首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4'-Methyl-alpha-pyrrolidinopropiophenone (MPPP) is a new drug of abuse. It is believed to have an abuse potential similar to that of amphetamines. Previous studies with Wistar rats had shown that MPPP was metabolized mainly by hydroxylation in position 4' followed by dehydrogenation to the corresponding carboxylic acid. The aim of the study presented here was to identify the human hepatic cytochrome p450 (p450) enzymes involved in the biotransformation of MPPP to 4'-hydroxymethyl-pyrrolidinopropiophenone. Baculovirus-infected insect cell microsomes and human liver microsomes were used for this purpose. Only CYP2C19 and CYP2D6 catalyzed this hydroxylation. The apparent Km and Vmax values for the latter were 9.8 +/- 2.5 microM and 13.6 +/- 0.7 pmol/min/pmol p450, respectively. CYP2C19 was not saturable over the tested substrate range (2-1000 microM) and interestingly showed a biphasic kinetic profile with apparent Km,1 and Vmax,1 values of 47.2 +/- 12.5 microM and 8.1 +/- 1.4 pmol/min/pmol p450, respectively. Experiments with pooled human liver microsomes also revealed biphasic nonsaturable kinetics with apparent Km,1 and Vmax,1 values of 57.0 +/- 20.9 microM and 199.7 +/- 59.7 pmol/min/mg of protein for the high affinity enzyme, respectively. Incubation of 2 microM MPPP with 3 microM of the CYP2D6-specific inhibitor quinidine resulted in significant (p < 0.01) turnover inhibition (11.8 +/- 1.6% of control). Based on kinetic data corrected for the relative activity factors, CYP2D6 is the enzyme mainly responsible for MPPP hydroxylation, confirmed by CYP2D6 inhibition studies.  相似文献   

2.
A series of six structural analogs of 7-methoxy-4-(aminomethyl)-coumarin (MAMC), a recently developed high-throughput substrate of P450 2D6 (CYP2D6), was synthesized to investigate the influence of N-substitution on the metabolism by cytochrome P450s, as well as on P450 selectivity. The analogs were obtained by introducing alkyl substituents at the amino group of MAMC and by replacing this moiety with a pyridine group. Competition experiments using heterologously expressed CYP2D6 demonstrated that the introduction and elongation of alkyl substituents strongly decreased the IC(50) values toward dextromethorphan O-demethylation. Metabolism studies showed that the regioselectivity of metabolism was unaffected by the varying N substituents, as only O-dealkylation of the analogs and no N-dealkylation was observed. In excellent agreement with the competition experiments, metabolism studies also showed that elongation of the alkyl chain dramatically increased the affinity of the compounds toward CYP2D6, as indicated by an up to 100-fold decrease in K(m) values. The V(max) values displayed a much less pronounced decrease with an increasing N-alkyl chain, resulting in as much as a 30-fold increase in the V(max)/K(m) value. Interestingly, due to the higher fluorescent yield of the N-alkyl metabolites compared with the metabolite of MAMC, O-dealkylation of N-methyl MAMC by CYP2D6 can be measured with a more than 3-fold higher sensitivity. Studies on P450 selectivity showed that only CYP1A2 and CYP2D6 contribute to the O-dealkylation of the N-alkyl analogs in both heterologously expressed P450s and human liver microsomes. In sharp contrast to CYP2D6, N-alkylation of MAMC did not significantly affect the K(m) values of O-dealkylation by CYP1A2, but it did result in higher V(max) values. Finally, CYP1A2 also N-dealkylated the analogs.  相似文献   

3.
A compilation of information relating to substrate metabolism via human cytochromes P450 (CYP) from the CYP1 and CYP2 families is reported. The data presented include details of preferred sites of metabolism and Km values (usually for the expressed enzymes) for each reaction for selected substrates of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Although other P450 databases are available, they do not provide such information as is collated here, and which can prove useful for comparing P450 substrate characteristics. This information can be employed in analysing the structural requirements for human P450 enzyme selectivity and for establishing various rules regarding preferred site of metabolism for selective P450 substrates. For example, in most cases it would appear that there is a set number of intervening 'heavy' atoms (atoms other than hydrogen) between sites of metabolism and key hydrogen bond acceptors (or donors) for human P450 substrates, with the number of intervening atoms being dependent upon the type of P450 involved.  相似文献   

