首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Although atypical antipsychotics are becoming the treatment of choice for schizophrenia, what makes an antipsychotic "atypical" is not clear. This article provides a new hypothesis about the mechanism of action of atypical antipsychotics. METHOD: Published data regarding the molecular, animal model, neuroimaging, and clinical aspects of typical and atypical antipsychotics were reviewed to develop this hypothesis. Particular attention was paid to data regarding the role of the serotonin 5-HT(2) and dopamine D(4) receptors in atypicality. RESULTS: Neuroimaging data show that optimal dopamine D(2) occupancy is sufficient to produce the atypical antipsychotic effect. Freedom from motor side effects results from low D(2) occupancy, not from high 5-HT(2) occupancy. If D(2) occupancy is excessive, atypicality is lost even in the presence of high 5-HT(2) occupancy. Animal data show that a rapid dissociation from the D(2) receptor at a molecular level produces the atypical antipsychotic effect. In vitro data show that the single most powerful predictor of atypicality for the current generation of atypical antipsychotics is fast dissociation from the D(2) receptor, not its high affinity at 5-HT(2), D(4), or another receptor. CONCLUSIONS: The authors propose that fast dissociation from the D(2) receptor makes an antipsychotic more accommodating of physiological dopamine transmission, permitting an antipsychotic effect without motor side effects, prolactin elevation, or secondary negative symptoms. In contrast to the multireceptor hypotheses, the authors predict that the atypical antipsychotic effect can be produced by appropriate modulation of the D(2) receptor alone; the blockade of other receptors is neither necessary nor sufficient.  相似文献   

2.
Atypical antipsychotics: mechanism of action.   总被引:23,自引:0,他引:23  
BACKGROUND: Although the principal brain target that all antipsychotic drugs attach to is the dopamine D2 receptor, traditional or typical antipsychotics, by attaching to it, induce extrapyramidal signs and symptoms (EPS). They also, by binding to the D2 receptor, elevate serum prolactin. Atypical antipsychotics given in dosages within the clinically effective range do not bring about these adverse clinical effects. To understand how these drugs work, it is important to examine the atypical antipsychotics' mechanism of action and how it differs from that of the more typical drugs. METHOD: This review analyzes the affinities, the occupancies, and the dissociation time-course of various antipsychotics at dopamine D2 receptors and at serotonin (5-HT) receptors, both in the test tube and in live patients. RESULTS: Of the 31 antipsychotics examined, the older traditional antipsychotics such as trifluperazine, pimozide, chlorpromazine, fluphenazine, haloperidol, and flupenthixol bind more tightly than dopamine itself to the dopamine D2 receptor, with dissociation constants that are lower than that for dopamine. The newer, atypical antipsychotics such as quetiapine, remoxipride, clozapine, olanzapine, sertindole, ziprasidone, and amisulpride all bind more loosely than dopamine to the dopamine D2 receptor and have dissociation constants higher than that for dopamine. These tight and loose binding data agree with the rates of antipsychotic dissociation from the human-cloned D2 receptor. For instance, radioactive haloperidol, chlorpromazine, and raclopride all dissociate very slowly over a 30-minute time span, while radioactive quetiapine, clozapine, remoxipride, and amisulpride dissociate rapidly, in less than 60 seconds. These data also match clinical brain-imaging findings that show haloperidol remaining constantly bound to D2 in humans undergoing 2 positron emission tomography (PET) scans 24 hours apart. Conversely, the occupation of D2 by clozapine or quetiapine has mostly disappeared after 24 hours. CONCLUSION: Atypicals clinically help patients by transiently occupying D2 receptors and then rapidly dissociating to allow normal dopamine neurotransmission. This keeps prolactin levels normal, spares cognition, and obviates EPS. One theory of atypicality is that the newer drugs block 5-HT2A receptors at the same time as they block dopamine receptors and that, somehow, this serotonin-dopamine balance confers atypicality. This, however, is not borne out by the results. While 5-HT2A receptors are readily blocked at low dosages of most atypical antipsychotic drugs (with the important exceptions of remoxipride and amisulpride, neither of which is available for use in Canada) the dosages at which this happens are below those needed to alleviate psychosis. In fact, the antipsychotic threshold occupancy of D2 for antipsychotic action remains at about 65% for both typical and atypical antipsychotic drugs, regardless of whether 5-HT2A receptors are blocked or not. At the same time, the antipsychotic threshold occupancy of D2 for eliciting EPS remains at about 80% for both typical and atypical antipsychotics, regardless of the occupancy of 5-HT2A receptors. RELEVANCE: The "fast-off-D2" theory, on the other hand, predicts which antipsychotic compounds will or will not produce EPS and hyperprolactinemia and which compounds present a relatively low risk for tardive dyskinesia. This theory also explains why L-dopa psychosis responds to low atypical antipsychotic dosages, and it suggests various individualized treatment strategies.  相似文献   

