首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Suppressor of cytokine signaling (SOCS)-1 is an inhibitory molecule for JAK, and its deficiency in mice leads to lymphocyte-dependent multi-organ disease and perinatal death. Crossing of SOCS-1(-/-) mice on an IFN-gamma(-/-), STAT1(-/-) and STAT6(-/-) background revealed that the fatal disease of SOCS-1(-/-) mice is also dependent on IFN-gamma/STAT1 and IL-4/STAT6 signaling pathways. Since IFN-gamma and IL-4 are representative T(h)1 and T(h)2 cytokines respectively, here we investigated the role of SOCS-1 in T(h) differentiation. Freshly isolated SOCS-1(-/-) CD4(+) T cells stimulated with anti-CD3 rapidly produced larger amounts of IFN-gamma and IL-4 than control cells, suggesting that these mutant T cells had already differentiated into T(h)1 and T(h)2 cells in vivo. In addition, SOCS-1(+/-) CD4(+) T cells cultured in vitro produced significantly larger amounts of IFN-gamma and IL-4 than SOCS-1(+/+) cells. Similarly, SOCS-1(+/-) CD4(+) T cells produced more IFN-gamma and IL-4 than SOCS-1(+/+) cells after infection with Listeria monocytogenes and Nippostrongyrus braziliensis respectively. Since IL-12-induced STAT4 and IL-4-induced STAT6 activation is sustained in SOCS-1(-/-) T cells, the enhanced T(h) functions in SOCS-1(-/-) and SOCS-1(+/-) mice appear to be due to the enhanced effects of these cytokines. These results suggest that SOCS-1 plays a regulatory role in both T(h)1 and T(h)2 polarizations.  相似文献   

2.
3.
Antigen-coupled antigen-presenting cells (APC) serve as potent tolerogens for inhibiting immune responses in vivo and in vitro, apparently by providing an antigen-specific signal through the TCR in the absence of co-stimulation. Although this approach has been well studied in rodents, little is known about its effects on human T cells. We evaluated the specificity and mechanisms of tolerization of human T cells in vitro using monocyte-enriched adherent cells that were pulsed with antigen and treated with the cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (ECDI). Autologous antigen-coupled APC selectively tolerized T cells of the T(h)1 but not T(h)2 lineage through a mechanism that involved both antigen-specific and antigen-non-specific elements. The tolerization process was dependent on the ECDI and antigen concentration, and the coupling time, and was reflected by initial up-regulation of CD25. However, upon re-stimulation with fresh APC and antigen, tolerized T(h)1 cells failed to proliferate or to produce T(h)1 cytokine message or secreted protein, had decreased expression of CD25, CD28 and B7 and increased expression of MHC class II molecules, and demonstrated an enhanced commitment to apoptosis. T(h)1 cell tolerization could be prevented by adding anti-CD28 antibody, IL-2 or untreated APC at the same time as the ECDI/antigen-coupled APC, or reversed by adding anti-CD28 antibody or IL-2 upon re-stimulation with fresh APC plus antigen. Thus, the tolerizing effect of ECDI/antigen-coupled APC on human T(h)1 cells appears to involve a reversible anergy mechanism leading to apoptosis, whereby the targeted T cells receive full or partial activation through the TCR, without coordinate co-stimulation. These data suggest dichotomous signaling requirements for inactivating cells of the T(h)1 and T(h)2 lineages that may have important implications for treatment of T(h)1-mediated autoimmune or inflammatory diseases.  相似文献   

4.
5.
6.
7.
8.
The activation of resting T cells for the acquisition of various functions depends on whether CD28 costimulatory signals are provided upon T cell receptor stimulation. Here, we investigated how CD28 costimulation functions to allow TCR-triggered resting T cells to acquire IL-12 responsiveness. When T cells are stimulated with low doses of anti-CD3 mAb, CD28 costimulation was required for the optimal levels of IL-12 receptor (IL-12R) expression. However, stimulation of T cells with high doses of anti-CD3 alone induced comparable levels of IL-12R expression to those induced upon CD28 costimulation. Nevertheless, there was a substantial difference in IL-12 responsiveness between these two groups of T cells: compared to anti-CD28-costimulated T cells, T cells that were not costimulated with anti-CD28 exhibited decreased levels of Janus kinases (JAK) JAK2/TYK2 and STAT4 phosphorylation and IFN-y production following IL-12 stimulation. Importantly, STAT6 phosphorylation following IL-4 stimulation was not decreased in anti-CD28-uncostimulated T cells. These resutls indicate that CD28 costimulation not only contributes to up-regulating IL-12R expression but is also required to render JAKs/STAT4 responsive to IL-12 stimulation.  相似文献   

9.
T helper 2 cytokines, including interleukin (IL)-4, IL-5, and IL-13, play an important role in allergic asthma. These cytokines transmit signals through the JAK/STAT and the Ras/ERK signaling pathways, and SOCS family proteins and SPRED family proteins regulate these pathways. SOCS3 controls IL-12-dependent STAT4 activation and Th2 differentiation process. SPRED-1 modulates IL-5-dependent ERK activation and eosinophilia. SOCS3 and SPRED-1 may be targets for therapeutic strategies in allergic asthma.  相似文献   