4.
The in vitro metabolism of (-)-fenchone was examined in human liver microsomes and recombinant enzymes. The biotransformation of (-)-fenchone was investigated by gas chromatography-mass spectrometry. (-)-Fenchone was found to be oxidized to 6-exo-hydroxyfenchone, 6-endo-hydroxyfenchone and 10-hydroxyfenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on gas chromatography (GC). CYP2A6 and CYP2B6 were major enzymes involved in the hydroxylation of (-)-fenchone by human liver microsomes, based on the following lines of evidence. First, of 11 recombinant human P450 enzymes tested, CYP2A6 and CYP2B6 catalysed the oxidation of (-)-fenchone. Second, oxidation of (-)-fenchone was inhibited by thioTEPA and (+)-menthofuran. Finally, there was a good correlation between CYP2A6, CYP2B6 contents and (-)-fenchone hydroxylation activities in liver microsomes of 11 human samples. CYP2A6 may be more important than CYP2B6 in human liver microsomes. Kinetic analysis showed that the Vmax/Km values for (-)-fenchone 6-endo-, 6-exo- and 10-hydroxylation catalysed by liver microsomes of human sample HG-03 were 24.3, 44.0 and 1.3nM(-1)min(-1) , respectively. Human recombinant CYP2A6 and CYP2B6 catalysed (-)-fenchone 6-exo-hydroxylation with Vmax values of 2.7 and 12.9 nmol min(-1) nmol(-1) P450 and apparent Km values of 0.18 and 0.15 mM and (-)-fenchone 6-endo-hydroxylation with Vmax values of 1.26 and 5.33nmolmin(-l) nmol(-1) P450 with apparent Km values of 0.29 and 0.26mM. (-)-Fenchone 10-hydroxylation was catalysed by CYP2B6 with Km and Vmax values of 0.2 mM and 10.66 nmol min(-1) nmol(-1) P450, respectively.  相似文献   

5.
Cytochrome P-450 (CYP) 2D6 is responsible for the biotransformation of over 35 pharmacologic agents. In the process of studying CYP2D6 we identified phenotype-genotype discordance in two individuals receiving terbinafine. This prompted evaluation of the potential for terbinafine to inhibit CYP2D6 in vitro. Human hepatic microsomes and heterologously expressed CYP2D6 were incubated with terbinafine or quinidine and the formation of dextrorphan from dextromethorphan was determined by HPLC. Additionally, preliminary conformational analyses were conducted to determine the fit of terbinafine into a previously described pharmacophore model for CYP2D6 inhibitors. The apparent Km and Vmax of dextrorphan formation from four human hepatic microsome samples ranged from 5.8 to 6.8 microM and from 172 to 300 pmol/min/mg protein, respectively. Values of Km and Vmax in the heterologously expressed CYP2D6 system averaged 6.5 +/- 2.1 microM and 1342 +/- 147 pmol/min/mg protein, respectively. Terbinafine inhibited dextromethorphan O-demethylation with an apparent Ki ranging from 28 to 44 nM in human hepatic microsomes and averaging 22.4 +/- 0.6 nM for the heterologously expressed enzymes. Results of quinidine in these systems produced values for Ki ranging from 18 to 43 nM. Such strong inhibition of CYP2D6 by terbinafine would not have been predicted by the previously proposed pharmacophore model of CYP2D6 inhibitors based on molecular structure. Terbinafine is a potent inhibitor of CYP2D6 with apparent Ki values well below plasma and tissue concentrations typically achieved during a therapeutic course. This agent needs to be evaluated in vivo to determine the impact of CYP2D6 inhibition by terbinafine on the metabolism of concomitantly administered CYP2D6 substrates.  相似文献   