3.
Almost fifteen years of research with Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) have led to a profound understanding of the relationships between antipsychotic doses and plasma levels on the one hand and occupancy of (striatal) D2 -like dopamine receptors on the other hand as well as with the associated clinical effects and side effects. Furthermore, with the development of clinically "atypical" antipsychotics PET studies helped to generate hypotheses regarding the essential pharmacological properties of this heterogeneous class of drugs. Possible mechanisms of action include combined D2 -/5-HT2 antagonism, preferential mesolimbic binding, and fast dissociation from the D2 -receptor. Our recently published PET study on the in vivo characterization of the partial dopamine receptor agonist, aripiprazole, suggests a novel mechanism of action, which leads to clinically "atypical" properties of an antipsychotic. Aripiprazole, of which the antipsychotic efficacy has been proven in various multicenter clinical trials, leads to almost complete saturation of D2 -like dopamine receptors at clinically used doses; however, the incidence of extrapyramidal side effects under aripiprazole is not higher than under placebo. PET like no other method is suitable to display in vivo a novel mechanism of "atypicality" of a new class of antipsychotics.  相似文献   

4.
Typical antipsychotics (haloperidol) give rise to severe motor side-effects while atypical antipsychotics like clozapine do not. Action at several neurotransmitter receptors have been implicated. To identify the critical mechanisms involved we synthesized an 8-C1 isomer of clozapine which showed an equivalent affinity to clozapine on multiple receptors (5-HT1A, 5-HT2, D1, D4, M1) but differed in having a 10-fold higher affinity at the dopamine D2/3 receptor. When tested in a series of animal models indicative of the typical/atypical distinction (catalepsy, striatal gene-induction, prolactin elevation) isoclozapine lost atypical properties and behaved like a typical antipsychotic. Simultaneous in vivo receptor occupancy studies confirmed that alterations in D2 receptor occupancy were most closely related to loss of atypicality by clozapine's isomer isoclozapine. The implications for the design of future antipsychotics is discussed.  相似文献   

5.
Apart from their differential propensities to block dopamine D2 and serotonin 5-HT2 receptors, the molecular mechanisms underlying the clinical efficacy of typical and atypical antipsychotics in schizophrenia are largely unknown. Given recent interest in the effects of antipsychotics on neurotrophic and other growth related factors, the effects of antipsychotics on brain-derived neurotrophic factor (BDNF), a neurotrophin crucial to the structural integrity of adult neurons, were investigated in male Wistar rats. Chronic (19 day) but not acute (45 min) antipsychotic administration significantly altered levels of hippocampal BDNF mRNA. In addition, whereas chronic treatment with the strong D2 receptor-blocker haloperidol significantly downregulated hippocampal BDNF mRNA, the selective 5-HT2 receptor-blocker ritanserin significantly upregulated CA1 hippocampal BDNF mRNA in comparison to controls. Since high doses of risperidone and clozapine produce potent inhibition of both 5-HT2 and D2 receptors, while lower doses produce significantly greater 5-HT2 vs. D2 receptor blockade, a dose-response study was employed to determine whether low doses of these atypical antipsychotics would also upregulate hippocampal BDNF mRNA in the absence of significant D2 receptor blockade. Whereas chronic haloperidol and high-dose risperidone significantly downregulated hippocampal BDNF mRNA, intermediate and lower doses of risperidone and clozapine were, unlike ritanserin, without effect when compared to controls. Thus, although the long-term downregulation of hippocampal BDNF mRNA may underlie the different clinical profiles of certain antipsychotics, this effect seems to be associated with antipsychotic doses that not only cause significant D2 receptor inhibition, but are usually associated with side effects rather than therapeutic efficacies.  相似文献   

