首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的 探讨与β珠蛋白基因紧密连锁的多态性位点HumTH01在β地中海贫血(β地贫)植入前遗传学诊断(preimplantation genetic diagnosis,PGD)中的作用。方法 对4例已出生重型β地贫患儿的、双方均为β地贫基因携带者的夫妇进行了6个周期的PGD治疗,应用多重巢式PCR同时检测β珠蛋白基因及HumTH01基因,选择健康的胚胎移植入子宫。结果 6个周期共活检44个胚胎,获得44个卵裂球,其中41个卵裂球扩增成功,35个胚胎经PCR分析后获得明确诊断,移植了14个胚胎,获得1例临床妊娠。孕17周时经脐带血穿刺,证实为完全正常胚胎,现已出生一正常女婴。单个卵裂球平均扩增效率为89.7%,等位基因脱扣(allele drop-out,ADO)率为14.4%。HumTH01基因可以帮助检测出ADO及污染的发生。结论 本研究为国内首次报道应用多重巢式PCR同时检测β珠蛋白基因及HumTH01基因对β地贫进行植入前遗传学诊断并成功获得临床妊娠。在PGD中同时检测与β珠蛋白基因紧密连锁的多态性位点可以降低PGD中由于ADO及污染造成的误诊的风险。  相似文献   

2.
One major limitation of pre-implantation genetic diagnosis (PGD) practice comes from the need to develop single cell PCR protocols. For a disease such as cystic fibrosis (CF), for which almost 1000 mutations have been identified, the development of a mutation based PGD protocol is impracticable. An elegant way to overcome this problem is to set up an indirect diagnosis using polymorphic markers allowing the identification of the pathogenic haplotype instead of the mutation. We present here a new PGD protocol for CF. Our strategy is based on a multiplex fluorescent PCR co-amplifying the DeltaF508 mutation and two CFTR intragenic polymorphic microsatellites (IVS8CA and IVS17bCA). Such an approach is justified since in 91% of the cases at least one partner of the couple carries the DeltaF508 mutation. The use of intragenic markers reduces the risk of misdiagnosis due to meiotic recombination. In 97% of the single lymphoblasts (151/155) tested a PCR signal was obtained. A complete haplotyping was achieved in 137/151 (91%) lymphoblasts and a 6% rate of allele drop out (ADO) was observed. Three cases were performed. Case one was at risk of transmitting mutations DeltaF508 and R1162X, case 2 DeltaF508 and R1066C and case 3 DeltaF508 and 1341+1A. Considering these three cases and the re-analysis of the affected embryos, we have analysed 62 blastomeres from which we had PCR signal for 58 (94%) and a complete haplotype for 49 (84%). With the degree of polymorphism of the markers used in this work (48 and 39%) and the fact that we co-amplified the F508 locus our test should be suitable for nearly 80% of the couples requesting PGD for CF. This fluorescent multiplex PCR indirect diagnosis provides also a safer test since it allows the confirmation of the diagnosis, the detection of contamination and could give an indication on the ploidy of the embryos tested.  相似文献   

3.
Cystic fibrosis (CF) is one of the most important genetic diseases requiring prevention programmes. Preimplantation genetic diagnosis (PGD) represents an alternative to prenatal diagnosis, and is especially appropriate for couples with an unsuccessful reproductive history. For clinical application, protocols must be optimized to minimize PCR failure, allelic drop-out (ADO) and contamination, while simultaneously detecting a wide spectrum of CF genotypes. We have developed a flexible multiplex PCR protocol allowing analysis of sequence variations in any combination amongst seven CFTR gene exons (4, 10, 11, 13 in two parts, 14b, 17b and 21) by nested PCR and denaturing gradient gel electrophoresis analysis, along with analysis of a fluorescently labelled intragenic microsatellite (IVS8CA). The experiments were carried out on 390 single lymphocytes from three CF patients, one heterozygote and one non-CF individual. PCR efficiency of the exons ranged from 90 to 100%, and ADO from 0 to 3.8%. IVS8CA was co-amplified with a PCR efficiency of 92.4 and 10.8% ADO. The present method overcomes the need for separate assays for each CFTR gene mutation. Additionally, it facilitates analysis of any informative linked polymorphic sequence variation (within the seven exons) along with analysis of a microsatellite, which is useful (when informative) for minimizing misdiagnosis and/or indirect diagnosis. This method proved robust and flexible for diagnosing diverse CF genotype combinations in single cells.  相似文献   

