAD1 also revealed predominant localization of the enzyme in the same striatal region. The lateral region of the mouse striatum, harboring such neurons, is ovoid in shape and extends between interaural +4.8 and +2.8, and at lateral 2.8 and dorsoventral 2.0. This intriguing region corresponds to the area that receives afferent inputs from the primary motor and sensory cortex that are presumably related to mouth and forelimb representations. The lateral striatum is included in the basal ganglia-thalamocortical loop, and is most vulnerable to various noxious stimuli in the neurodegeneration processes involving the basal ganglia. We have confirmed elevated expression of GAD1 mRNA, but not of GAD2 mRNA, also in the rat lateral striatum. Image analysis favored the view that the regional increase is caused by elevated cellular expression, and that the greatest number of medium-sized spiny neurons were positive for GAD1 mRNA. The GAD1 mRNA distribution in the mouse lateral striatum partially resembled those of GPR155 and cannabinoid receptor type 1 mRNAs, suggesting functional cooperation in some neurons.  相似文献   

10.
Topographical or compartmental involvement of the putamen and caudate nucleus has not been fully elucidated in multiple system atrophy predominantly presenting with Parkinsonism (MSA-P). We carried out immunohistochemical studies using antibodies to calbindin (CALB) and calcineurin (CaN) as neurochemical markers for striatal medium spiny neurons. We found that in the caudal and dorsolateral putamen, the area most affected in MSA-P, the medium spiny neurons positive for CALB were severely depleted, while CaN-positive neurons were relatively spared in a mosaic pattern. In the dorsal caudate nucleus, an area less affected in MSA, residual CALB-positive neurons exhibited a compartmentalized distribution that corresponded with the striosomal arrangement visualized by Met-enkephalin immunostaining. Our findings suggest that there is a compartmental difference in the susceptibility of striatal medium spiny neurons to neurodegeneration in MSA-P.  相似文献   

11.
The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i.  相似文献   

12.
The neostriatum of the adult rat was investigated by means of the Golgi-rapid-impregnation technique. The fasciculi of the capsula interna which are embraced by the dendrites of the spiny neurons in a rank-like manner represent the structural framework of this brain region. The cellular population of the neostriatum is composed of at least five morphologically different neuron types: 1) Spiny neurons which by far outnumber the other types; 2) Few spiny neurons; 3) Large spiny neurons (giant neurons); 4) Small sized aspiny neurons; 5) Spider shaped aspiny neurons. The spiny neurons (type 1 neurons) and the small sized aspiny neurons (type 4 neurons) are considered to be striatal interneurons; the large sized aspiny neurons (type 3 neurons, giant neurons) and the spider-shaped aspiny neurons (type 5 neurons) are suggested to be striatal efferent neurons. The functional correlation of the few spiny neurons (type 2 neurons) is not possible as yet. A dense fiber plexus extends throughout the neostriatum unubiquitously. The axon type which appears to be distinctive according to morphological criteria - fine varicose axons, so called beaded axons - is supposed to be the terminals of the mesencephalic dopaminergic neurons. The heavily impregnated aggregations which are characteristic of the striatum after using the Golgi-rapid-treatment are thought to represent conglomerations consisting of neurons, glial cells and beaded afferent fibers.  相似文献   

13.
Lesch-Nyhan disease (LND) is an inherited disorder associated with deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), an enzyme essential for purine recycling. The clinical manifestations of the disorder and several neurochemical studies have pointed towards a defect in the striatum, but histological studies of autopsied brain specimens have not revealed any consistent abnormalities. An HPRT-deficient (HPRT-) mouse that has been produced as a model for the disease also exhibits neurochemical abnormalities of the striatum without obvious histological correlates. In the current studies, Golgi-Cox histochemistry was used to evaluate the fine structure of medium spiny I neurons from the striatum in the HPRT- mice. To determine if any abnormalities might be restricted to striatal neurons, the pyramidal projection neurons of layer 5 of the cerebral cortex were also evaluated. Neurons from both regions demonstrated a normal distribution, orientation, and gross morphology. There was no evidence for an abnormal developmental process or degeneration. However, both regions demonstrated a paucity of neurons with very long dendrites and a reduction in dendritic spines that depended upon the distance from the cell body. These findings demonstrate that HPRT deficiency is associated with changes in neuronal architecture in the HPRT- mice. Similar abnormalities in the LND brain could underlie some of the clinical manifestations.  相似文献   

