首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transdermal delivery of ketoprofen using microemulsions   总被引:23,自引:0,他引:23  
A transdermal preparation containing ketoprofen was developed using O/W microemulsion system. Of the oils tested, oleic acid was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of ketoprofen was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 3% ketoprofen, 6% oleic acid, 30% Labrasol/Cremophor RH 40 (1:1) and water. Terpenes were added to the microemulsion at the level of 5% and their effect on the skin permeation of ketoprofen from the microemulsion was evaluated. Of the four terpenes used, only limonene resulted in a powerful enhancing activity (3-fold increase over control).  相似文献   

2.
In this study, microemulsion microstructures, key formulation variables, and their relationship to drug transdermal permeation enhancement were investigated. A microemulsion system with high water soluble capacity was developed, using isopropyl myristate, Labrasol, and Cremophor EL as oil, surfactant, and co-surfactant, respectively. The microstructures of the microemulsions were characterized by a combination of techniques including electrical conductivity measurement (EC), differential scanning calorimetry (DSC), electro-analytical cyclic voltammetry (CV), dynamic light scattering (DLS). Three microemulsion formulations with the model drugs at water contents of 20%, 40%, and 70% representing the microstructures of W/O, Bi-continuous, and O/W were prepared along the water dilution line of oil to surfactant ratio of 1/9. Skin permeation of hydrophobic and hydrophilic model drugs, ketoprofen, lidocaine, and caffeine in the microemulsion formulations was studied using Franz-cells and dermatomed porcine skin. Permeation of all drugs from microemulsions was enhanced significantly compared with the control propylene glycol formulation. The drug permeation flux and the cumulative permeation amount after 24 h increased with water content in the microemulsions, thus correlated to the formulation microstructures of W/O, Bi-continuous, and O/W. The permeation of lipophilic drugs ketoprofen and lidocaine increased with water content in a more pronounced manner, which seemed to follow an exponential growth trend, while the permeation of hydrophilic drug caffeine appeared to increase linearly. Additionally, at the same water content, increasing oil content led to higher ketoprofen permeation.  相似文献   

3.
Hua L  Weisan P  Jiayu L  Hongfei L 《Die Pharmazie》2004,59(4):274-278
Poorly soluble vinpocetine was selected as the model drug to prepare a microemulsion in order to increase solubility and in vitro transdermal delivery of the drug. Oleic acid was chosen as the oil phase due to its excellent solubilizing capacity. PEG-40 hydrogenated castor oil (Cremophor RH40) was employed as a surfactant (S) and purified diethylene glycol monoethyl ether (Transcutol P) was used as a cosurfactant (CoS). The effects of diverse types of oil, different weight ratios of surfactant to cosurfactant (S/CoS) on the solubility and permeation rate of vinpocetine were investigated. The optimized microemulsion consisted of 1% vinpocetine, 4% oleic acid, 20% Cremophor RH40, 10% Transcutol P and 65% distilled water (w/w), in which drug solubility was about 2,100 fold compared to that in water and the apparent permeation rate across the excised rat skin was 15.0 +/- 2.5 microg/cm2/h. Finally the physicochemical properties of the optimized microemulsion including pH, viscosity, refractive index, conductivity and particle size distribution were examined, which showed stable behavior after more than 12 months at ambient temperature. The irritation study showed that optimized microemulsion was a safe transdermal delivery system.  相似文献   