6.
Trospium chloride, an atropine derivative used for the treatment of urge incontinence, was tested for inhibitory effects on human cytochrome P450 enzymes. Metabolic activities were determined in liver microsomes from two donors using the following selective substrates: dextromethorphan (CYP2D6), denitronifedipine (CYP3A4), caffeine (CYP1A2), chlorzoxazone (CYP2E1), S-(+)-mephenytoin (CYP2C19), S-(-)-warfarin (CYP2C9) and coumarin (CYP2A6). Incubations with each substrate were carried out without a possible inhibitor and in the presence of trospium chloride at varying concentrations (37-3000 microM) at 37 degrees in 0.1 M KH2PO4 buffer containing up to 3% DMSO. Metabolite concentrations were determined by high-performance liquid chromatography (HPLC) in all cases except CYP2A6 where direct fluorescence spectroscopy was used. First, trospium chloride IC50 values were determined for each substrate at respective K(M) concentrations. Trospium chloride did not show relevant inhibitory effects on the metabolism of most substrates (IC50 values considerably higher than 1 mM). The only clear inhibition was seen for the CYP2D6-dependent high-affinity O-demethylation of dextromethorphan, where IC50 values of 27 microM and 44 microM were observed. Therefore, additional dextromethorphan concentrations (0.4-2000 microM) were tested. Trospium chloride was a competitive inhibitor of the reaction with Ki values of 20 and 51 microM, respectively. Thus, trospium chloride has negligible inhibitory effects on CYP3A4, CYP1A2, CYP2E1, CYP2C19, CYP2C9 and CYP2A6 activity but is a reasonably potent inhibitor of CYP2D6 in vitro. Compared to therapeutic trospium chloride peak plasma concentrations below 50 nM, the 1000-times higher competitive inhibition constant Ki however suggests that inhibition of CYP2D6 by trospium chloride is without any clinical relevance.  相似文献   

7.
The metabolism of 3',4'-methylenedioxy-a-pyrrolidinopropiophenone (MDPPP), a novel designer drug, to its demethylenated major metabolite 3',4'-dihydroxy-pyrrolidinopropiophenone (di-HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes. CYP2C19 catalysed the demethylenation with apparent Km and Vmax values of 120.0+/-13.4 microM and 3.2+/-0.1 pmol/min/pmol CYP, respectively (mean+/-standard deviation). CYP2D6 catalysed the demethylenation with apparent Km and Vmax values of 13.5+/-1.5 microM and 1.3+/-0.1 pmol/min/pmol CYP, respectively. HLM exhibited a clear biphasic profile with an apparent Km,1 value of 7.6+/-9.0 and a Vmax,1 value of 11.1+/-3.6 pmol/min/mg protein, respectively. Percentages of intrinsic clearances of MDPPP by specific CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4'-hydroxylation or bufuralol-1'-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively. MDPPP, di-HO-PPP and the standard 4'-methyl-pyrrolidinohexanophenone (MPHP) were separated and analysed by liquid chromatography-mass spectrometry in the selected-ion monitoring (SIM) mode. The CYP2D6-specific chemical inhibitor quinidine (3 microM) significantly (p<0.001) inhibited di-HO-PPP formation by 75.8%+/-1.7% (mean+/-standard error of the mean) in incubation mixtures with HLM and 2 microM MDPPP. It can be concluded from the data obtained from kinetic and inhibition studies that polymorphically expressed CYP2D6 and CYP2C19 are almost equally responsible for MDPPP demethylenation.  相似文献   