6.
OBJECTIVE: The authors added haloperidol, a potent D(2) blocker, to ongoing treatment with clozapine in patients with schizophrenia to determine the effects of this combination on dopamine D(2) receptor blockade, prolactin level, and extrapyramidal side effects. METHOD: At baseline and 4-8 weeks after the addition of haloperidol (4 mg/day) to ongoing clozapine treatment, five patients were examined for prolactin elevation, extrapyramidal side effects, drug plasma levels, and D(2) receptor occupancy measured with [(11)C]raclopride and positron emission tomography imaging. RESULTS: Adding haloperidol significantly increased D(2) receptor occupancy, from a mean of 55% to 79%, and significantly increased the prolactin level. One patient developed akathisia, and another manifested mild extrapyramidal side effects. CONCLUSIONS: Adding a modest dose of haloperidol to clozapine results in the high D(2) receptor occupancy and sustained prolactin elevation usually associated with typical antipsychotics. These findings suggest that the lack of prolactin elevation associated with clozapine derives mainly from low D(2) receptor occupancy and not from the medication's effects on other receptors.  相似文献   

7.
OBJECTIVE: Since all antipsychotics block dopamine D(2) receptors, the authors investigated how well D(2) receptor occupancy in vivo predicts clinical response, extrapyramidal side effects, and hyperprolactinemia. METHOD: In a double-blind study, 22 patients with first-episode schizophrenia were randomly assigned to 1.0 or 2. 5 mg/day of haloperidol. After 2 weeks of treatment, D(2) receptor occupancy was determined with [(11)C]raclopride and positron emission tomography, and clinical response, extrapyramidal side effects, and prolactin levels were measured. Patients who showed adequate responses continued taking their initial doses, those who did not respond had their doses increased to 5.0 mg/day, and evaluations were repeated at 4 weeks for all patients. RESULTS: The patients showed a wide range of D(2) occupancy (38%-87%). The degree of receptor occupancy predicted clinical improvement, hyperprolactinemia, and extrapyramidal side effects. The likelihood of clinical response, hyperprolactinemia, and extrapyramidal side effects increased significantly as D(2) occupancy exceeded 65%, 72%, and 78%, respectively. CONCLUSIONS: The study confirms that D(2) occupancy is an important mediator of response and side effects in antipsychotic treatment. The data are consistent with a "target and trigger" hypothesis of antipsychotic action, i.e., that the D(2) receptor specificity of antipsychotics permits them to target discrete neurons and that their antagonist properties trigger within those neurons intracellular changes that ultimately beget antipsychotic response. While limited to haloperidol, the relationship between D(2) occupancy and side effects in this study helps explain many of the observed clinical differences between typical and atypical antipsychotics.  相似文献   

8.
Antipsychotic drugs, potent dopamine receptor antagonists, are commonly used in the treatment of psychotic and affective illness. The discovery of antagonistic interactions between A2A adenosine receptors (ARs) and D2 dopamine receptors (DRs) in the central nervous system suggests that the adenosine system may be involved in the pathogenesis of psychiatric and neurological disorders. In the present study, we demonstrated for the first time that human platelets co-express A2A ARs and D2 DRs assembled into an heteromeric complexes. We also investigated the effects of chronic treatment with either typical or atypical antipsychotics on A2A AR binding parameters and receptors responsiveness in human platelets from patients affected by bipolar disorder. Chronic administration of typical antipsychotics induced a significant upregulation of A2A AR binding sites. Since no effects on A2A AR were obtained following "in vitro" platelet treatment with a typical antipsychotic (haloperidol), we could exclude a direct effect of the drug on A2A AR at the peripheral level. Moreover, typical antipsychotics induced a significant increase in the agonist potency to mediate A2A AR-G protein coupling. On the contrary, chronic treatment with atypical antipsychotics did not induce any significant alterations in A2A AR equilibrium binding parameters and receptor responsiveness suggesting that typical but not atypical antipsychotic drugs induced a selective modification of A2A AR binding parameters in human platelets. These results are in accordance with the literature data describing the selective A2A AR upregulation induced by typical antipsychotics in human striatum suggesting platelets as a peripheral model of the interactions between adenosine and dopamine system occurring in the central nervous system.  相似文献   