4.
An ONW microemulsion system was developed to enhance the skin permeability of aceclofenac. Of the oils studied, Labrafil M 1944 CS was chosen as the oil phase of the microemulson, as it showed a good solubilizing capacity. Pseudo-ternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, Cremophor ELP, and co-surfactant, ethanol, for micoemulsion formation. Eight different formulations with various values of oil of 6-30%, water of 0-80%, and the mixture of surfactant and co-surfactant (at the ratio of 2) of 14-70%. The in vitro transdermal permeability of aceclofenac from the microemulsions was evaluated using Franz diffusion cells mounted with rat skin. The level of aceclofenac permeated was analyzed by HPLC and the droplet size of the microemulsions was characterized using a Zetasizer Nano-ZS. Terpenes were added to the microemulsions at a level of 5%, and their effects on the skin permeation of aceclofenac were investigated. The mean diameters of the microemulsions ranged between approximately 10-100 nm, and the skin permeability of the aceclofenac incorporated into the microemulsion systems was 5-fold higher than that of the ethanol vehicle. Of the various terpenes added, limonene had the best enhancing ability. These results indicate that the microemulsion system studied is a promising tool for the percutaneous delivery of aceclofenac.  相似文献   

5.
Chen L  Tan F  Wang J  Liu F 《Die Pharmazie》2012,67(4):319-323
In this study, we aimed to develop thermodynamically stable microemulsion formulations of indomethacin with lower surfactant and cosurfactant contents, to improve drug permeability. Formulations were based on the oil/water microemulsion region of pseudo-ternary phase diagrams. The characteristic parameters (viscosity, diameter, and polydispersity) of the microemulsion formulations were then determined. In vitro permeation studies were performed using Franz diffusion cells. Permeation through mouse skin and skin retention of indomethacin microemulsions and ointment were tested. The cumulative amount of permeated indomethacin and its skin retention were significantly higher in microemulsion formulations compared with ointment. Drug flux and skin retention improved with decreasing droplet diameter of the microemulsions. On the basis of these results, we suggest some possible mechanisms for the enhanced transdermal permeation of drugs in microemulsions, including high drug-loading capacity, permeation enhancement by surfactants and cosurfactants, and smaller droplet diameter. In conclusion, microemulsions represent a novel transdermal delivery vehicle for increasing the solubility and permeability of indomethacin.  相似文献   

6.
Agomelatine is a new antidepressant having very low oral drug bioavailability less than 5% due to being liable to extensive hepatic 1st pass effect. This study aimed to deliver agomelatine by transdermal route through formulation and optimization of microemulsion gel. Pyramidal screening was performed to select the most suitable ingredients combinations and then, the design expert software was utilized to optimize the microemulsion formulations. The independent variables of the employed mixture design were the percentages of capryol 90 as an oily phase (X1), Cremophor RH40 and Transcutol HP in a ratio of (1:2) as surfactant/cosurfactant mixture ‘Smix’ (X2) and water (X3). The dependent variables were globule size, optical clarity, cumulative amount permeated after 1 and 24?h, respectively (Q1 and Q24) and enhancement ratio (ER). The optimized formula was composed of 5% oil, 45% Smix and 50% water. The optimized microemulsion formula was converted into carbopol-based gel to improve its retention on the skin. It enhanced the drug permeation through rat skin with an enhancement ratio of 37.30 when compared to the drug hydrogel. The optimum ME gel formula was found to have significantly higher Cmax, AUC 0–24?h and AUC0–∞ than that of the reference agomelatine hydrogel and oral solution. This could reveal the prosperity of the optimized microemulsion gel formula to augment the transdermal bioavailability of agomelatine.  相似文献   

7.
The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol–Cremophor–RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.  相似文献   

8.
The aim of this study was to evaluate the influence of components such as type, level, and hydrophilic-lipophilic balance (HLB) value of surfactant, type and amount of cosurfactant, and drug concentration on the permeability of buspirone hydrochloride microemulsions through rat skin. The cumulative amount at 24 h ranged from 502.2 ± 57.8 to 1754.3 ± 616.6 μg/cm(2), flux ranged from 23.03 ± 1.84 to 83.36 ± 25.08 μg/(cm(2)/h), and lag time ranged from 3.0 to 4.7 h, indicating that the permeation parameters of buspirone from microemulsions were markedly influenced by the composition of microemulsions. In comparison with the effect of composition of microemulsions on the buspirone permeation capacity, it was found that microemulsions containing surfactant with HLB value of 11.16 possessed higher flux. The viscosity of microemulsions increased, flux decreased, and lag time was prolonged when amount of surfactant in microemulsions increased. The various cosurfactants can also influence the microemulsion formation and drug permeability. The microemulsion with ethanol as cosurfactant had higher permeation rate. However, the buspirone microemulsion with higher flux can provide the therapeutic minimum effective concentration, at workable administrated area about 3.3-5.8 cm(2), demonstrating microemulsions could be a promising drug carrier for transdermal delivery systems.  相似文献   