8.
Seven dog cytochromes p450 (p450s) were heterologously expressed in baculovirus-Sf21 insect cells. Of all enzymes examined, CYP1A1 exhibited high 7-ethoxyresorufin O-deethylase activity (low Km enzyme, 1 microM). CYP2B11 and CYP3A12 effectively catalyzed the N1-demethylation and C3-hydroxylation of diazepam (and its derivatives), whereas CYP3A12 and CYP2D15 catalyzed exclusively the N- and O-demethylation, respectively, of dextromethorphan. However, no saturation velocity curves for the N-demethylation of dextromethorphan (up to 500 microM) were achieved, suggesting a high Km for CYP3A12. In contrast to CYP3A12, the CYP2D15-dependent O-demethylation of dextromethorphan was a low Km process (Km = 0.7 microM), similar to that in dog liver microsomes (Km = 2.3 microM). CYP2D15 was also capable of metabolizing bufuralol (1'-hydroxylation), with a Km of 3.9 microM, consistent with that obtained with dog liver microsomes. CYP3A12 was shown to primarily oxidize testosterone at 16alpha-, 2alpha/2beta-, and 6beta-positions. Selectivity of CYP3A12 was observed toward testosterone 6beta-(Km = 83 microM) and 2alpha/2beta-hydroxylations (Km = 154 microM). However, the 16alpha-hydroxylation of testosterone was catalyzed by CYP2C21 also (Km = 6.4 microM for CYP2C21). Therefore, the 6beta- and 16alpha-hydroxylation of testosterone can potentially be employed as markers of CYP3A12 and CYP2C21 (at low concentration), respectively. CYP2C21 was also capable of catalyzing diclofenac 4'-hydroxylation, although some activity was detected with CYP2B11. Surprisingly, none of the p450s selectively metabolized (S)-mephenytoin 4'-hydroxylation. The results described herein are a first step toward the systematic evaluation of a panel of dog p450s and the development of dog p450 isoenzyme-selective marker substrates, as well as providing useful information on prediction and extrapolation of the results from in vitro to in vivo and from dog to human.  相似文献   

9.
The metabolism of (+)-fenchol was investigated in vitro using liver microsomes of rats and humans and recombinant cytochrome P450 (P450 or CYP) enzymes in insect cells in which human/rat P450 and NADPH-P450 reductase cDNAs had been introduced. The biotransformation of (+)-fenchol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Fenchol was oxidized to fenchone by human liver microsomal P450 enzymes. The formation of metabolites was determined by the relative abundance of mass fragments and retention times on GC. Several lines of evidence suggested that CYP2A6 is a major enzyme involved in the oxidation of (+)-fenchol by human liver microsomes. (+)-Fenchol oxidation activities by liver microsomes were very significantly inhibited by (+)-menthofuran, a CYP2A6 inhibitor, and anti-CYP2A6. There was a good correlation between CYP2A6 contents and (+)-fenchol oxidation activities in liver microsomes of ten human samples. Kinetic analysis showed that the Vmax/Km values for (+)-fenchol catalysed by liver microsomes of human sample HG03 were 7.25 nM-1 min-1. Human recombinant CYP2A6-catalyzed (+)-fenchol oxidation with a Vmax value of 6.96 nmol min-1 nmol-1 P450 and apparent Km value of 0.09 mM. In contrast, rat CYP2A1 did not catalyse (+)-fenchol oxidation. In the rat (+)-fenchol was oxidized to fenchone, 6-exo-hydroxyfenchol and 10-hydroxyfenchol by liver microsomes of phenobarbital-treated rats. Recombinant rat CYP2B1 catalysed (+)-fenchol oxidation. Kinetic analysis showed that the Km values for the formation of fenchone, 6-exo- hydroxyfenchol and 10-hydroxyfenchol in rats treated with phenobarbital were 0.06, 0.03 and 0.03 mM, and Vmax values were 2.94, 6.1 and 13.8 nmol min-1 nmol-1 P450, respectively. Taken collectively, the results suggest that human CYP2A6 and rat CYP2B1 are the major enzymes involved in the metabolism of (+)-fenchol by liver microsomes and that there are species-related differences in the human and rat CYP2A enzymes.  相似文献   