9.
OBJECTIVE: Clozapine, the prototype of atypical antipsychotics, remains unique in its efficacy in the treatment of refractory schizophrenia. Its affinity for dopamine D(4) receptors, serotonin 5-HT(2A) receptor antagonism, effects on the noradrenergic system, and its relatively moderate occupancy of D(2) receptors are unlikely to be the critical mechanism underlying its efficacy. In an attempt to elucidate the molecular/synaptic mechanism underlying clozapine's distinctiveness in refractory schizophrenia, the authors studied the in vivo D(1) and D(2) receptor profile of clozapine compared with other atypical antipsychotics. METHOD: Positron emission tomography with the radioligands [(11)C]SCH23390 and [(11)C]raclopride was used to investigate D(1) and D(2) receptor occupancy in vivo in 25 schizophrenia patients receiving atypical antipsychotic treatment with clozapine, olanzapine, quetiapine, or risperidone. RESULTS: Mean striatal D(1) occupancies ranged from 55% with clozapine to 12% with quetiapine (rank order: clozapine > olanzapine > risperidone > quetiapine). The striatal D(2) occupancy ranged from 81% with risperidone to 30% with quetiapine (rank order: risperidone > olanzapine > clozapine > quetiapine). The ratio of striatal D(1)/D(2) occupancy was significantly higher for clozapine (0.88) relative to olanzapine (0.54), quetiapine (0.41), or risperidone (0.31). CONCLUSIONS: Among the atypical antipsychotics, clozapine appears to have a simultaneous and equivalent occupancy of dopamine D(1) and D(2) receptors. Whether its effect on D(1) receptors represents agonism or antagonism is not yet clear, as this issue is still unresolved in the preclinical arena. This distinctive effect on D(1)/D(2) receptors may be responsible for clozapine's unique effectiveness in patients with schizophrenia refractory to other typical and atypical antipsychotics.  相似文献   

10.
Antagonism of D2-like dopamine receptors is the putative mechanism underlying the antipsychotic efficacy of psychotropic drugs. Positron emission tomographic studies suggest that the antipsychotic effect of dopamine receptor antagonists occurs within a therapeutic window between 60% and 80% (striatal) D2 receptor occupancy. The incidence of extrapyramidal side effects increases above the 80% threshold. However, the novel atypical antipsychotic drug, aripiprazole, occupies up to 95% of striatal D2-like dopamine receptors at clinical doses, and the incidence of extrapyramidal side effects with aripiprazole is no higher than with placebo. The most likely explanation for this finding is aripiprazole's weak partial agonism at D2-like dopamine receptors. This particular pharmacologic feature characterizes a new class of atypical antipsychotics that does not match the original concept of a therapeutic occupancy window for antagonist antipsychotics. When not involving pure antagonists, it implies a need to adjust the expected receptor occupancy (measured using positron emission tomography) for the therapeutic window.  相似文献   

11.
A review of the history of antipsychotics reveals that while the therapeutic effects of chlorpromazine and reserpine were discovered and actively researched almost concurrently, subsequent drug development has been restricted to drugs acting on postsynaptic receptors rather than modulation of dopamine release. The fundamental property of atypical antipsychotics is their ability to produce an antipsychotic effect in the absence of extrapyramidal side effects (EPS) or prolactin elevation. Modulation of the dopamine D2 receptor remains both necessary and sufficient for antipsychotic drug action, with affinity to the D2-receptor being the single most important discriminator between a typical and atypical drug profile. Most antipsychotics, including atypical antipsychotics, show a dose-dependent threshold of D2 receptor occupancy for their therapeutic effects, although the precise threshold is different for different drugs. Some atypical antipsychotics do not appear to reach the threshold for EPS and prolactin elevation, possibly accounting for their atypical nature. To link the biological theories of antipsychotics to their psychological effects, a hypothesis is proposed wherein psychosis is a state of aberrant salience of stimuli and ideas, and antipsychotics, via modulation of the mesolimbic dopamine system, dampen the salience of these symptoms. Thus, antipsychotics do not excise psychosis: they provide the neurochemical platform for the resolution of symptoms. Future generations of antipsychotics may need to move away from a "one-size-fits-all polypharmacy-in-a-pill" approach to treat all the different aspects of schizophrenia. At least in theory a preferred approach would be the development of specific treatments for the different dimensions of schizophrenia (e.g., positive, negative, cognitive, and affective) that can be flexibly used and titrated in the service of patients' presenting psychopathology.  相似文献   