14.
PDE10A is a newly identified cAMP/cGMP phosphodiesterase for which mRNA is highly expressed in the mammalian striatum. In the present study, PDE10A protein and mRNA expression throughout the rat brain were determined, using a monoclonal antibody (24F3.F11) for Western blot and immunohistochemical analyses and an antisense riboprobe for in situ hybridization. High levels of mRNA are observed in most of the neuronal cell bodies of striatal complex (caudate n, n. accumbens and olfactory tubercle), indicating that PDE10A is expressed by the striatal medium spiny neurons. PDE10A-like immunoreactivity is dense throughout the striatal neuropil, as well as in the internal capsule, globus pallidus, and substantia nigra. These latter regions lack significant expression of PDE10A mRNA. Thus, PDE10A is transported throughout the dendritic tree and down the axons to the terminals of the medium spiny neurons. These data suggest a role for PDE10A in regulating activity within both the striatonigral and striatopallidal pathways. In addition, PDE10A immunoreactivity and mRNA are found at lower levels in the hippocampal pyramidal cell layer, dentate granule cell layer and throughout the cortex and cerebellar granule cell layer. Immunoreactivity is detected only in cell bodies in these latter regions. This more restricted subcellular localization of PDE10A outside the striatum suggests a second, distinct function for the enzyme in these regions.  相似文献   

15.
Repeated intermittent administration of L-DOPA in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway results in a progressive increase of contraversive circling behavior. In this study, we have investigated the effects of denervation and repeated L-DOPA administration on the expression of the nuclear receptor nerve growth factor inducible-B (NGFI-B) in striatal output pathways of unilaterally 6-OHDA-lesioned rats. The denervation process induced an increase of NGFI-B and enkephalin (ENK) mRNA levels and the increase of NGFI-B took place predominantly in ENK-containing cells. The percentage of cells colocalizing NGFI-B and dynorphin (DYN) was significantly reduced. Repeated L-DOPA treatment increased the striatal level of DYN mRNA but it further reduced the percentage of NGFI-B/DYN double-labeled cells. On the intact side, repeated L-DOPA treatment increased NGFI-B expression in both striatal subpopulations. Additional acute studies were performed in normal rats to determine the role of the denervation process in the coordinate expression of NGFI-B in striatal subpopulations. A combination of selective D(1) and D(2) agonists induced an important increase of striatal NGFI-B expression selectively in DYN-containing neurons. These results demonstrate that the denervation process causes a differential regulation of NGFI-B in the two striatal output pathways which is further exacerbated by L-DOPA treatment. These molecular changes in response to dopamine depletion and dopamine replacement therapy may contribute to the long-term effects of L-DOPA and to the development of behavioral sensitization.  相似文献   

16.
Neurons maintained in dispersed primary culture offer a number of advantages as a model system and are particularly well-suited for studies of the intrinsic electrical properties of neurons by patch clamp. We have characterized the immunocytochemical and electrophysiological properties of cultured rat striatal neurons as they develop in vitro in order to compare this model system with the known properties found in vivo. We found a high abundance of cells in vitro corresponding to the principal striatal output neuron, the medium spiny neuron. Immunocytochemical studies indicate that these cells have both dopamine-1 and dopamine-2 receptors and that there is overlap in their expression within the population of neurons. Semiquantitative analysis revealed bimodal distributions of dopamine receptor expression among the population of neurons. The principal peptide neurotransmitters substance P and enkephalin were present but at reduced levels compared with adult preparations. Other striatal markers such as calbindin, calretinin, and the cannabinoid-1 receptor were abundant. An immunocytochemical survey of voltage-gated K(+) channel subunits characteristic of adult tissue demonstrated the presence in vitro of Kv1.1, Kv1.4, Kv4.2, Kv4.3, and Kvbeta1.1, which have been associated with the rapidly inactivating currents. Electrophysiological studies employing voltage clamp revealed that outward currents had a large inactivating (A-type) component characteristic of mature basal ganglia. Current clamp studies reveal complex spontaneous firing patterns in a subset of neurons, including bursting behaviors superimposed on a slow depolarization. The inward rectifying channels Kir2.1 and Kir2.3, which are specific to particular compartments in adult striatum, were present in culture.  相似文献   

17.
Previous studies have demonstrated that newborn striatal neurons can functionally integrate with local neural networks in adult rat brain after injury. In the present study, we determined whether these newly generated striatal neurons can develop projections to the substantia nigra, a target of striatal projection neurons. We used 5′-bromodeoxyuridine (BrdU) and a retroviral vector expressing green fluorescent protein (GFP) combined with multiple immunostaining labels of newborn striatal neurons, and nigral microinjection of fluorogold (FG) to trace the striatonigral projection in adult rat brain at different weeks following a transient middle cerebral artery occlusion (MCAO). We found that FG positive (FG+) cells could be detected in newly generated neurons (BrdU+-NeuN+ and GFP+-NeuN+) in ipsilateral striatum clearly at 12, but not 2 weeks after MCAO. The data suggest that ischemia-induced newborn striatal projection neurons could form long axons that targeted the substantia nigra (striatonigral projection pathway) and that have intact axonal transport from the nerve terminal to cell body. These new striatal neurons express glutamate NR2 and dopamine D2L receptors, which form the molecular basis for responding to the inputs from cortical glutamatergic and nigral dopaminergic projection neurons. Our data provide the first morphological evidence that newborn neurons in the striatum, a non-neurogenic region, can establish new striatonigral neural circuits, important pathways for the maintenance of motor function. These results help us to understand endogenous cellular mechanisms of brain repair, and suggest that increasing adult neurogenesis could be a practical strategy for enhancing the efficacy of rehabilitative therapy in stroke patients.  相似文献   