10.
Cytochrome P450 2D6 (CYP2D6) metabolizes approximately one-third of the medicines in current clinical use and exhibits genetic polymorphism with interindividual differences in metabolic activity. To precisely investigate the effect of CYP2D6*10B and CYP2D6*36 frequently found in Oriental populations on mexiletine metabolism in vitro, CYP2D6 proteins of wild-type (CYP2D6.1) and variants (CYP2D6.10 and CYP2D6.36) were heterologously expressed in yeast cells and their mexiletine p- and 2-methyl hydroxylation activities were determined. Both variant CYP2D6 enzymes showed a drastic reduction of CYP2D6 holo- and apoproteins compared with those of CYP2D6.1. Mexiletine p- and 2-methyl hydroxylation activities on the basis of the microsomal protein level at the single substrate concentration (100 microM) of variant CYP2D6s were less than 6% for CYP2D6.10 and 1% for CYP2D6.36 of those of CYP2D6.1. Kinetic analysis for mexiletine hydroxylation revealed that the affinity toward mexiletine of CYP2D6.10 and CYP2D6.36 was reduced by amino acid substitutions. The Vmax and Vmax/Km values of CYP2D6.10 on the basis of the microsomal protein level were reduced to less than 10% of those of CYP2D6.1, whereas the values on the basis of functional CYP2D6 level were comparable to those of CYP2D6.1. Although it was impossible to estimate the kinetic parameters for the mexiletine hydroxylation of CYP2D6.36, the metabolic ability toward mexiletine was considered to be poorer not only than that of CYP2D6.1 but also than that of CYP2D6.10. The same tendency was also observed in kinetic analysis for bufuralol 1'-hydroxylation as a representative CYP2D6 probe. These findings suggest that CYP2D6*36 has a more drastic impact on mexiletine metabolism than CYP2D6*10.  相似文献   

11.
1. Aminopyrine N-demethylase activity was determined for 11 forms of human hepatic cytochrome P450s (P450s) expressed in yeast Saccharomyces cerevisiae and for human steroidogenic CYP17 expressed in Escherichia coli. 2. Among the hepatic P450s, the N-demethylation of aminopyrine was catalysed most efficiently by CYP2C19, followed by CYP2C8, 2D6, 2C18 and 1A2, whereas the activity with CYP2E1 was negligible. The kinetics of the N-demethylation process by CYP1A2, 2C8, 2C19 and 2D6 were studied by fitting to Michaelis-Menten kinetics by Lineweaver-Burk plots. CYP2C19 exhibited the highest affinity and a high capacity for the aminopyrine N-demethylation. CYP2C8 showed the highest Vmax, followed by CYP2C19, 2D6 and 1A2, whereas the Km for CYP2C8, 2D6 and 1A2 were 10-17 times higher than that for CYP2C19. Accordingly, the Vmax/Km for CYP2C19 was more than nine times higher than that of other P450s. 3. Human steroidogenic CYP17 also catalysed aminopyrine N-demethylation and the activity was comparable with that for CYP3A4 which is a dominant P450 in human liver. The activity was increased 1.5-fold by the addition of cytochrome b5, whereas the activity was not affected by the addition of Mg2+. 4. These results suggest that several human hepatic P450s, especially CYP2C19, and steroidogenic CYP17 exhibit aminopyrine N-demethylase activity.  相似文献   

12.
Inhibition kinetics of monoclonal antibodies against cytochromes P450.   总被引:1,自引:0,他引:1  
Monoclonal antibodies (MAbs) inhibitory to individual cytochromes P450 (P450s) are of tremendous utility in identification of P450s responsible for the metabolism of a given drug or drug candidate in pharmaceuticals. In the present study, two inhibitory MAbs against CYP2D6 (MAb(2D6-50,) IgG(2b) and MAb(2D6-184), IgG(2a)) were developed by hybridoma technology to exhibit their high specificity and potency. The MAbs were further employed to assess the quantitative role (47-93%) of CYP2D6 to the metabolism of bufuralol in human liver microsomes from seven donors. Together with the MAb inhibitory to CYP3A4 as previously reported (Mei et al., 1999), the MAbs were used to study the inhibition kinetics of dextromethorphan O-demethylation (CYP2D6), testosterone 6beta-hydroxylation (CYP3A4) and aflatoxin B1 3-hydroxylation (CYP3A4), respectively, with an adequate size of sample measurement. A kinetic model was proposed to fit the experimental observations with three-dimensional nonlinear regression, thereby resulting in a solution of kinetic parameters, i.e., K(I), K(S), V(max), alpha, and beta (changes in K(I) or K(S) and V(max) in the presence of the MAb). As a result, dissociation constants (K(I)) of the MAbs for the enzymes and the maximal inhibition (beta) values for the P450-catalyzed reactions were predicted to have 0.04 to 0.25 microM and > or =94%, respectively. The results have demonstrated that the model can accurately predict the kinetic parameters and provide some insights into the understanding of the mechanism of MAb interaction with P450 enzyme in nature and the applications of the MAbs in qualitative and quantitative identification of P450s involved in drug metabolism.  相似文献   

