首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of all pattern recognition receptors (PRR) in innate immunity, Toll-like receptor 2 (TLR2) recognizes the structurally broadest range of different bacterial compounds known as pathogen-associated molecular patterns (PAMPs). TLR2 agonists identified so far are lipopolysaccharides (LPSs) from different bacterial strains, lipoproteins, (synthetic) lipopeptides, lipoarabinomannans, lipomannans, glycosylphosphatidylinositol, lipoteichoic acids (LTA), various proteins including lipoproteins and glycoproteins, zymosan, and peptidoglycan (PG). Because these molecules are structurally diverse, it seems unlikely that TLR2 has the capability to react with all agonists to the same degree. The aim of this review is to identify and describe well-defined structure-function relationships for TLR2. Because of its biomedical importance and because its genetics and biochemistry are presently most completely known among all Gram-positive bacteria, we have chosen Staphylococcus aureus as a focus. Our data together with those reported by other groups reveal that only lipoproteins/lipopeptides are sensed at physiologically concentrations by TLR2 at picomolar levels. This finding implies that the activity of all other putative bacterial compounds so far reported as TLR2 agonists was most likely due to contaminating highly active natural lipoproteins and/or lipopeptides.  相似文献   

2.
Exposure of macrophages to lipopolysaccharide (LPS) induces a hypo-responsive state to a second challenge with LPS that is termed LPS tolerance. LPS tolerance is also induced by pre-exposure to lipopeptides and lipoteichoic acid, which trigger Toll-like receptor (TLR) 2-mediated signaling. LPS signaling involves at least two pathways: a MyD88-dependent cascade that is essential for production of inflammatory cytokines and a MyD88-independent cascade that mediates the expression of IFN-inducible genes. We analyzed the induction of LPS tolerance by several microbial components in mouse peritoneal macrophages. Pre-exposure to LPS led to impaired activation of both the pathways. In contrast, mycoplasmal lipopeptides did not affect the MyD88-independent pathway, but impaired the MyD88-dependent signaling by inhibiting LPS-mediated activation of IL-1 receptor-associated kinase (IRAK) 1. The induction of LPS tolerance by recently identified TLR ligands was analyzed. Pretreatment with double-stranded RNA, which triggers the activation of TLR3, led to defective activation of the MyD88-independent, but not the MyD88-dependent, pathway. Imidazoquinoline compounds, which are recognized by TLR7, had no effect on the MyD88-independent pathway, but inhibited LPS-induced activation of MyD88-dependent signaling through down-regulation of IRAK1 expression. Thus, each microbial component induced LPS tolerance in macrophages.  相似文献   

3.
Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.  相似文献   

4.
Mycoplasmas are potent macrophage stimulators. We describe the isolation of macrophage-stimulatory lipopeptides S-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTDNNSSQSQQPGSGTTNT and S-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTN derived from the Mycoplasma hyorhinis variable lipoproteins VlpA and VlpC, respectively. These lipopeptides were characterized by amino acid sequence and composition analysis and by mass spectrometry. The lipopeptides S-[2,3-bis(palmitoyloxy)propyl]cysteinyl-GQTNT and S-[2,3-bis(palmitoyloxy)propyl]cysteinyl-SKKKK and the N-palmitoylated derivative of the latter were synthesized, and their macrophage-stimulatory activities were compared in a nitric oxide release assay with peritoneal macrophages from C3H/HeJ mice. The lipopeptides with the free amino terminus showed half-maximal activity at 3 pM regardless of their amino acid sequence; i.e., they were as active as the previously isolated M. fermentans-derived lipopeptide MALP-2. The macrophage-stimulatory activity of the additionally N-palmitoylated lipopeptide or of the murein lipoprotein from Escherichia coli, however, was lower by orders of magnitude. It is concluded that the lack of N-acyl groups in mycoplasmal lipoproteins explains their exceptionally high in vitro macrophage-stimulatory capacity. Certain features that lipopolysaccharide endotoxin and mycoplasmal lipopeptides have in common are discussed. Lipoproteins and lipopeptides are likely to be the main causative agents of inflammatory reactions to mycoplasmas. This may be relevant in the context of mycoplasmas as arthritogenic pathogens and their association with AIDS.  相似文献   

