首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distal region on the short arm of chromosome 9 is of special interest for scientists interested in sex development as well as in the clinical phenotype of patients with the 9p deletion syndrome, characterized by mental retardation, trigonocephaly and other dysmorphic features. Specific genes responsible for different aspects of the phenotype have not been identified. Distal 9p deletions have also been reported in patients with 46,XY sex reversal, with or without 9p deletion syndrome. Within this region the strongest candidates for the gonadal dysgenesis phenotype are the DMRT genes; however, the genetic mechanism is not clear yet. Multiple ligation-dependent probe amplification represents a useful technique to evaluate submicroscopic interstitial or distal deletions that would help the definition of the minimal sex reversal region on 9p and could lead to the identification of gene(s) responsible of the 46,XY gonadal disorders of sex development (DSD). We designed a synthetic probe set that targets genes within the 9p23-9p24.3 region and analyzed a group of XY patients with impaired gonadal development. We characterized a deletion distal to the DMRT genes in a patient with isolated 46,XY gonadal DSD and narrowed down the breakpoint in a patient with a 46,XY del(9)(p23) karyotype with gonadal DSD and mild symptoms of 9p deletion syndrome. The results are compared with other patients described in the literature, and new aspects of sex reversal and the 9p deletion syndrome candidate regions are discussed.  相似文献   

2.
Half of all patients with a disorder of sex development (DSD) do not receive a specific molecular diagnosis. Comparative genomic hybridization (CGH) can detect copy number changes causing gene haploinsufficiency or over-expression that can lead to impaired gonadal development and gonadal DSD. The purpose of this study was to identify novel candidate genes for 46,XY gonadal dysgenesis (GD) using a customized 1 M array-CGH platform with whole-genome coverage and probe enrichment targeting 78 genes involved in sex development. Fourteen patients with 46,XY gonadal DSD were enrolled in the study. Nine individuals were analyzed by array CGH. All patients were included in a follow up sequencing study of candidate genes. Three novel candidate regions for 46,XY GD were identified in two patients. An interstitial duplication of the SUPT3H gene and a deletion of C2ORF80 were detected in a pair of affected siblings. Sequence analysis of these genes in all patients revealed no additional mutations. A large duplication highlighting PIP5K1B, PRKACG and FAM189A2 as candidates for 46,XY GD, were also detected. All five genes are expressed in testicular tissues, and one is shown to cause gonadal DSD in mice. However detailed functional information is lacking for these genes.  相似文献   

3.
Primary amenorrhea due to 46,XY disorders of sexual development (DSD) is complex with the involvement of several genes. Karyotyping of such patients is important as they may develop dysgerminoma and molecular analysis is important to identify the underlying mechanism and explore the cascade of events occurring during sexual development. The present study was undertaken for the genetic analysis in seven patients from five families presenting with primary amenorrhea and diagnosed with pure gonadal dysgenesis. Karyotyping was done and the patients were screened for underlying changes in SRY, desert hedgehog (DHH), DAX1 (NR0B1) and SF1 (NR5A1) genes, mutations in which are implicated in DSD. All the patients had 46,XY karyotype and two novel SRY mutations were found. In Family 1 (Patient S1.1) a missense mutation c.294G>A was seen, which results in a stop codon at the corresponding amino acid (Trp98X) and in Family 2 (Patients S2.1, S2.2 and S2.3), a missense mutation c.334G>A (Glu112Leu) was identified in all affected sisters. Both mutations were seen to occur in the conserved high mobility group box of SRY gene. One heterozygous change c.427G>A resulting in Glu143Lys in DHH gene in one patient and two heterozygous changes in the intronic region of SF1 (NR5A1) gene (c.244+80G>A+ c.1068-20C>T) in another patient were noted. One individual did not show changes in any of the genes analyzed. These results reiterate the importance of SRY and others, such as SF1 (NR5A1) and DHH, that are involved in the cascade of events leading to sex determination and also their role in sex reversal.  相似文献   

4.
5.
6.
目的: 探讨性发育异常患者的细胞分子遗传学特征。方法: 应用多重连接依赖的探针扩增(MLPA)技术对3例染色体核型为46,XX的男性性反转综合征患者及1例女性假两性畸形患者父母进行SRY、CYP21A2、DSS、DAX1、WNT4、SOX9、NR5A1等性别相关基因的拷贝数筛查,并采用细菌人工染色体(BAC)克隆制备探针,以荧光原位杂交技术(FISH)进行基因定位。结果: 3例男性性反转综合征患者经MLPA基因筛查均发现存在单拷贝SRY基因,FISH技术鉴定存在2条X染色体,SRY基因易位于其中1条X染色体的短臂上;女性假两性畸形患者的母亲染色体核型为46,XX,MLPA基因筛查发现其CYP21A2-ex03杂合性缺失,CYP21A1P-ex02杂合性重复;父亲染色体核型为46,XY,MLPA基因筛查发现CYP21A2-ex01和CYP21A2-ex03杂合性缺失,CYP21A1P-ex02和CYP21A1-ex10杂合性重复。结论: 性别决定是以SRY基因为主导、其它多个基因参与的过程,对性发育异常患者进行MLPA基因筛查有利于明确病因。  相似文献   