13.
Pharmaceutical industry investigators routinely evaluate the potential for a new drug to modify cytochrome p450 (p450) activities by determining the effect of the drug on in vitro probe reactions that represent activity of specific p450 enzymes. The in vitro findings obtained with one probe substrate are usually extrapolated to the compound's potential to affect all substrates of the same enzyme. Due to this practice, it is important to use the right probe substrate and to conduct the experiment under optimal conditions. Surveys conducted by reviewers in CDER indicated that the most common in vitro probe reactions used by industry investigators include the following: phenacetin O-deethylation for CYP1A2, coumarin 7-hydroxylation for CYP2A6, 7-ethoxy-4-trifluoromethyl coumarin O-dealkylation for CYP2B6, tolbutamide 4'-hydroxylation for CYP2C9, S-mephenytoin 4-hydroxylation for CYP2C19, bufuralol 1'-hydroxylation for CYP2D6, chlorzoxazone 6-hydroxylation for CYP2E1, and testosterone 6 beta-hydroxylation for CYP3A4. We reviewed the validation information in the literature on these reactions and other frequently used reactions, including caffeine N3-demethylation for CYP1A2, S-mephenytoin N-demethylation for CYP2B6, S-warfarin 7'-hydroxylation for CYP2C9, dextromethorphan O-demethylation for CYP2D6, and midazolam 1'-hydroxylation for CYP3A4. The available information indicates that we need to continue the search for better probe substrates for some enzymes. For CYP3A4-based drug interactions it may be necessary to evaluate two or more probe substrates. In many cases, the probe reaction represents a particular enzyme activity only under specific experimental conditions. Investigators must consider appropriateness of probe substrates and experimental conditions when conducting in vitro drug interaction studies and when extrapolating the results to in vivo situations.  相似文献   

14.
Protein-calorie malnutrition (PCM) can develop both from inadequate food intake and as a consequence of diseases such as cancer and AIDS. Several studies have shown that PCM can alter drug clearance but little information is available on the effect of PCM on individual cytochrome P450 isoforms and phase II conjugation enzymes. The aim of the present study was to begin a systematic evaluation of the effect of PCM on the activity of individual drug metabolizing enzymes in a rat model of PCM. Control and PCM rats received isocaloric diets which contained either 21% or 5% (deficient) protein. After 3 weeks, the animals were sacrificed and microsomal and cytosolic fractions prepared. Ethoxyresorufin O-deethylation (EROD), chlorzoxazone 6-hydroxylation, dextromethorphan N- and O-demethylation and 1-chloro-2,4-dinitrobenzene (CDNB) conjugation were used as measures of CYP1A, CYP2E1, CYP3A2, CYP2D1 and glutathione S-transferase (GST) activity, respectively. Additionally, NADPH-cytochrome P450 reductase activity was measured in the liver microsomes. PCM significantly reduced the maximum velocity (Vmax) of all model reactions studied. However, differential effects were observed with respect to K(m) values of the reactions. The K(m) values for EROD and dextromethorphan N-demethylation were significantly increased in PCM animals, whereas the K(m) values for chlorzoxazone 6-hydroxylation and dextromethorphan O-demethylation were decreased. In contrast, the K(m) value for CDNB conjugation was unchanged. When NADPH-cytochrome P450 reductase activity was compared, a 29% reduction in reductase activity was noted in PCM animals as compared to controls. Thus, it appears that PCM decreases the overall activity of certain phase I and phase II metabolism enzymes in rat liver while exhibiting differential effects on K(m). Furthermore, this reduction in activity may be due in part to diminished activity of cytochrome P450 reductase.  相似文献   