10.
11.
12.
Chemokine and chemokine receptor interactions may have important roles in leukocyte migration to specific immune reaction sites. Recently, it has been reported that CXC chemokine receptor (CXCR) 3 and CC chemokine receptor (CCR) 5 were preferentially expressed on T(h)1 cells, and CCR3 and CCR4 were preferentially expressed on T(h)2 cells. To investigate chemokine receptor expression by T(h) subsets in vivo, we analyzed cytokine (IL-2, IL-4 and IFN-gamma) and chemokine receptor (CXCR3, CXCR4, CCR3, CCR4 and CCR5) mRNA expression by individual peripheral CD4(+) memory T cells after short-term stimulation, employing a single-cell RT-PCR method. This ex vivo analysis shows that the frequencies of cells expressing chemokine receptor mRNA were not significantly different between T(h)1 and T(h)2 cells in normal peripheral blood. To assess a potential role of in vivo stimulation, we also analyzed unstimulated rheumatoid arthritis synovial CD4(+) memory T cells. CXCR3, CXCR4, CCR3 and CCR5 expression was detected by individual synovial T cells, but the frequencies of chemokine receptor mRNA were not clearly different between T(h)1 and non-T(h)1 cells defined by expression of IFN-gamma or lymphotoxin-alpha mRNA in all RA patients. These data suggest that chemokine receptor expression does not identify individual memory T cells producing T(h)-defining cytokines and therefore chemokine receptor expression cannot be a marker for T(h)1 or T(h)2 cells in vivo.  相似文献   

13.
TGF-beta plays an important role in immune regulation in vivo and affects T cell differentiation in vitro. Here we describe how TGF-beta modulates Th2 development in vitro and investigate its mechanisms of action. TGF-beta down-regulated Th2 development of naive CD4+ Mel-14high T cells derived from the DO11.10 ovalbumin-specific TCR-transgenic mouse, and this was observed both in cultures driven with anti-CD3 and anti-CD28 and with splenic APC and antigen. TGF-beta down-regulated GATA-3 expression in developing Th2 and these cells showed a diminished IL-4-induced STAT6 activation. We found, however, that naive cells driven in Th2 conditions with TGF-beta did not show a significantly decreased STAT6 activation, suggesting that TGF-beta inhibits Th2 development via a STAT6-independent mechanism.  相似文献   

14.
15.
16.
After two consecutive inoculations with Staphylococcus enterotoxin B (SEB) at 24 h intervals in vivo, CD4 T cells became anergic to the antigen challenge in vitro. Administration of anti-CTLA-4 mAb in conjunction with the second SEB inoculation 24 h after antigen priming interfered with anergy and CD4 T cells became T(h)2 cells. However, the anergy induction was not ablated when SEB and anti-CTLA-4 mAb were administered 48 or 72 h after antigen priming. Moreover, anti-CTLA-4 mAb without SEB did not interfere with anergy nor promoted the T(h)2 differentiation. T-antigen-presenting cell (APC) interaction in vitro in the presence of high doses of antigen and anti-CTLA-4 mAb induced a T(h)2-polarizing cytokine IL-6 and IL-10. IL-10 then down-modulated a T(h)1-polarizing cytokine IL-12. The results demonstrate that 24 h after the initial antigen stimulation, CD4 T cells enter the critical activation phase where antigen re-stimulation with or without CTLA-4 engagement alters the fate of the cell, anergy or differentiation respectively. Once anergy is interfered with, T(h)2-polarizing cytokines produced upon prolonged T-APC interaction favor the T(h)2 differentiation.  相似文献   

17.
The receptor activator of NF-κB ligand (RANKL), which is expressed by not only osteoblasts but also activated T cells, plays an important role in bone-destructive diseases such as rheumatoid arthritis. IL-27, a member of the IL-6/IL-12 family cytokines, activates STAT1 and STAT3, promotes early helper T (Th)1 differentiation and generation of IL-10-producing type 1 regulatory T (Tr1) cells, and suppresses the production of inflammatory cytokines and inhibits Th2 differentiation. In addition, IL-27 was recently demonstrated to not only inhibit Th17 differentiation but also directly act on osteoclast precursor cells and suppress RANKL-mediated osteoclastogenesis through STAT1-dependent inhibition of c-Fos, leading to amelioration of the inflammatory bone destruction. In the present study, we investigated the effect of IL-27 on the expression of RANKL in CD4(+) T cells. We found that IL-27 greatly inhibits cell surface expression of RANKL on naive CD4(+) T cells activated by T cell receptor ligation and secretion of its soluble RANKL as well. The inhibitory effect was mediated in part by STAT3 but not by STAT1 or IL-10. In contrast, in differentiated Th17 cells, IL-27 much less efficiently inhibited the RANKL expression after restimulation. Taken together, these results indicate that IL-27 greatly inhibits primary RANKL expression in CD4(+) T cells, which could contribute to the suppressive effects of IL-27 on the inflammatory bone destruction.  相似文献   

18.
Cui W  Liu Y  Weinstein JS  Craft J  Kaech SM 《Immunity》2011,35(5):792-805
Memory CD8(+) T cells are critical for long-term immunity, but the genetic pathways governing their formation remain poorly defined. This study shows that the IL-10-IL-21-STAT3 pathway is critical for memory CD8(+) T cell development after acute LCMV infection. In the absence of either interleukin-10 (IL-10) and IL-21 or STAT3, virus-specific CD8(+) T cells retain terminal effector (TE) differentiation states and fail to mature into protective memory T cells that contain self-renewing central memory T cells. Expression of Eomes, BCL-6, Blimp-1, and SOCS3 was considerably reduced in STAT3-deficient memory CD8(+) T cells, and BCL-6- or SOCS3-deficient CD8(+) T cells also had perturbed memory cell development. Reduced SOCS3 expression rendered STAT3-deficient CD8(+) T cells hyperresponsive to IL-12, suggesting that the STAT3-SOCS3 pathway helps to insulate memory precursor cells from inflammatory cytokines that drive TE differentiation. Thus, memory CD8(+) T cell precursor maturation is an active process dependent on IL-10-IL-21-STAT3 signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号