7.
Mutations in the CYP21A2 gene encoding the 21-hydroxylase enzyme account for >90% of congenital adrenal hyperplasia (CAH) cases. Approximately 20% of mutant alleles carrying large deletion/duplication have also been reported. Herein, we describe the use of the multiplex ligation-dependent probe amplification (MLPA) method for convenient and rapid detection of deletions/duplications in the CYP21A2 gene. We used MLPA to analyze the gene dose of CYP21A2 MLPA in 13 Korean patients who previously underwent direct sequencing for the molecular diagnosis of CAH. The MLPA assays identified 5 patients with CYP21A2 deletions; all 5 patients carried a single mutant allele peak in sequence analysis. These results demonstrate the diagnostic usefulness of MLPA to detect CYP21A2 deletions/duplications for diagnosis of CAH.  相似文献   

8.
Steroidogenic factor 1 (SF1) is a nuclear receptor encoded by the NR5A1 gene. SF1 affects both sexual and adrenal development through the regulation of target gene expression. Genotypic male and female SF1 knockout mice have adrenal and gonadal agenesis with persistent Müllerian structures and early lethality. There have been several reports of NR5A1 mutations in individuals with 46,XY complete gonadal dysgenesis (CGD) or other disorders of sex development (DSD) with or without an adrenal phenotype. To date microdeletions involving NR5A1 have been reported in only two patients with DSDs.  相似文献   

9.
10.
Distal chromosome 9p contains a locus that, when deleted, is a cause of 46,XY gonadal dysgenesis in the absence of extragenital anomalies. This locus might account for the frequently observed cases of 46,XY pure gonadal dysgenesis who do not harbor mutations in SRY, the sex master regulator gene found in mammalian species. The genomic organization of 9p positional candidate genes is currently being studied and mutational screens are ongoing. Among other positional candidates, including two additional doublesex-related genes, the evidence to support a role for the gene DMRT1 in vertebrate male sexual development is accumulating. Although formal proof of the requirement of DMRT1 in gonadal sex fate choice has not been obtained so far, the particular interest in this gene and perhaps other doublesex-related genes identified in vertebrates lies in that they may provide an entry point to a conserved mechanism of sex determination across animal phyla. We discuss recent results and emerging views on the genetics of sex determination, while stressing that the majority of cases of 46,XY gonadal dysgenesis remain unexplained. The latter is likely to be efficiently addressed by positional cloning efforts, particularly by considering the wealth of sequence data provided by the Human Genome Project.  相似文献   

11.
本文采用PCR扩增、琼脂糖凝胶电泳方法,检测了6例性别异常患者的SRY基因。结果表明,3例46,XY女性患者中,1例SRY基因阴性,2例呈阳性;1例如,XX男性,SRY基因呈阳性;另2例两性畸形患者SRY基因呈阳性。分析认为,46,XY女性性反转,是由于SRY基因丢失或突变所致;46,XX男性性反转,是由于XP-YP易位引起;而两性畸形的发生则与SRY以外的其它性别决定基因有关。  相似文献   

12.
We report a 46,XY 11-year-old girl with pure gonadal dysgenesis who developed a dysgerminoma. The testis-determining gene SRY, a candidate for sex reversal, whose alterations seem to correlate with dysgerminoma, was analyzed and found to be normal; its coding sequence was negative for deletions and mutations. DMRT-1 gene mapping on 9p and DAX-1 on Xp21 were also normal. These results suggest the involvement of other genes in sex reversal and call into question the putative relationship between SRY alterations and dysgerminoma.  相似文献   

13.
目的利用多重连接依赖探针PCR扩增技术检测Duchenne肌营养不良症(Duchenne muscular dystrophy,DMD)患者及其可能的女性携带者的dystrophin基因的缺失、重复突变。方法利用多重连接依赖探针PCR扩增对32例DMD患者及其27个可能的女性携带者的dystrophin基因缺失、重复进行检测。结果32个先证者中,共检测出了24例DMI)患者具有一个或多个外显子的缺失,l例DMD患者具有重复突变,l例患者为第19外显子的无义突变(R768X),6例没有检测出缺失、重复突变的先证者可能是点突变所致。17个先证者的18位女性亲属具有和先证者相同的缺失、重复突变。结论多重连接依赖探针PCR扩增技术可用于检测DMD基因的缺失、重复突变,可以检测DMD基因女性携带者的基因杂合情况,在检测DMD基因缺失和重复方面,具有一定的应用价值。  相似文献   