9.
The skin permeation enhancement of many kinds of drugs and cosmetic substances by microemulsions has been widely known; however, the correlations between microemulsion microstructures and the efficiency of skin permeation are not fully elucidated. Therefore, the aim of our study was to investigate the influence of microemulsion types on in vitro skin permeation of model hydrophobic drugs and their hydrophilic salts. The microemulsion systems were composed of isopropyl palmitate (IPP), water, a 2:1 w/w mixture of Aerosol OT (AOT) and 1-butanol, and a model drug. The concentrations of surfactant mixture and model drug were maintained at 45% and 1% w/w, respectively. The concentrations of IPP and water were 15% and 39% w/w, respectively, for oil-in-water (o/w) type and vice versa for water-in-oil (w/o) type. The samples were prepared by simple mixing and characterized by visual appearance, pH, refractive index, electrical conductivity, viscosity, and determination of the state of water and IPP in the formulations using differential scanning calorimetry. Transdermal flux of lidocaine, tetracaine, dibucaine, and their respective hydrochloride salts from the drug-loaded AOT-based microemulsions through heat-separated human epidermis was investigated in vitro using modified Franz diffusion cells. The o/w microemulsions resulted in the highest fluxes of the model drugs in base form as compared with the other formulations within the same group of drugs. Moreover, the skin permeation of drug from microemulsions depended on drug molecular structure and interaction between drug and surfactant.  相似文献   

10.
蔡霞  吕竹芬  陈燕忠 《中国药房》2010,(33):3121-3123
目的:制备盐酸氟西汀(FLU)微乳并考察其对离体大鼠的透皮能力。方法:筛选空白微乳中表面活性剂、助表面活性剂、油相等的组成及质量比,制备FLU微乳并考察其粒径及分布等指标;用改进的Franz扩散池研究微乳的透皮速率,考察油相含量、混合表面活性剂含量及载药量对透皮吸收的影响以优化处方并进行验证试验。结果:空白微乳组成为肉豆蔻酸异丙酯(IPM)/聚乙二醇羟硬脂酸酯15(SolutolSH15)/聚乙二醇(PEG)400/水;样品平均粒径为44.6nm,呈正态分布,多分散系数为0.317;最优处方为FLU/IPM/SolutolSH15/PEG400/水(1∶9∶20∶20∶39),验证试验中3批样品稳态透皮速率平均值为(128.96±0.32)μg·cm-2·h-1。结论:所制FLU微乳有较强的透皮能力,可进一步开发为FLU的新型透皮给药制剂。  相似文献   

11.
依托泊苷微乳相图的研究   总被引:1,自引:1,他引:1  
目的确定o/w型依托泊苷微乳处方。方法选用油酸、十四酸异丙酯和十六酸异丙酯作为油相,Tween80、Cremophor EL和Cremophor RH40作为表面活性剂,乙醇、1,2-丙二醇、异丙醇、甘油和PEG400为助表面活性剂,通过滴定法绘制伪三元相图,以o/w型微乳区大小为指标筛选处方。结果确定了最终空白微乳处方为Cremophor RH40:乙醇:PEG 400:水:十四酸异丙酯=19.0:19.0:19.0:38.2:4.8(w/w)。结论所选择的微乳处方可以满足依托泊苷载药量的要求。  相似文献   