5.
T cell epitopes coupled to a lipid moiety (lipopeptides) may be superior immunostimulants compared to peptide antigens and are currently studied as potential vaccines. The cause of enhanced immunogenicity of lipopeptides is largely unknown but members of the novel family of Toll like receptors (TLR) such as TLR2 and TLR4 have been shown to mediate activation of cells in response to bacterial lipopolysaccharide (LPS) and other lipidated bacterial or viral components. We studied TLR-mediated activation by 14 synthetic lipopeptides corresponding to T cell epitopes on hepatitis C virus (HCV) core in human embryonic kidney cells (HEK293) transiently over-expressing TLR2 and in Ba/F3 mouse bone marrow cells stably transfected with TLR4 and the adaptor molecule MD-2. Stimulation of transfected HEK293 or Ba/F3 cells was measured via luciferase activity as a reporter of nuclear factor kappaB activation. Free peptides, a non-HCV-related lipopeptide as well as LPS and the lipopeptide SK4 were used as controls. Ten of the 14 HCV core lipopeptides stimulated luciferase activity in TLR2-transfected HEK293 cells but not in mock-transfected control cells. Nine of the 14 lipopeptides also stimulated luciferase activity in the TLR4/MD-2 double-transfected Ba/F3 cells but not Ba/F3 control cells. Overall, there was a close statistical correlation between TLR2 and TLR4/MD-2-mediated cell activation by the lipopeptides. In contrast, the corresponding free peptides had no stimulatory effect on TLR2 nor on TLR4/MD-2 transfected cells. Thus, lipopeptides but not their corresponding free peptides can activate cells via TLRs 2 and 4. This activation is apparently affected by the amino acid sequence of the peptide moiety.  相似文献   

6.
7.
The role of lipopolysaccharide (LPS) in the pathogenesis of Gram-negative septic shock is well established. The corresponding proinflammatory and immunostimulatory molecule(s) on the Gram-positive bacteria is less well understood, and its identification and characterization would be a key prerequisite in designing specific sequestrants of the Gram-positive endotoxin(s). We report in this paper the comparison of NF-kappaB-, cytokine- and chemokine-inducing activities of the TLR2 ligands, lipoteichoic acid (LTA), peptidoglycan (PGN), and lipopeptides, to LPS, a prototype TLR4 agonist, in murine macrophage cell-lines as well as in human blood. In murine cells, di- and triacyl liopopeptides are equipotent in their NF-kappaB inducing activity relative to LPS, but elicit much lower proinflammatory cytokines. However, both LPS and the lipopeptides potently induce the secretion of a pattern of chemokines that is suggestive of the engagement of a TLR4-independent TRIF pathway. In human blood, although the lipopeptides induce p38 MAP kinase phosphorylation and CD11b upregulation in granulocytes at ng/ml concentrations, they do not elicit proinflammatory cytokine production even at very high doses; LTA, however, activates neutrophils and induces cytokine secretion, although its potency is considerably lower than that of LPS, presumably due to its binding to plasma proteins. We conclude that, in human blood, the pattern of immunostimulation and proinflammatory mediator production elicited by LTA parallels that of LPS.  相似文献   