14.
15.
16.
Mammalian sex determination—insights from humans and mice   总被引:1,自引:0,他引:1  
Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models.  相似文献   

17.
Patients with disorders of sex development (DSD), especially those with gonadal dysgenesis and hypovirilization, are at risk of developing the so-called type II germ cell tumors (GCTs). Both carcinoma in situ and gonadoblastoma (GB) can be the precursor lesion, resulting in a seminomatous or non-seminomatous invasive cancer. SRY mutations residing in the HMG domain are found in 10–15% of 46,XY gonadal dysgenesis cases. This domain contains two nuclear localization signals (NLSs). In this study, we report a unique case of a phenotypical normal woman, diagnosed as a patient with 46,XY gonadal dysgenesis, with an NLS missense mutation, on the basis of the histological diagnosis of a unilateral GB. The normal role of SRY in gonadal development is the upregulation of SOX9 expression. The premalignant lesion of the initially removed gonad was positive for OCT3/4, TSPY and stem cell factor in germ cells, and for FOXL2 in the stromal component (ie, granulosa cells), but not for SOX9. On the basis of these findings, prophylactical gonadectomy of the other gonad was performed, also showing a GB lesion positive for both FOXL2 (ovary) and SOX9 (testis). The identified W70L mutation in the SRY gene resulted in a 50% reduction in the nuclear accumulation of the mutant protein compared with wild type. This likely explains the diminished SOX9 expression, and therefore the lack of proper Sertoli cell differentiation during development. This case shows the value of the proper diagnosis of human GCTs in identification of patients with DSD, which allows subsequent early diagnosis and prevention of the development of an invasive cancer, likely to be treated by chemotherapy at young age.  相似文献   

18.
The SRY gene (sex-determining region of the Y chromosome) initiates the process of male sex differentiation in mammalians. In humans mutations in the SRY gene have been reported to account for 10-15% of the XY sex reversal cases. We describe here two novel missense mutations in the SRY gene after the screening of 17 patients, including 3 siblings, with 46,XY gonadal dysgenesis and 4 true hermaphrodites. One of the mutations, an A to C transversion within the HMG box, causes the N65H substitution and it was found in a patient presenting 46,XY pure gonadal dysgenesis. The Escherichia coli expressed SRY(N65H) protein did not present DNA-binding activity in vitro. The other mutation, a G to T transversion, causes the R30I substitution. This mutation was found in affected and nonaffected members of a family, including the father, two siblings with partial gonadal dysgenesis, a phenotypic female with pure gonadal dysgenesis, and three nonaffected male siblings. The G to T base change was not found in the SRY sequence of 100 normal males screened by ASO-PCR. The R30I mutation is located upstream to the HMG box, within the (29)RRSSS(33) phosphorylation site. The E. coli expressed SRY(R30I) protein was poorly phosphorylated and consequently showed reduced DNA-binding capacity in vitro.  相似文献   

19.
Localization of SRY by primed in situ labeling in XX and XY sex reversal   总被引:3,自引:0,他引:3  
Primed in situ labeling (PRINS) can be used to localize DNA segments too small to be detected by fluorescence in situ hybridization. By PRINS we identified the SRY gene in two XX males, a woman with XY gonadal dysgenesis, and an azoospermic male with Xp-Yp interchange. Because PRINS has been used generally in the study of repetitive sequences, we modified the technique for study of the single copy 2. 1-kb SRY sequence. SRY signals were identified at band Yp11.31p11.32 in normal XY males and in the woman with XY gonadal dysgenesis. SRY signals were identified on Xp22 in one XX male but not in the other. They were identified in the corresponding region (Xp22) of the der(X) in the azoospermic male with Xp-Yp interchange. SRY signals were not observed in normal XX females. Presence of SRY in DNA samples from the various subjects was confirmed by polymerase chain reaction. We conclude that PRINS is ideal for rapid localization of single copy genes and small DNA segments in general.  相似文献   

20.
目的 探讨原因不明智力低下儿童的发病与染色体亚端粒基因重组间的关系.方法 采用多重连接探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测30名原因不明的综合征性智力低下患儿的染色体亚端粒区域.结果 检测到5例患儿存在染色体亚端粒的基因缺失或重复突变,分别为4p缺失,21q重复,10p重复、4p缺失,15p重复,3p重复、9p缺失.结论 不明原因智力低下儿童的发病与染色体亚端粒基因重组密切相关.MLPA技术可以作为一种高效、特异的方法对智能障碍儿童进行基因缺陷筛查.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号