首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 12 毫秒
1.
The high aqueous solubility of ionic compounds can be attributed to the ease of solvation of the counter ions. Replacement of the counter ions with ionic detergents dramatically alters the solubility properties of the molecule. Not only does the aqueous solubility drop precipitously, but the solubility in organic phases increases as well. Consequently, the partition coefficient changes by orders of magnitude. This ion pairing phenomenon, which we term hydrophobic ion pairing (HIP), has been extended to polyelectrolytes, such as proteins and polynucleotides. These materials form HIP complexes that dissolve in a range of organic solvents, often with retention of native structure and enzymatic activity. The HIP process has been used to purify protein mixtures, conduct enzymatic reactions in nonaqueous environments, increase structural stability, enhance bioavailability, and prepare new dosage forms.  相似文献   

2.
Introduction: The transient receptor potential (TRP) family is a superfamily of cation channels which regulates many features of malignant cancers, such as lack of differentiation, increased migratory and invasive phenotype and chemoresistance. The TRP cation channel, TRPM7 (subfamily M, member 7), is a ubiquitous, Ca2+ and Mg2+-permeant ion channel that is unique in that it is an ion channel and a serine/threonine kinase. TRPM7 has been associated with cell proliferation, survival and development and thus correlated with growth and progression of several types of tumor cells, including breast cancer, gastric cancer, head and neck cancer, nasopharyngeal carcinoma, pancreatic cancer, prostate cancer, retinoblastoma and leukemia. Increased TRPM7 expression in human breast and pancreatic cancer tissues also correlates with clinicopathological parameters, such as tumor grade, the Ki-67 proliferation index and patient survival.

Areas covered: In this review, we focus on recent advancements in knowledge of aberrant TRPM7 channel function and its contribution to tumor progression and angiogenesis. This includes crosstalk between multiple signaling pathways. The role of TRPM7 in tumor development, particularly in regard to its channel function mediating both Ca2+ and Mg2+ influx as well as its kinase activity is also addressed. In addition, we will discuss its role in the stem cell and cancer stem cell, as well as its potential as tumor drug target.

Expert opinion: Better understanding of the structure, function and regulation of TRPM7 channel, as well as its complex crosstalk with other oncogenic signals in tumor cells will be essential to ensure rational use of treatment and development of new combinatory therapeutic possibilities.  相似文献   

3.
Two consecutive i.c.v. administrations of analgesic doses of mu-opioid receptor agonists lead to a profound desensitisation of the latter receptors; a third dose produced less than 20% of the effect obtained with the first administration. Desensitisation was still effective 24h later. Impairing the activity of Galphaz but not Galphai2 subunits prevented tolerance developing after the administration of three consecutive doses of morphine. Further, the i.c.v. injection of Galphai2 subunits potentiated morphine analgesia and abolished acute tolerance, whereas i.c.v.-administered Galphaz subunits produced a rapid and robust loss of the response to morphine. The RGSZ1 and RGSZ2 proteins selectively deactivate GalphazGTP subunits, and their knockdown increased the effects produced by the first dose of morphine. However, impairing their activity also accelerated tachyphylaxis following successive doses of morphine, and facilitated the development of acute morphine tolerance. In contrast, inhibiting the RGS9-2 proteins, which bind to GalphaoGTP and GalphaiGTP but only weakly deactivates them, preserved the effects of consecutive morphine doses and abolished the generation of acute tolerance. Therefore, desensitisation of mu-opioid receptors can be achieved by reducing the responsiveness of post-receptor elements (via the possible action of activated Galphaz subunits) and/or by depleting the pool of receptor-regulated G proteins that agonists need to propagate their effects, e.g., through the activity of RGS9-2 proteins.  相似文献   

4.
1. The glycine receptor chloride channel mediates inhibitory neurotransmission and is a member of the ligand-gated ion channel superfamily, which includes the nicotinic acetylcholine receptor channel. 2. Activation of these channels involves a movement of the pore-lining second membrane-spanning domain with respect to the remainder of the protein. 3. The present review considers the evidence that the loops that connect this domain with the rest of the protein act as crucial components of the channel activation mechanism.  相似文献   