8.
Discrimination of bacterial lipoproteins by Toll-like receptor 6.   总被引:20,自引:0,他引:20  
Bacterial lipoproteins (BLP) trigger immune responses via Toll-like receptor 2 (TLR2) and their immunostimulatory properties are attributed to the presence of a lipoylated N-terminus. Most BLP are triacylated at the N-terminus cysteine residue, but mycoplasmal macrophage-activating lipopeptide-2 kD (MALP-2) is only diacylated. Here we show that TLR6-deficient (TLR6(-/-)) cells are unresponsive to MALP-2 but retain their normal responses to lipopeptides of other bacterial origins. Reconstitution experiments in TLR2(-/-) TLR6(-/-) embryonic fibroblasts reveal that co-expression of TLR2 and TLR6 is absolutely required for MALP-2 responsiveness. Taken together, these results show that TLR6 recognizes MALP-2 cooperatively with TLR2, and appears to discriminate between the N-terminal lipoylated structures of MALP-2 and lipopeptides derived from other bacteria.  相似文献   

9.
We recently separated a PG1828-encoded triacylated lipoprotein (Pg-LP), composed of two palmitoyl and one pentadecanoyl groups at the N-terminal of glycerocysteine from Porphyromonas gingivalis, a periodontopathic bacteria, and found that Pg-LP exhibited definite biological activities through Toll-like receptor (TLR) 2. In the present study, we synthesized 12 different Pg-LP N-terminal peptide moieties (PGTP) using four combinations of glyceryl (R and S) and cysteinyl (l and d) stereoisomers, and three different acyl group regioisomers, N-pentadecanoyl derivative (PGTP1), S-glycero 2-pentadecanoyl derivative (PGTP2) and S-glycero 3-pentadecanoyl derivative (PGTP3). All the PGTP compounds (RL, SL, SD, RD) tested showed TLR2-dependent cell activation. The activating capacities of the PGTP-R compounds were more potent than those of the PGTP-S compounds, whereas there were no differences between the PGTP-L and -D compounds. Furthermore, the production of interleukin (IL)-6 following stimulation with the PGTP1-RL, PGTP2-RL and PGTP3-RL compounds was impaired in peritoneal macrophages from TLR2 knock-out (KO), but not those from TLR1 KO or TLR6 KO mice. These results suggest that P. gingivalis triacylated lipopeptides are capable of activating host cells in a TLR2-dependent and TLR1-/TLR6-independent manner, and the fatty acid residue at the glycerol position in the PGTP molecule plays an important role in recognition by TLR2.  相似文献   

10.
Characterization of group N streptococcus lipoteichoic acid.   总被引:8,自引:5,他引:8       下载免费PDF全文
Lipoteichoic acid was extracted from the group N organism Streptococcus lactis ATCC 9936 with hot aqueous phenol and purified by gel chromatography followed by affinity chromatography using Ricinus communis lectin as the specific absorbent. The teichoic acid moiety of the lipoteichoic acid was calculated to contain 16 to 17 glycerol phosphate units, approximately half of which were substituted with alpha-D-galactosyl residues; the glycolipid moiety contained O-alpha-D-glucosyl-1 yields 2-O-alpha-D-glucosyl-1 yields 1-glycerol. The finding of 2-O-alpha-D-galactosyl glycerol in the lipid fraction of hydrofluoric acid hydrolysates suggests that fatty acids also occur as substituents on the main chain of the lipoteichoic acid. The reactivity of the lipoteichoic acid with R. communis lectin was studied by the quantitative precipitin method and compared with the reactivity of Lactobacillus fermenti lipoteichoic acid, which has a lower degree of alpha-D-galactosyl substitution. Group N antiserum reacted strongly with the S. lactis lipoteichoic acid and cross-reacted with L. fermenti lipoteichoic acid. From inhibition studies it is concluded that the antibodies are specific for alpha-D-galactosyl substituents. In addition to lipoteichoic acid, a fraction was obtained by gel chromatography which contained galactose and reacted with group N antiserum but could be distinguished from the lipoteichoic acid by immunoelectrophoresis.  相似文献   