15.
To assess the effects of Ile359 to Leu359 change on CYP2C9-mediated metabolism, we performed site-directed mutagenesis and cDNA expression in yeast for CYP2C9 and examined in detail the kinetics of seven metabolic reactions by wild-type CYP2C9 (Ile359) and its Leu359 variant. For the metabolism of all the substrates studied, the Leu359 variant exhibited smaller Vmax/Km values than did the wild-type. The differences in the Vmax/Km values between the wild-type and the Leu359 variant varied from 3.4-fold to 26.9-fold. The Leu359 variant had higher Km values than did the wild-type for all the reactions studied. Among the seven reactions studied, the greatest difference in the Vmax values between the wild-type and the Leu359 variant was for piroxicam 5'-hydroxylation (408 versus 19 pmol/min/nmol P450), whereas there were no differences in the Vmax values between the wild-type and the Leu359 variant for diclofenac 4'-hydroxylation and tolbutamide methylhydroxylation. These results indicate that the Ile359 to Leu359 change significantly decreases the catalytic activity of all the CYP2C9-mediated metabolisms studied, whereas the extent of the reduction in activity and changes of the kinetic parameters varies between substrates. Moreover, the amino acid substitution decreased the enantiomeric excess in the formation of 5-(4-hydroxyphenyl)-5-phenylhydantoin from phenytoin.  相似文献   

16.
To predict drug interactions with estazolam, the biotransformation of estazolam to its major hydoxylated metabolite, 4-hydroxyestazolam was studied in vitro using pooled human liver microsomes and individual expressed human cytochrome P450 (CYP) enzymes. Estazolam was metabolized to 4-hydroxyestazolam according to the Hill kinetic model in pooled human liver microsomes. The Km value for the 4-hydroxylation of estazolam was 24.1 microM, and the Vmax value was 52.6 pmol min(-1)mg(-1) protein. The formation of 4-hydroxyestazolam from estazolam in pooled human liver microsomes was significantly inhibited by itraconazole and erythromycin, specific CYP3A4 inhibitors, in a dose-dependent manner, with IC50 values of 1.1 and 12.8 microM, respectively. When estazolam was incubated with expressed human CYP enzymes (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4), it was metabolized only by CYP3A4. In conclusion, the biotransformation of estazolam to 4-hydroxyestazolam was catalyzed by CYP3A4.  相似文献   

17.
Cytochrome P450 (P450 or CYP) 3A is one of the most important P450 subfamilies in terms of its broad substrate specificity and relatively high abundance in humans. The substrate specificities of CYP3A4 and CYP3A5 are generally overlapped, but sometimes could differ from each other. It is still important to understand drug interactions more precisely in individual subjects. However, there are few review articles regarding comparative drug oxidation rates catalyzed by CYP3A4 and CYP3A5 and/or substrate inhibition potential towards CYP3A4 and CYP3A5. In this article, we summarize 1) Michaelis-Menten constants (Km), maximal velocities (Vmax), and intrinsic clearance (Vmax/Km) values for 63 substrates (94 reactions) mediated by CYP3A4 and/or CYP3A5, 2) inhibition constants (Ki) and 50% inhibitory concentrations (IC50) of 18 substrates, and 3) maximum inactivation rate constants (kinact) of 14 inhibitors from the literature. The relative contribution of polymorphic CYP3A5 compared with inducible CYP3A4 varies with the substrates and the reaction positions of the substrates. Inhibitory effects of azole antifungal agents and macrolide antibiotics, with low Ki and/or IC50 values for CYP3A4, are likely to be determinant factors for predominant drug interactions in humans, although Asian subjects with relatively high frequency of genetic CYP3A5 expressers should be carefully treated with CYP3A substrates. The collective findings in our present survey provide fundamental and useful information for drug oxidations catalyzed by CYP3A4 and CYP3A5, in spite of some contradictive kinetic parameters for the same reactions reported from many laboratories in different conditions. To understand causal factor(s) and mechanism(s) for such different reports summarized here is still one of the hot research topics to be solved in current drug metabolism.  相似文献   

18.
The results of quantitative structure-activity relationship (QSAR) studies on substrates of human CYP2 family enzymes are reported, together with those of a small number of CYP2A6, CYP2C19 and CYP2D6 inhibitors. In general, there are good correlations (R = 0.90-0.99) between binding affinity (based on Km or KD values) and various parameters relating to active site interactions such as hydrogen bonding and pi-pi stacking. There is also evidence for the role of compound lipophilicity (as determined by either log P or log D7.4 values) in overall substrate binding affinity, and this could reflect the desolvation energy involved in substrate interaction within the enzyme active site. It is possible to estimate the substrate binding energy for a given P450 from a combination of energy terms relating to hydrogen bonding, pi-pi stacking, desolvation and loss in rotatable bond energy, which agree closely (R = 0.98) with experimental data based on either Km or KD values. Consequently, it is likely that active site interactions represent the major contributory factors to the overall binding affinities for human CYP2 family substrates and, therefore, their estimation is of potential importance for the development of new chemical entities (NCEs) as this can facilitate an assessment of likely metabolic clearance.  相似文献   