5.
The role of G proteins in the functional modulation and potentiation by mercury chloride of the GABAA receptor-channel complex in rat dorsal root ganglion neurons was studied by using the whole-cell patch clamp technique. Stimulation of Gs proteins by application of GTP-γ-S in the patch pipette or by incubation of neurons with cholera toxin reduced GABA-induced currents, suggesting modulation of GABA-induced currents via a Gs-protein-coupled pathway. GDP-β-S in the pipette solution or pretreatment of dorsal root ganglion neurons with pertussis toxin suppressed GABA-induced currents, suggesting that basal Gi/Go-protein activity positively modulates the GABAA receptor-channel complex. Mercury chloride potentiation of GABA-activated currents was blocked by application of GTP-gg-S in the patch pipette or by incubation of neurons with cholera toxin. Mercury chloride potentiation of GABA-activated currents was blocked by application of GDP-β-S in the patch pipette or by incubation of neurons with pertussis toxin. G proteins, probably Gi/Go proteins, underlie the mercury chloride potentiation of GABA-induced currents.  相似文献   

6.
7.
The fungicide carbendazim (CBZ) is known to disrupt microtubular structures in the testis and to cause testicular toxicity in rats. To investigate the mechanism underlying the toxicity of CBZ, tubulin and microtubule-associated proteins (MAPs) were isolated from rat testis and brain using two techniques. The effects of CBZ on MT assembly were compared with the known microtubule (MT) disruptors, colchicine and nocodazole. CBZ (100 microM) had no effect on the assembly of MTs from MAP-containing tubulin isolated with one cycle of glycerol-dependent assembly and disassembly while colchicine (40 microM) and nocodazole (12.5 microM) strongly inhibited the assembly reaction. Similarly, formation of MTs from tubulin prepared with two cycles of glycerol-dependent assembly was strongly inhibited by colchicine and nocodazole but only weakly by CBZ. All three compounds inhibited the assembly of MTs from MAP-free tubulin isolated with glutamate. However, the inhibition by CBZ was reversed by the inclusion of high-molecular-weight MAPs and not by unrelated protein (bovine serum albumin, BSA). Addition of nocodazole to assembled MTs caused immediate depolymerization, whereas CBZ did not directly cause depolymerization. However CBZ was an effective inhibitor of the polymerization of depolymerized tubulin. In competitive binding assays, CBZ was found to inhibit the binding of guanosine triphosphate (GTP) to tubulin. The data suggest that CBZ interferes with initial events of MT polymerization, specifically GTP binding, and that MAPs moderate this effect.  相似文献   

8.

Background and purpose:

The sarcoplasmic reticulum (SR), regulates the cytoplasmic Ca2+ concentration ([Ca2+]cyto) in vascular smooth muscle. Release from the SR is controlled by two intracellular receptor/channel complexes, the ryanodine receptor (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). These receptors may be regulated by the accessory FK506-binding protein (FKBP) either directly, by binding to the channel, or indirectly via FKBP modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR).

Experimental approach:

Single portal vein myocytes were voltage-clamped in whole cell configuration and [Ca2+]cyto measured using fluo-3. IP3Rs were activated by photolysis of caged IP3 and RyRs activated by hydrostatic application of caffeine.

Key results:

FK506 which displaces FKBP from each receptor (to inhibit calcineurin) increased the [Ca2+]cyto rise evoked by activation of either RyR or IP3R. Rapamycin which displaces FKBP (to inhibit mTOR) also increased the amplitude of the caffeine-evoked, but reduced the IP3-evoked [Ca2+]cyto rise. None of the phosphatase inhibitors, cypermethrin, okadaic acid or calcineurin inhibitory peptide, altered either caffeine- or IP3-evoked [Ca2+]cyto release; calcineurin did not contribute to FK506-mediated potentiation of RyR- or IP3R-mediated Ca2+ release. The mTOR inhibitor LY294002, like rapamycin, decreased IP3-evoked Ca2+ release.

Conclusions and implications:

Ca2+ release in portal vein myocytes, via RyR, was modulated directly by FKBP binding to the channel; neither calcineurin nor mTOR contributed to this regulation. However, IP3R-mediated Ca2+ release, while also modulated directly by FKBP may be additionally regulated by mTOR. Rapamycin inhibition of IP3-mediated Ca2+ release may be explained by mTOR inhibition.  相似文献   