11.
12.
Fatty acids of various chain lengths (C(1) to C(24)) were examined for their effects on growth, oxygen consumption, and in vitro reduced nicotinamide adenine dinucleotide oxidase activity of Neisseria gonorrhoeae CS-7. The growth inhibition caused by saturated fatty acids increased with increasing chain length to a maximum with palmitic acid (C(16)). Stearic acid (C(18)) and longer saturated fatty acids showed little inhibition of growth. However, unsaturated fatty acids of chain length C(16) to C(20) were inhibitory. Similar inhibition was observed with Bacillus subtilis and a deep rough mutant of Salmonella typhimurium. Wildtype S. typhimurium and Pseudomonas aeruginosa were more resistant to medium-chain (C(7) to C(10)) fatty acids and completely resistant to long-chain (C(12) to C(18)) fatty acids. Thus, sensitivity of N. gonorrhoeae to long-chain fatty acids appears to be related to the permeability of the outer membrane. Growth inhibition by short-chain (C(1) to C(6)) fatty acids was pH dependent; inhibition of growth increased with decreasing pH. Saturated fatty acids inhibited oxygen consumption by log-phase cells of N. gonorrhoeae. This inhibition increased with increasing chain length to a maximum observed with myristic acid (C(14)). Whereas stearic acid (C(18)) had little effect upon oxygen consumption, unsaturated C(18) fatty acids were inhibitory. An in vitro inhibition of reduced nicotinamide adenine dinucleotide oxidase activity by saturated (C(1) to C(12)) and unsaturated (C(16) to C(20)) fatty acids was also observed. Although the inhibitory concentrations were generally higher than those required to inhibit growth or oxygen consumption, an inhibition of electron transport may be partially responsible for the observed growth inhibition.  相似文献   

13.
Mammalian fatty acid synthase (FASE) overexpression has been shown in a number of human malignancies including colonic adenocarcinoma. Since FASE synthesizes only saturated fatty acids, we hypothesized that cancer cells have a greater proportion of long-chain saturated fatty acids. We studied and found an unequivocal increase in saturated C18 fatty acid (stearic acid) in colonic adenocarcinoma compared to adjacent normal colonic mucosa. The increase is even more striking when measured as a ratio of stearic acid to the unsaturated C18 fatty acids (oleic acid and linoleic acid). This change in fatty acid composition of the cancer cells should significantly alter their physical and biological properties. The increase in relative proportion of saturated fatty acids should make the cancer cells more susceptible to cryodamage and measurement of fatty acid composition of cancer cells may help individualize the temperature for cryotherapy. Also, the lipid alterations may affect the structure and functions of lipid rafts, which may enable the cancer cells to affect signaling mechanisms such as those involved in cell growth and apoptosis. Dietary or therapeutic interventions targeting lipid rafts may thus be an option for cancer treatment.  相似文献   

14.
It has recently been shown by Chang et al. (J Immunol 2000;165:3584-91) that the maturation of dendritic cells (DC) in the presence of long-chain fatty acids redirects DC into Th0/Th2-inducing cells suggesting the involvement of a receptor for long-chain fatty acids like members of the peroxisome proliferator-activated receptors (PPAR) superfamily. Here, we show that immature and mature monocyte-derived DC (Mo-DC) express PPARalpha, PPARdelta, PPARgamma1 and PPARgamma2 mRNA with the highest level of PPARgamma1 mRNA. We were only able to observe the expression of PPARgamma1 protein by Western blotting probably because the protein level of the other subtypes is below the detection limit. Synthetic ligands specific for PPARalpha, PPARdelta or PPARgamma added at day 0-6 have similar effect on the maturation of Mo-DC driving the maturation of Mo-DC with atypical phenotype, reduced expression of IL-10, IL-12 p35 and IL-12 p40 mRNA and with reduced stimulatory effects in mixed leucocyte reaction (MLR). Our data suggest that naturally occurring PPAR ligands like fatty acids and fatty acid derivates have anti-inflammatory effects by redirecting DC into a less stimulatory mode.  相似文献   