12.
The potential application of highly biocompatible o/w microemulsions as topical drug carrier systems for the percutaneous delivery of anti-inflammatory drugs, i.e. ketoprofen, was investigated. Microemulsions were made up of triglycerides as oil phase, a mixture of lecithin and n-butanol as a surfactant/co-surfactant system and an aqueous solution as the external phase. To evaluate the percutaneous enhancing effect of oleic acid, this compound was used as a component of some o/w microemulsions. The topical carrier potentialities of lecithin-based o/w microemulsions were compared with respect to conventional formulations, i.e. a w/o emulsion, a o/w emulsion and a gel. Physicochemical characterisation of microemulsions was carried out by light scattering and zeta potential analyses. Microemulsions showed mean droplet size < 35 nm and a negative zeta potential, that is -39.5 mV for the oleic acid-lecithin microemulsion and -19.7 mV for the lecithin-based microemulsion. The percutaneous adsorption of the various topical formulations was evaluated through healthy adult human skin, which was obtained from abdominal reduction surgery. Ketoprofen-loaded microemulsions showed an enhanced permeation through human skin with respect to conventional formulations. No significant percutaneous enhancer effect was observed for ketoprofen-loaded oleic acid-lecithin microemulsions. The human skin tolerability of various microemulsion formulations was evaluated on human volunteers. Microemulsions showed a good human skin tolerability.  相似文献   

13.
The objective of this study was to prepare sodium nonivamide acetate (SNA) microemulsion for topical administration. Microemulsions consisted of a mixed surfactant of Tween 80 and Span 20 as surfactant, ethanol as cosurfactant, isopropyl myristate (IPM) as an oil phase and water as an external phase. The effect of composition of microemulsion including the ratio of oil phase/surfactant/aqueous phase, various cosurfactant and polymer on the character and permeability of microemulsion were evaluated. The mean droplet size of SNA microemulsions ranged from 64 to 208 nm. Microemulsions showed potent enhancement effect for SNA transdermal delivery by a 3.7-7.1-fold increase when compared with the control group. Microemulsion containing ethanol as cosurfactant had the highest enhancement effect. With incorporated polymer, the viscosity of microemulsions increased resulting in the decrease in penetration rate of SNA. However, the permeability of SNA delivered from microemulsion was higher than SNA from volatile vehicles (pH 4.2 buffer containing 25% ethanol) reported in an earlier study, therefore microemulsions could be an effective vehicle for topical delivery of SNA.  相似文献   

14.
Xiao YY  Liu F  Chen ZP  Ping QN 《药学学报》2010,45(11):1440-1446
This study is to prepare the microemulsion-based gel based on the W/O microemulsion and fluorouracil (5-Fu) as a model drug to study the transdermal characterization and observe its skin irritation of the microemulsion-based gel in vitro. IPM acted as oil phase, AOT as surfactant, Tween 85 as cosurfactant, water was added dropwise to the oil phase to prepare W/O microemulsion at room temperature using magnetic stirring, then 5-Fu powder was added. The gelatin was used as substrate to prepare 5-Fu microemulsion-based gel. The permeation flux of 5-Fu from 5-Fu microemulsion-based gel across excised mice skin was determined in vitro using Franz diffusion cell to study the influence of the amount of gelatin and the drug loading capacity. Refer to 5-Fu cream, the irritation of microemulsion and microemulsion-based gel on the rat skin was studied. Based on the water/AOT/Tween 85/IPM microemulsion, only the gelatin can form the microemulsion-based gel. At 25 degrees C, 32 degrees C and 40 degrees C, the amount of gelatin required for the formation of microemulsion-based gel were 7%, 14% and more than 17%, respectively. The 12 h transdermal cumulated permeation amount of 5-Fu from microemulsion-based gel containing 14% gelatin and 0.5% drug loading were (876.5 +/- 29.1) microg x cm(-2), 12.3 folds and 4.5 folds more than 0.5% 5-Fu aqueous solution and 2.5% (w/w) 5-Fu cream, respectively. Microemulsion-based gel exhibited some irritation, but could be subsided after drug withdrawal. Microemulsion-based gel may be a promising vehicle for transdermal delivery of 5-Fu and other hydrophilic drug.  相似文献   

15.