9.
10.
Methylmercury (MeHg) is a testicular toxicant causing reduced steroidogenic enzyme activity, reduced serum testosterone (T) and abnormal spermatogenesis in mammals and fowl. It is also known that certain diets can alter androgen metabolism in rats. Previously we have shown that diets used in the current study impact circulating androgen levels and testicular steroidogenic enzyme activities in Sprague Dawley rats in the absence of MeHg. In the present study, we have investigated the impact of imposing an environmental contaminant (MeHg) commonly found in marine mammals and fish onto the rats' dietary intake of different proteins and lipids in order to determine if the different diets could modify MeHg toxicity in rats. Therefore, we examined the effects of MeHg on testicular steroidogenic enzymes and serum testosterone in rats fed diets containing either different protein sources (casein, fishmeal, whey) or different lipid sources (soybean oil, docosahexaenoic acid (DHA), seal oil, fish oil, lard). Male rats 42-45 days of age (18 per group) were assigned to different experimental diets for 28 days after which 6 rats in each group were gavaged daily with 0, 1 or 3 mg/kg body weight (BW)/day MeHg chloride in 5 mM Na(2)CO(3) solution for 14 days while being maintained on their diets. On the 43rd day of dosing, rats were sacrificed and blood plasma and testes frozen (-80 degrees C) until analysis. Microsomal steroidogenic enzyme activities (3beta-HSD, 17-OHase, C-17, 20-lyase, 17beta-HSD) were measured radiometrically. Serum testosterone was determined using ELISA kits. Testis weights were not affected by MeHg. MeHg at 3 mg/kg BW/day caused a reduction (>50%) in the activity of C-17, 20-lyase in all three protein diets and similar reductions in 17-OHase activity were seen in the casein and whey protein fed rats. At 3 mg/kg BW/day, MeHg reduced 17-OHase activity in the DHA diet but had no effect on 3beta-HSD activity and no inhibitory effects on 17beta-HSD activity. MeHg (3 mg/kg BW/day) caused significant reductions in serum T in the whey, soybean oil and fish oil groups. Interestingly, fishmeal protein but not fish oil offered some protection with respect to maintaining steroidogenic enzyme activities and serum T levels in rats dosed with MeHg. In conclusion, these studies show that different lipid diets can alter the toxic effects of MeHg on male rat steroidogenesis in terms of serum testosterone and steroidogenic enzyme activities.  相似文献   

11.
Abstract: We investigated the folding, stability, and specificity of dimerization of the neck regions of the kinesin‐like proteins Kif3A (residues 356–416) and Kif3B (residues 351–411). We showed that the complementary charged regions found in the hinge regions (which directly follow the neck regions) of these proteins do not adopt any secondary structure in solution. We then explored the ability of the complementary charged regions to specify heterodimer formation for the neck region coiled‐coils found in Kif3A and Kif3B. Redox experiments demonstrated that oppositely charged regions specified the formation of a heterodimeric coiled‐coil. Denaturation studies with urea demonstrated that the negatively charged region of Kif3A dramatically destabilized its neck coiled‐coil (urea1/2 value of 3.9 m compared with 6.7 m for the coiled‐coil alone). By comparison, the placement of a positively charged region C‐terminal to the neck coiled‐coil of Kif3B had little effect on stability (urea1/2 value of 8.2 m compared with 8.8 m for the coiled‐coil alone). The pairing of complementary charged regions leads to specific heterodimer formation where the stability of the heterodimeric neck coiled‐coil with charged regions had similar stability (urea1/2 value of 7.8 m ) to the most stable homodimer (Kif3B) with charged regions (urea1/2 value of 8.0 m ) and dramatically more stable than the Kif3A homodimer with charged regions (urea1/2, value of 3.9 m ). The heterodimeric coiled‐coil with charged extensions has essentially the same stability as the heterodimeric coiled‐coil on its own (urea1/2 values of 7.8 and 8.1 m , respectively) suggesting that specificity of heterodimerization is driven by non‐specific attraction of the oppositely unstructured charged regions without affecting stability of the heterodimeric coiled‐coil.  相似文献   

12.

Background and purpose:

We investigated the effect of nitric oxide synthase (NOS) inhibition on polymorphonuclear cell (PMN) influx in zymosan or lipopolysaccharide (LPS)-induced arthritis and peritonitis.

Experimental approach:

Wistar rats received intra-articular (i.art.) zymosan (30–1000 µg) or LPS (1–10 µg). Swiss C57/Bl6 mice genetically deficient in intercellular adhesion molecule-1 (ICAM-1−/−) or in β2-integrin (β2-integrin−/−) received zymosan either i.art. or i.p. PMN counts, leukotriene B4 (LTB4), tumour necrosis factor-α (TNF-α) and interleukin-10 (IL-10) levels were measured in joint and peritoneal exudates. Groups received the NOS inhibitors NG-nitro-L-arginine methyl ester (LN), nitro-L-arginine, N-[3-(aminomemethyl)benzyl] acetamide or aminoguanidine, prior to zymosan or LPS, given i.p. or s.c. in the arthritis and peritonitis experiments respectively. A group of rats received LN locally (i.art. or i.p.), 30 min prior to 1 mg zymosan i.art.