15.
Altered D-glucose metabolism prevails in the soleus muscle of rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3). In these animals, the prior intravenous injection of an omega3-rich medium-chain triglyceride:fish oil emulsion (omega3-FO rats), as compared to that of an omega3-poor medium-chain triglyceride:olive oil emulsion (omega3-OO rats), may either correct or aggravate selected metabolic variables. This study deals with the fatty acid pattern of soleus phospholipids and triglycerides in control animals versus omega3-depleted rats not injected with any lipid emulsion (omega3-NI rats) and in omega3-OO versus omega3-FO rats. In each group of omega3-depleted rats, age-related changes were also monitored. The omega3-depleted rats displayed low long-chain polyunsaturated omega3 fatty acid content, facilitated metabolism of long-chain polyunsaturated omega6 fatty acids, and increased Delta9-desaturase activity. Both the age-related changes in lipid variables and those attributable to the prior intravenous injection of the omega3-rich lipid emulsion consisted either in a move towards normalization or in the opposite direction, i.e. towards aggravation of the defect found in the omega3-depleted rats. Emphasis is placed, therefore, on the unusual situation found in the soleus muscle of omega3-depleted rats, in which both lipid and metabolic variables may be either favourably or adversely affected by the same environmental factor(s).  相似文献   

16.
The differentiation of carnitine-acylcarnitine translocase deficiency (CACT) from carnitine palmitoyltransferase type II deficiency (CPT-II) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency from mitochondrial trifunctional protein deficiency (MTP) continues to be ambiguous using current acylcarnitine profiling techniques either from plasma or blood spots, or in the intact cell system (fibroblasts/amniocytes). Currently, enzyme assays are required to unequivocally differentiate CACT from CPT-II, and LCHAD from MTP. Over the years we have studied the responses of numerous FOD deficient cell lines to both even and odd numbered fatty acids of various chain lengths as well as branched-chain amino acids. In doing so, we discovered diagnostic elevations of unlabeled butyrylcarnitine detected only in CACT deficient cell lines when incubated with a shorter chain fatty acid, [7-2H3]heptanoate plus l-carnitine compared to the routinely used long-chain fatty acid, [16-2H3]palmitate. In monitoring the unlabeled C4/C5 acylcarnitine ratio, further differentiation from ETF/ETF-DH is also achieved. Similarly, incubating LCHAD and MTP deficient cell lines with the long-chain branched fatty acid, pristanic acid, and monitoring the C11/C9 acylcarnitine ratio has allowed differentiation between these disorders. These methods may be considered useful alternatives to specific enzyme assays for differentiation between these long-chain fatty acid oxidation disorders, as well as provide insight into new treatment strategies.  相似文献   

17.
The Streptococcus mutans GS5 glucosyltransferase activities (both water-soluble and -insoluble glucan-synthesizing fractions) were inhibited by purified lipoteichoic acid. In vitro sucrose-dependent colonization of smooth surfaces by strain GS5 was also markedly reduced in the presence of the amphipathic molecules. The inhibition of soluble glucan synthesis by lipoteichoic acid appeared to be competitive with respect to both sucrose and primer dextran T10. These inhibitory effects were dependent on the presence of the fatty acid components of lipoteichoic acid since deacylated lipoteichoic acids did not inhibit glucosyltransferase activity. However, the deacylated molecules did interact with the enzymes since deacylated lipoteichoic acid partially protected the enzyme activity against heat inactivation and also induced the formation of high-molecular-weight enzyme complexes from the soluble glucan-synthesizing fraction. The presence of teichoic acid in high-molecular-weight aggregates of glucosyltransferase isolated from the culture fluids of strain GS5 was suggested by the detection of polyglycerophosphate in these fractions. In addition to strain GS5, two other organisms containing polyglycerophosphate teichoic acids, Lactobacillus casei and Lactobacillus fermentum, were demonstrated to bind glucosyltransferase activity. These results are discussed relative to the potential role of teichoic acid-glucosyltransferase interactions in enzyme binding to the cell surface of S. mutans and the formation of high-molecular-weight enzyme aggregates in the culture fluids of the organism.  相似文献   