12.
Background: The dopamine D2 receptor is the common target for antipsychotics, and the antipsychotic clinical doses correlate with their affinities for this receptor. Antipsychotics quickly enter the brain to occupy 60–80% of brain D2 receptors in patients (the agonist aripiprazole occupies up to 90%), with most clinical improvement occurring within a few days. The D2 receptor can exist in a state of high‐affinity (D2High) or in a state of low‐affinity for dopamine (D2Low). Aim: The present aim is to review why individuals with schizophrenia are generally supersensitive to dopamine‐like drugs such as amphetamine or methyphenidate, and whether the D2High state is a common basis for dopamine supersensitivity in the animal models of schizophrenia. Results: All animal models of schizophrenia reveal elevations in D2High receptors. These models include brain lesions, sensitization by drugs (amphetamine, phencyclidine, cocaine, corticosterone), birth injury, social isolation, and gene deletions in pathways for NMDA, dopamine, GABA, acetylcholine, and norepinephrine. Conclusions: These multiple abnormal pathways converge to a final common pathway of dopamine supersensitivity and elevated D2High receptors, presumably responsible for psychotic symptoms. Although antipsychotics alleviate psychosis and reverse the elevation of D2High receptors, long‐term antipsychotics can further enhance dopamine supersensitivity in patients. Therefore, switching from a traditional antipsychotic to an agonist antipsychotic (aripiprazole) can result in psychotic signs and symptoms. Clozapine and quetiapine do not elicit parkinsonism or tardive dyskinesia because they are released from D2 within 12 to 24 h. Traditional antipsychotics remain attached to D2 receptors for days, preventing relapse, but allowing accumulation that can lead to tardive dyskinesia. Future goals include imaging D2High receptors and desensitizing them in early‐stage psychosis.  相似文献   

13.
Neuronal expression of immediate-early genes in response to a drug is a powerful screening tool for dissecting anatomical and functional brain circuitry affected by psychoactive compounds. We examined the effect of dopaminergic perturbation on two Homer 1 gene splice variants, Homer 1a and ania-3, in rat forebrain. Rats were treated with the "typical" antipsychotic haloperidol, the "atypical" quetiapine, or the selective dopamine transporter (DAT) inhibitor GBR 12909 in acute and chronic paradigms. Our results show that the high affinity dopamine D(2) receptor antagonist haloperidol strongly induces Homer 1 gene expression in the caudate-putamen, whereas quetiapine, a fast D2R dissociating antagonist, does not. This confirms that Homer 1 may be considered a predictor of "atypicality" of antipsychotic compounds in acute and also chronic regimens. Chronic treatment with GBR 12909 showed a strong induction in the parietal cortex, resembling the activation of "sensitization" circuitry by stimulants. Finally, we describe a differential spatial induction pattern of Homer 1 gene within the caudate-putamen by typical antipsychotics and DAT blockers, and propose a novel method to quantitate it.  相似文献   

14.
The clinical potencies of antipsychotic drugs are directly related to their affinities for the dopamine D2 receptor. In addition, the concentrations of antipsychotic drugs (given at therapeutic maintenance doses) in the plasma water or in the spinal fluid are almost identical to the antipsychotic dissociation constants at the dopamine D2 receptor. A consistent 70–75% of brain D2 receptors are occupied by antipsychotic drugs, as calculated from the therapeutic concentration and the antipsychotic dissociation constant. The D3 and D4 dopamine receptors, however, are not consistently occupied by antipsychotic drugs, the occupancies being 0–85% for D3, and 0–95% for D4. Human brain imaging also reveals that therapeutic doses of antipsychotic drugs occupy ∼70% of D2 receptors. Between 2 and 4 h after the daily oral dose, clozapine and quetiapine occupy high levels (∼70%) of the dopamine D2 receptors in schizophrenia patients, with lower occupancies at 6 and 12 h. Although clozapine and quetiapine occupy low levels of D2 receptors many hours after the oral dose, the observed fraction of D2 receptors occupied by these drugs, however, depends on the radioligand used, with high occupancy seen when using [11C]raclopride, and low occupancy seen with [11C]methylspiperone (which is tightly bound to D2). This dependence on the radioligand occurs because clozapine and quetiapine are loosely bound to D2. The loose binding of clozapine and quetiapine to D2 permits endogenous dopamine to displace these antipsychotic drugs much more quickly than haloperidol. In addition, the small dose of radioactive raclopride injected (in brain imaging) can displace a little of the D2-bound clozapine. Hence, the observed low level of D2 occupancy by clozapine in patients may arise from a combination of the above three factors – the ligand dependency, the endogenous dopamine, and the displacement by the imaging dose. Parkinsonism and extrapyramidal effects occur with antipsychotics which have a high affinity for D2 and which are, therefore, tightly bound to D2. Clozapine and quetiapine have a low affinity for D2, and, being readily displaced by endogenous dopamine, do not give rise to extrapyramidal effects. Because the loosely bound antipsychotics dissociate from D2 more rapidly, clinical relapse may occur earlier than that found with the tightly bound traditional antipsychotics. The dopamine hypothesis of schizophrenia is supported by the fact that D2 is the main target of antipsychotic action, that monomers of D2 appear elevated in schizophrenia, and that the synaptic levels of dopamine in schizophrenia are at least two-fold higher than in control subjects.  相似文献   