Background and the purpose of the study

Microemulsions are thermodynamically stable, clear dispersions of water, oil, surfactant, and cosurfactant. This study was aimed to develop flurbiprofen microemulsion for enhanced transdermal delivery and investigate the effects of different surfactants and cosurfactants on its delivery and phase behavior.

Method

Various surfactant-cosurfactant mixtures in ratio of 2:1 (Smix) along with oleic acid (oil) were selected and phase diagrams were constructed. Six microemulsions each containing 5% drug, 5% oil, 56% Smix and 34% water, were prepared and compared for their permeation and phase behaviors to determine the effects of the type of Smix.

Results

In vitro transdermal permeation through rabbit skin of all microemulsions was high than saturated aqueous drug solution. Tween 20 and ethanol as Smix produced the highest flux amongst all the Smix, and were used to prepare formulations with different values of oil and Smix. While the type of surfactant did not affect the droplet size, propylene glycol as cosurfactant produced the largest droplets and highest viscosity. Decrease in oil or Smix concentration resulted in decrease of the droplet size and increase in permeation flux while decrease in viscosity also increased the permeation flux of microemulsions. Finally the selected microemulsion formulation comprising 5% flurbiprofen, 5% oleic acid, 46% Tween 20:ethanol (2:1) and 44% water, showed the highest transdermal flux and caused no skin irritation.

Conclusion

Type of surfactant and cosurfactant affect both the phase behavior and transdermal drug delivery of microemulsion; and results of this study showed that they are promising vehicles for improved transdermal delivery and sustained action of flurbiprofen.  相似文献   

16.
Formulation and evaluation of flurbiprofen microemulsion   总被引:1,自引:0,他引:1  
The purpose of the present study was to investigate the microemulsion formulations for topical delivery of Flurbiprofen (FP) in order to by pass its gastrointestinal adverse effects. The pseudoternary phase diagrams were developed and various microemulsion formulations were prepared using Isopropyl Myristate (IPM), Ethyl Oleate (EO) as oils, Aerosol OT as surfactant and Sorbitan Monooleate as cosurfactant. The transdermal permeability of flurbiprofen from microemulsions containing IPM and EO as two different oil phases was analyzed using Keshary-Chien diffusion cell through excised rat skin. Flurbiprofen showed higher in vitro permeation from IPM as compared to that of from EO microemulsion. Thus microemulsion containing IPM as oil phase were selected for optimization. The optimization was carried out using 2(3) factorial design. The optimized formula was then subjected to in vivo anti-inflammatory study and the performance of flurbiprofen from optimized formulation was compared with that of gel cream. Flurbiprofen from optimized microemulsion formulation was found to be more effective as compared to gel cream in inhibiting the carrageenan induced rat paw edema at all time intervals. Histopathological investigation of rat skin revealed the safety of microemulsion formulation for topical use. Thus the present study indicates that, microemulsion can be a promising vehicle for the topical delivery of flurbiprofen.  相似文献   

17.
PURPOSE: To characterize the physicochemical properties of drug-loaded oil-in-water (o/w) and water-in-oil (w/o) Brij 97-based microemulsions in comparison to their blank counterparts and to investigate the influence of microemulsion type on in vitro skin permeation of model hydrophobic drugs and their hydrophilic salts. METHODS: The microemulsion systems were composed of isopropyl palmitate (IPP), water and a 2:1 w/w mixture of Brij 97 and 1-butanol. The samples were characterized by visual appearance, pH, refractive index, electrical conductivity, viscosity and determination of the state of water and IPP in the formulations using differential scanning calorimetry (DSC). Transdermal flux of lidocaine, tetracaine, dibucaine and their respective hydrochloride salts through heat-separated human epidermis was investigated in vitro using modified Franz diffusion cells. RESULTS: The physicochemical properties of drug-loaded microemulsions and their blank counterparts were generally similar; however, slight changes in some physicochemical properties (apparent pH and conductivity) were observed due to the intrinsic properties of the drugs. The o/w microemulsions resulted in the highest flux of lidocaine, tetracaine and dibucaine as compared to the other formulations with in the same group of drugs. CONCLUSIONS: The characterization results showed that incorporation of the model drugs into the microemulsions did not change the microemulsion type. The permeation data exhibited that the nature of the microemulsions was a crucial parameter for transdermal drug delivery. The o/w microemulsions containing hydrophobic drugs provided the highest skin permeation enhancement. In addition, skin permeation was depended on the molecular weight of the model drugs.  相似文献   