18.
Bacterial lipopeptides represent a group of bacterial compounds able to trigger the functions of cells of the innate immune response. Whereas diacylated lipopeptides are recognized by TLR2/6 dimers, triacylated lipopeptides were shown to act via TLR2/1 dimers. Although several previous studies dealt with the effect of the TLR2/1 ligand Pam3CysSK4 on neutrophil granulocytes (PMN), it is still not clear whether TLR2/6 ligand lipopeptides can directly influence PMN functions. In the present study we used highly purified human neutrophils to investigate the direct effects of the diacylated mycoplasmal macrophage activating lipopeptide-2 (MALP-2) on the function of neutrophil granulocytes. After exposure to 10 ng/ml MALP-2 neutrophils acquired activated cell shape, secreted IL-8 and MIP-1β and their phagocytic capacity was enhanced. Analysis of cell surface activation markers confirmed the activating effect of MALP-2, the expression of CD62L was downregulated whereas CD11b was upregulated on PMN after exposure to MALP-2. The constitutive apoptosis of PMN was inhibited after exposure to MALP-2. However, MALP-2 exerted only a short-term effect on the apoptosis of resting neutrophils, a longer lasting effect was observed after transendothelial migration. MALP-2 did not directly induce the production of reactive oxygen intermediates but primed PMN for a fMLP-induced oxidative burst. The migration of neutrophils was enhanced after treatment with MALP-2. This was due, however, to a chemokinetic rather than to a chemotactic effect. Pam3CysSK4 also activated PMN, but in comparison to MALP-2, at higher concentrations. These findings suggest that diacylated lipopeptides are important microbial structures recognized by and acting on neutrophil granulocytes.  相似文献   

19.
Toll-like receptors (TLRs) are widely expressed in the innate immune system. They recognize conserved microbial ligands such as bacterial lipopolysaccharide, lipopeptides or viral and bacterial RNA and DNA. TLRs play an essential role in innate immune responses and in the initiation of adaptive immune responses. However, certain TLRs are also expressed in T lymphocytes, and the respective ligands can directly modulate T cell function. TLR2, TLR3, TLR5 and TLR9 act as co-stimulatory receptors to enhance proliferation and/or cytokine production of T-cell receptor-stimulated T lymphocytes. In addition, TLR2, TLR5 and TLR8 modulate the suppressive activity of naturally occurring CD25(+)CD4(+) regulatory T cells. The direct responsiveness of T lymphocytes to TLR ligands offers new perspectives for the immunotherapeutic manipulation of T cell responses.  相似文献   

20.
Polypropylene glycol (PPG) is commonly added to bacterial cultures to avoid foaming. However, lipoteichoic acid (LTA) from bacteria grown with PPG lacked cytokine-inducing potency in human blood. We tested the blocking efficacy of several glycols on the cytokine response to staphylococcal LTA in human blood. PPG 1200 was the most potent inhibitor tested, shown for TNF, IL-1beta, IL-6, IL-8, IL-10 and TGF-beta induction, and displayed no cytotoxic effects. TNF induction by Staphylococcus aureus or by Toll-like receptor (TLR)2 agonists (di- and triacylated lipopeptides and LTA) was also inhibited by PPG 1200, but not that induced by Escherichia coli or TLR4 agonists. In flow cytometric studies, PPG-carrying nanobeads bound more rhodamine-labeled LTA than those with glycerol. Additionally, the methyl group peak in the (1)H-NMR of LTA shifted after incubation with increasing PPG 1200 concentrations. Sequential incubation of polystyrene plates with LTA, then PPG 1200 and then blood, with washing steps in between, showed that LTA-induced TNF release was inhibited. But when PPG 1200 was pre-incubated with blood that was washed before LTA was added, TNF induction was not repressed, demonstrating that PPG binds LTA and not cellular structures. In summary, PPG 1200 is a novel inhibitor of cytokine induction by TLR2 agonists, which interferes directly with the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号