15.
Amisulpride clearly has the clinical profile of an atypical antipsychotic, characterised in particular by its lower propensity to induce extrapyramidal side effects as well as its greater efficacy in treating negative symptoms compared with classical neuroleptics. In addition to the clinical advantages over classical neuroleptics, it has also been demonstrated that the clinical profile of amisulpride is comparable to that of other modern atypical neuroleptics. Animal data also allow the conclusion to be drawn that amisulpride has an atypical profile. For example, amisulpride does not provoke catalepsy which is characteristic of postsynaptic D2 blockade in the rat. The induction of catalepsy in animal models is usually seen as an indicator of the propensity to induce extrapyramidal side effects in patients. In relation to the widely accepted hypothesis that the inclusion of 5-HT2A antagonism in addition to D2 antagonism is of great relevance for the atypicality of an antipsychotic, and given the fact that amisulpride lacks 5-HT2A antagonism, the pharmacological explanation of the clinically well-proven atypicality of amisulpride is of great interest. Based on basic research and in vivo imaging studies, two mechanisms in particular seem to explain the atypicality of amisulpride: preferential action on limbic D2/D3 receptors and preferential blockade of presynaptic D2/D3 receptors. In addition, the fast dissociation hypothesis can contribute to the explanation of the atypical clinical profile of amisulpride. The relevance of the D3 blockade in the context of atypicality is not yet completely clear.  相似文献   

16.
OBJECTIVES: Antipsychotic medications improve psychosis but often induce a state of dysphoria in patients. Blockade of the dopamine D(2) receptors, which is thought to mediate their efficacy, has also been implicated in producing this adverse subjective experience. The authors present the first double-blind controlled study to examine the relationship between striatal and extrastriatal dopamine D(2) receptor binding potential and occupancy values and adverse subjective experience. METHOD: Patients with recent-onset psychosis (N=12) were randomly assigned to low or high doses of olanzapine or risperidone. Subjective experiences, motor side effects, and striatal and extrastriatal dopamine D(2) receptors (determined with [(11)C]raclopride and [(11)C]FLB 457 PET scans, respectively) were evaluated after 2 weeks of continuous antipsychotic treatment. RESULTS: Higher dopamine D(2) receptor occupancy and binding potentials in the striatal (dorsal and ventral), temporal, and insular regions were associated with subjective experience. The finding was confirmed with two convergent methods of analysis (region-of-interest and voxel-based statistics), and the same relationship was observed using two different dopamine receptor measures (observed binding potential values and age- and sex-corrected occupancy values). CONCLUSIONS: Higher D(2) receptor occupancy is associated with negative subjective experience in patients taking risperidone or olanzapine. These negative subjective effects may be related to the high discontinuation rates seen in usual practice. Understanding the neurobiological mechanism of these negative subjective experiences and developing antipsychotics with novel (i.e., non D(2)) mechanisms may be critical in improving the treatment of psychosis.  相似文献   