18.
Microemulsions are a promising vehicle for administrating drugs. In order to lay the basis for predicting drug release under in vivo conditions, where the microemulsion composition is continuously varying, we have studied the release of ketoprofene as a model drug, from microemulsions on a dilution line containing, initially, 20 wt.% of isopropyl miristate (IPM) and 80 wt.% of the surfactant (Tween 40/co-surfactant (Imwitor 308, 1:1 wt.% mixture. Mixture compositions corresponding to the different types and structure of microemulsion were identified by measuring density, surface tension, electric conductivity, pH and differential scanning calorimetry. Ketoprofene release was then measured for each type and structure. The main factor influencing ketoprofene release was shown to be the strength of the interactions between microemulsion components. Strong interactions prevented rapid ketoprofene release in the water-in oil region, although the release was not dependent on the degree of percolation. Release kinetics in all cases follow zero order kinetics, indicating that the release rate is dependent on the diffusion of ketoprofene inside the microemulsion carrier. Combining different methods to obtain the physical and structural properties of microemulsions can be thus used to predict the release of ketoprofen from a microemulsion.  相似文献   

19.
遗传算法在经皮给药微乳载体处方优化中的应用   总被引:1,自引:0,他引:1  
田青平  李鹏  仇丽霞  谢茵  谢克昌 《药学学报》2008,43(12):1228-1232
以萘普生为模型药物,用遗传算法优化经皮给药微乳载体的处方。用伪三元相图法确定由Tween 80、IPM、乙醇和水组成的微乳区域。用3因素3水平的中心设计法制备载药量为1.12%的萘普生模型微乳,并进行离体兔皮的体外渗透实验。以稳态渗透速率的二次回归模型为目标函数,用遗传算法对中心设计结果进行优化,筛选出具有最大透皮速率的萘普生微乳载体处方。所得优化处方的组成为:21.41% Tween 80、15.17%乙醇、4.14% IPM和59.28%水,预计的稳态渗透速率为183.57 μg·cm-2·h-1。回代试验表明,以优化处方制备的萘普生微乳,其稳态渗透速率的平均值为189.43 μg·cm-2·h-1,高于预测值。结果表明,用遗传算法筛选微乳经皮给药载体处方,方法可行,结果合理、可靠。  相似文献   

20.
董平  吴娟  沙先谊  方晓玲 《药学实践杂志》2010,28(6):418-421,425
目的制备吡罗昔康微乳并考察其体外经皮渗透特性。方法采用Lauroglycol FCC为油相、Labrasol、Cremo-phor EL为表面活性剂、Transcutol P、乙醇为助表面活性剂,绘制伪三元相图,制备吡罗昔康O/W微乳。采用智能透皮实验仪,大鼠背部皮肤作为透皮模型,HPLC测定药物透皮浓度,研究吡罗昔康微乳的透皮特性。结果本实验中微乳较优处方含:吡罗昔康0.5%,Lauroglycol FCC10%,Labrasol、Cremophor EL、Transcutol P各13.3%及水50%,吡罗昔康渗透速率可达10.04±1.73μg/(cm2.h)。结论吡罗昔康微乳有很强的透皮能力,有望成为吡罗昔康的新型透皮给药制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号