Key results:

Systemic or local NOS inhibition significantly prevented PMN migration in arthritis while increasing it in peritonitis, regardless of stimuli, concentration of NOS inhibitors and species. NOS inhibition did not alter TNF-α and IL-10 but decreased LTB4 in zymosan-induced arthritis. LN administration significantly inhibited PMN influx into the joints of ICAM-1−/− and β2-integrin−/− mice with zymosan-arthritis, while not altering PMN influx into the peritoneum of mice with zymosan-peritonitis.

Conclusions and implications:

Nitric oxide has a dual modulatory role on PMN influx into joint and peritoneal cavities that is stimulus- and species-independent. Differences in local release of LTB4 and in expression of ICAM-1 and β2-integrin account for this dual role of NO on PMN migration.  相似文献   

13.
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs-protein-coupled adenosine receptors (A2A and A2B), or inhibit AC activity, in the case of Gi/o-coupled adenosine receptors (A1 and A3). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1- and A3-receptor allosteric modulators on in vivo pharmacology.Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5  相似文献   

14.
The inhibition of arterial tone produced by two nitric oxide (NO) derivatives of biological relevance, dinitrosyl-iron complexes with cysteine (DNIC-CYS) or with glutathione (DNIC-GSH), was compared. Both compounds induced vasorelaxation within the same concentration range (3-300 nM) in endothelium-denuded rat aortic rings. Consistent with a faster rate of NO release from DNIC-CYS than from DNIC-GSH, the relaxant effect of DNIC-CYS was rapid in onset and tended to recover with time, whereas the one of DNIC-GSH developed slowly and was sustained. In addition, DNIC-GSH (0.3 and 1 microM) but not DNIC-CYS (1 microM) induced, even after washout of the drug, a persistent hyporesponsiveness to vasoconstrictors and a relaxant effect of low molecular weight thiols like N-acetylcysteine (NAC, which can displace NO from preformed NO stores). Both effects of DNIC-GSH were associated with elevation of cyclic GMP content and were attenuated by NO scavengers or a cyclic GMP-dependent protein kinases inhibitor. In rings previously exposed to DNIC-GSH, addition of mercuric chloride (which can cleave the cysteine-NO bond of S-nitrosothiols) elicited relaxation, completely blunted the one of NAC and also abolished the persistent elevation of NO content. In conclusion, this study shows that whereas both DNIC-CYS and DNIC-GSH elicited a NO release-associated relaxant effect in isolated arteries, only DNIC-GSH induced an inhibition of contraction which persisted after drug removal. The persistent effect of DNIC-GSH was attributed to the formation of releasable NO stores in arterial tissue, most probably as S-nitrosothiols. Thus, the nature of the thiol ligand plays a critical role in determining the mechanisms and duration of the effect of LMW-DNIC in arteries.  相似文献   

15.
Background: In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. Objective: This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. Method: In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. Conclusion: Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.  相似文献   

16.
We investigated the role of Trp(134(3.28)), Ser(190(4.57)) and Tyr(356(7.43)) in agonist binding to, and activation of, the rat beta(1)-adrenergic receptor by comparing pK(i)s and functional responses of W134A, S190A and Y356F mutant receptors to wild type, all stably expressed in CHO cells. All three mutations significantly (P < 0.05) reduced adenylyl cyclase intrinsic activity (IA) compared to wild type in response to stimulation with both (-)-isoprenaline (53-88%) and (-)-RO363 (46-61%), and there was no significant correlation either between IA or pD(2) and pK(i) (P > 0.4), suggesting that changes in pK(i) were not sufficient to explain the fall in adenylyl cyclase activity. The most pronounced reduction in affinity (126-fold, P < 0.01) was displayed by xamoterol for the Y356F mutation, suggesting that xamoterol is able to directly interact with Tyr(356(7.43)). For the other agonists, the change in pK(i) values for the mutant receptors ranged from a 20-fold decrease to a 2-fold increase compared to the wild type. In a three-dimensional model of the rat beta(1)-adrenergic receptor, Trp(134(3.28)) and Tyr(356(7.43)) form part of a hydrophobic binding pocket involving residues in transmembrane helices 1, 2, 3 and 7. Our results suggest that Trp(134(3.28)) and Tyr(356(7.43)), together with Trp(353(7.40)), are able to interact via pi-pi interactions to stabilize the extracellular ends of transmembrane helices 3 and 7. Ser(190(4.57)) appears to be involved in a hydrogen bonding network, which maintains the spatial relationship between transmembrane helices 3 and 4. These interhelical interactions suggest that the three mutated residues stabilize the active receptor state by maintaining the proper packing of their respective transmembrane helix within the helix bundle, facilitating the appropriate movement and rotation of the transmembrane regions during the activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号