19.
Phenacetin O-deethylation, widely used as an index reaction for cytochrome P450 1A2 (CYP1A2) activity, displays biphasic kinetics in human liver microsomes. CYP1A2 has been identified as contributing to the high affinity component, but is not verified as the sole contributor to the high affinity phase. In addition, the human CYP isoforms accounting for the low affinity phase have not been identified. We have used heterologously expressed human CYP isoforms to identify, kinetically characterize, and predict the relative contribution of the major human liver CYP isoforms mediating phenacetin O-deethylation. CYP1A2 (Km 31 microM) is the only high affinity phenacetin O-deethylase in human liver microsomes, while CYPs 2A6 (Km 4098 microM), 2C9 (Km 566 microM), 2C19 (Km 656 microM), 2D6 (Km 1021 microM), and 2E1 (Km 1257 microM) all contribute to the low affinity phase of the reaction. Considering the relative abundance of the various CYPs in human liver, CYP1A2 accounts for 86% of net reaction velocity at a substrate concentration of 100 microM, while CYP2C9 becomes the primary phenacetin O-deethylase at substrate concentrations of 865 microM and higher and accounts for 31% of the net Vmax of the reaction. Predictions from kinetic studies on heterologously expressed CYPs are consistent with chemical inhibition studies on human liver microsomes with sulfaphenazole and alpha-naphthoflavone that suggest a greater role for CYP2C9, and a smaller role for CYP1A2, at higher substrate concentrations. Thus CYP1A2 is the only high affinity human liver phenacetin O-deethylase, thereby validating the use of the high affinity component as an index of CYP1A2 activity in human liver microsomes.  相似文献   

20.
The major drug-metabolizing human hepatic cytochrome P-450s (CYPs; CYP1A2, 2C9, 2C19, 2D6, and 3A4) coexpressed functionally in Escherichia coli with human NADPH-P-450 reductase have been validated as surrogates to their counterparts in human liver microsomes (HLM) using automated technology. The dealkylation of ethoxyresorufin, dextromethorphan, and erythromycin were all shown to be specific reactions for CYP1A2, CYP2D6, and CYP3A4 that allowed direct comparison with kinetic data for HLM. For CYP2C9 and CYP2C19, the kinetics for the discrete oxidations of naproxen and diazepam were compared to data obtained using established, commercial CYP preparations. Turnover numbers of CYPs expressed in E. coli toward these substrates were generally equal to or even greater than those of the major commercial suppliers [CYP1A2 (ethoxyresorufin), E. coli 0.6 +/- 0.2 min(-1) versus B lymphoblasts 0.4 +/- 0.1 min(-1); CYP2C9 (naproxen), 6.7 +/- 0.9 versus 4.9 min(-1); CYP2C19 (diazepam), 3.7 +/- 0.3 versus 0.2 +/- 0.1 min(-1); CYP2D6 (dextromethorphan), 4.7 +/- 0.1 versus 4.4 +/- 0.1 min(-1); CYP3A4 (erythromycin), 3 +/- 1.2 versus 1.6 min(-1)]. The apparent K(m) values for the specific reactions were also similar (K(m) ranges for expressed CYPs and HLM were: ethoxyresorufin 0.5-1.0 microM, dextromethorphan 1.3-5.9 microM, and erythromycin 18-57 microM), indicating little if any effect of N-terminal modification on the E. coli-expressed CYPs. The data generated for all the probe substrates by HLM and recombinant CYPs also agreed well with literature values. In summary, E. coli-expressed CYPs appear faithful surrogates for the native (HLM) enzyme, and these data suggest that such recombinant enzymes may be suitable for predictive human metabolism studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号