18.
In the first two reports of this series, in vivo intracellular recording techniques were used to characterize the electrophysiological properties of two types of striatal neurons that had been identified by their distinct response patterns to stimulation of corticostriatal afferents. In this paper, we examined whether cells showing Type I or Type II response patterns also differed with respect to their morphology or compartmental localization by combining intracellular recording and Lucifer yellow staining with immunocytochemical localization of calbindin 28 kd immunoreactivity. In the majority of cases, both Type I and Type II neurons exhibited similar morphological characteristics, with 80% of the Type I cells (13/16) and all of the Type II cells (n = 40) being small or medium spiny neurons. In each case where the morphological class of the cell was different than the spiny cell class, the cell exhibited a Type I response pattern. These spiny neurons had somata that averaged 17.1 ± 1.3 μm in diameter and gave rise to between four and eight primary dendrites. The axons typically arose from cell bodies (7/13 for Type I and 25/40 for Type II cells) and emitted extensive local axonal collaterals. However, the axons of Type I cells more frequently originated from the dorsal surface of the somata (9/13; 69%), whereas Type II axons more frequently arose from the ventral surface of the somata (25/35; 71%), which may account for their different extracellular waveforms. In coronally sectioned tissue (n = 18), the axons always projected laterally when the somata were located in the medial striatum and projected medially when the somata were in the lateral striatal region. In a subset of experiments (N = 22), Lucifer yellow-stained neurons were localized with respect to their position within the patch and matrix compartments of the striatum using subsequent staining for calbindin 28 kd immunoreactivity. Of the 20 labeled medium spiny neurons examined (Type II: N = 13; Type I: N = 7), 19 were located in the calbindin-positive matrix compartment. The only neuron localized to the patch compartment was a medium spiny cell that exhibited a Type II paired impulse response pattern. In addition, of the two aspiny neurons from this group with beaded dendrites, one was localized to the border between adjacent patch and matrix compartments, whereas the other was located completely within the matrix compartment. Therefore, despite their distinct paired impulse response patterns, the majority of both Type I and Type II neurons were medium spiny cells located in the matrix compartment of the striatum. This series of studies shows that corticostriatal pathway stimulation can be used effectively to distinguish between two morphologically and physiologically similar types of medium spiny neuron in the striatum. Furthermore, evidence is consistent with a model wherein these two cell types represent the sites of origin of the two parallel efferent systems emanating from the striatum. © 1994 Wiley-Liss, Inc.  相似文献   

19.
20.
Glial cell line-derived neurotrophic factor (GDNF) is absolutely required for survival of dopaminergic (DA) nigrostriatal neurons and protect them from toxic insults. Hence, it is a promising, albeit experimental, therapy for Parkinson's disease (PD). However, the source of striatal GDNF is not well known. GDNF seems to be normally synthesized in neurons, but numerous reports suggest GDNF production in glial cells, particularly in the injured brain. We have studied in detail striatal GDNF production in normal mouse and after damage of DA neurons with MPTP. Striatal GDNF mRNA was present in neonates but markedly increased during the first 2-3 postnatal weeks. Cellular identification of GDNF by unequivocal histochemical methods demonstrated that in normal or injured adult animals GDNF is expressed by striatal neurons and is not synthesized in significant amounts by astrocytes or microglial cells. GDNF mRNA expression was not higher in reactive astrocytes than in normal ones. Approximately 95% of identified neostriatal GDNF-expressing cells in normal and injured animals are parvalbumin-positive (PV+) interneurons, which only represent ~0.7% of all striatal neurons. The remaining 5% of GDNF+ cells are cholinergic and somatostatin+ interneurons. Surprisingly, medium spiny projection neurons (MSNs), the vast majority of striatal neurons that receive a strong DA innervation, do not express GDNF. PV+ interneurons constitute an oscillatory functional ensemble of electrically connected cells that control MSNs' firing. Production of GDNF in the PV+ neurons might be advantageous to supply synchronous activity-dependent release of GDNF in broad areas of the striatum. Stimulation of the GDNF-producing striatal PV+ ensemble in PD patients could have therapeutic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号