17.
The most frequent problems associated with the older generation of antipsychotic agents are extrapyramidal side effects (EPS) and tardive dyskinesia. Neuroleptic-induced EPS are thought to be caused by blockade of nigrostriatal dopamine tracts resulting in a relative increase in cholinergic activity; tardive dyskinesia is less well understood but is thought to be a supersensitivity response to chronic dopamine blockade. The leading hypothesis for the mechanism of action of the newer generation of atypical antipsychotics is the presence of a high serotonin-to-dopamine receptor blockade ratio in the brain. When serotonergic activity is blocked-as is the case with atypical antipsychotics-dopamine release increases and balances out the dopamine blockade effect at postsynaptic receptor sites, which results in few or no EPS. Prospective data indicate that the risk of tardive dyskinesia in patients taking atypical antipsychotics is less than that for those taking typical antipsychotics. This article reviews the mechanisms of neuroleptic-induced EPS and tardive dyskinesia and discusses the relationship between these movement disorders and atypical antipsychotic agents.  相似文献   

18.
Recently it was demonstrated that sprouting of dopaminergic neurons and a microglial and astrocyte response follows both partial lesions of the substantia nigra pars compacta and blockade of the D2 dopamine receptor. We therefore studied the effects of the combination of these two treatments (lesioning and D2 dopamine receptor blockade). Haloperidol administration caused a 57% increase in dopaminergic terminal tree size (measured as terminal density per substantia nigra pars compacta neuron) and an increase of glia in the striatum. Following small to medium nigral lesions (less than 60%), terminal tree size increased by 51% on average and returned density of dopaminergic terminals to normal. In contrast, administration of haloperidol for 16 weeks following lesioning resulted in reduced dopaminergic terminal density and terminal tree size (13%), consistent with absent or impaired sprouting. Glial cell numbers increased but were less than with lesions alone. When haloperidol was administered after the striatum had been reinnervated through sprouting (16-32 weeks after lesioning), terminal tree size increased up to 150%, similar to the effect of haloperidol in normal animals. By examining the effect of administering haloperidol at varying times following a lesion, we concluded that a switch in the effect of D2 dopamine receptor blockade occurred after dopaminergic synapses began to form in the striatum. We postulate that when synapses are present, D2 dopamine receptor blockade results in increased terminal density, whereas prior to synapse formation D2 dopamine receptor blockade causes attenuation of a sprouting response. We speculate that D2 dopamine receptors located on growth cones 'push' neurites toward their targets, and blockade of these receptors could lead to attenuation of sprouting.  相似文献   

19.
Understanding the action of atypical antipsychotics is useful in exploring the pathophysiology of schizophrenia and in synthesizing drugs that improve various domains of psychopathology without unwanted side effects. In animal models, atypical antipsychotic drugs appear to have a preferential action in the limbic dopaminergic system. Regionally specific action has been studied by measuring the amount of Fos protein produced in a particular brain region as a consequence of a drug's effects on the c-fos gene. Evidence suggests that the atypical and typical antipsychotic drug-induced increases in Fos levels in the nucleus accumbens are related to improvements in positive symptoms, whereas Fos increases in the prefrontal cortex, with the atypical antipsychotics only, correlate with negative symptom improvement. The extrapyramidal effects seen with typical antipsychotics are thought to be related to Fos increases in the striatonigral pathway. However, studies of Fos levels in specific brain regions reveal only the site of action, not the mode of action. The finding that atypicality is related to surmountable D2 dopamine receptor blocking provides another venue to define and explore atypical antipsychotic drug action.  相似文献   

20.
Antipsychotic drugs (APD) are widely prescribed for the treatment of schizophrenia. The APD are differentiated into typical and atypical based on the lower incidence of extra-pyramidal side-effects associated with the newer atypical APD. It was suggested that atypicality may arise from an interaction with the 5-hydroxytryptamine (5-HT)(2) receptor and specifically on the 5-HT(2):dopamine D(2) affinity ratio. It is now realised that multiple subtypes of these receptors exist and that in addition, atypical APD interact with many monoamine receptors. The aim of the present study was to characterise the interaction of APD with a variety of monoamine receptors in terms of both affinity and efficacy. The data produced has highlighted that the atypical profile of APD such as olanzapine and clozapine may reflect antagonism of the 5-HT(2A) and 5-HT(2C) receptors, whilst that of, ziprasidone and quetiapine may reflect partial agonist activity at the 5-HT(1A) receptor, and that of aripiprazole may reflect partial agonist activity at the 5-HT(1A) receptor as well as is its claimed partial agonist activity at the dopamine D(2) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号