4.
Cystic fibrosis (CF) is an autosomal recessive disease characterized by obstruction and chronic infection of the respiratory tract and pancreatic insufficiency. The first preimplantation genetic diagnosis (PGD) for CF was carried out in 1992. At our centre the first cycle was performed in 1993. However, the number of known CF mutations is >1000, so developing mutation-specific PCR protocols for PGD is unfeasible. This is why a number of marker-based duplex PCRs were developed at the single cell level. A duplex PCR of a mutation and one or two microsatellites is not only a diagnostic tool, but it can also be used as a control for allele drop-out and contamination. During PGD, embryos obtained in vitro are analysed for the presence or absence of a particular genetic disease, after which only embryos shown to be free of this disease are returned to the mother. In total, 22 PGD cycles with duplex PCR (IVS8CA/IVS17BTA, DeltaF508/IVS8CA, DeltaF508/IVS17BTA and D7S486/D7S490) were carried out in 16 couples, which resulted in four ongoing pregnancies and one miscarriage.  相似文献   

5.
This study is part of a strategy aimed at using fluorescent polymerase chain reaction (PCR) on informative genetic microsatellite markers as a diagnostic tool in preimplantation genetic diagnosis (PGD) of severe monogenic disease. Two couples, both of whom had previously had children who were compound heterozygote for severe cystic fibrosis mutations, were offered PGD using fluorescent PCR of the highly polymorphic cystic fibrosis transmembrane conductance regulator (CFTR) intragenic microsatellite marker IVS17bTA. Cleavage-stage embryo biopsy followed by PCR resulted in transfer of one unaffected carrier embryo for each couple. This approach eliminates the need for single cell multiplex PCR strategies to detect CF compound heterozygotes. It also provides a control of chromosome 7 ploidy in the blastomeres and a selection against allele dropout by positive detection of each CFTR copy of all genotypes in preimplantation embryos from genetically informative families.  相似文献   

6.
BACKGROUND: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder caused by mutations in the neurofibromin gene. Approximately, 50% of cases are caused by de-novo mutations. Even when the NF1 mutation is known, accuracy of PGD is highly enhanced by simultaneous analysis of linked markers. In a childless couple referred to PGD, the male carried a de-novo mutation, precluding the possibility of typing relatives to establish the mutation-associated haplotype. We developed a single-sperm haplotype analysis strategy to establish the haplotype linked to the NF1 mutation. METHODS: Spermatozoa from freshly ejaculated semen were used as a substrate for multiplex PCR on single sperm. RESULTS: In addition to the NF1 mutation, six informative polymorphic markers flanking the NF1 gene (D17S1294, D17S1849, D17S841, D17S975, NF1TG2 and NF1AC5) were linked to individual alleles in single sperm from the affected male. CONCLUSIONS: Single-sperm analysis established the haplotypes of both mutant and wild-type NF1 alleles and enabled the implementation of a PGD protocol using polymorphic marker analysis. This method is generally applicable to PGD for any disease in which the haplotype of paternal mutations cannot be determined by typing relatives.  相似文献   

7.
BACKGROUND: We report the first attempts at preimplantation genetic diagnosis (PGD) and IVF and their accompanying difficulties for achondroplasia (ACH) patients. METHODS: A PGD test was developed using fluorescent single cell PCR on lymphoblasts from patients and controls and from blastomeres from surplus IVF embryos. A specific digestion control based on the use of two fluorochromes was elaborated. Ovarian stimulation and oocyte retrieval were carried out using conventional protocols. RESULTS: We performed 88 single cell tests for which amplification was obtained in 86 (97.7%) single lymphoblasts. Allele drop out (ADO) was observed in two out of 53 (3.7%) heterozygous lymphoblasts. If we combine the results from the blastomere testing from surplus embryos with those from PGD cycles and re-analysis after PGD, we obtained a PCR signal in 84% of cases of which 91% were correctly diagnosed at the G380 locus. A total of six cycles were performed resulting in three embryo transfers. We observed difficulties in ovarian stimulation and oocyte retrieval with affected female patients. No pregnancy was obtained. CONCLUSION: A PGD test for ACH is now available at our centre but our initial practice raises questions on the feasibility of such a test, specially with affected female patients.  相似文献   

8.
Sickle-cell and beta-thalassemia syndromes are priority genetic diseases for prevention programs involving population screening with the option of prenatal diagnosis for carrier couples. Preimplantation genetic diagnosis (PGD) represents a specialized alternative to prenatal diagnosis and is most appropriately used for couples with an unsuccessful reproductive history and/or undergoing assisted reproduction. However, clinical application of PGD has been hindered by difficulties in reliably transferring molecular diagnostic protocols to the single-cell level. We standardized and validated a protocol involving first-round multiplex PCR, amplifying the region of the beta-globin gene containing most of the common disease mutations world-wide and two unlinked microsatellite markers (GABRB3 and D13S314), followed by: 1) analysis of beta-globin genotypes with real-time PCR and 2) microsatellite sizing to exclude chance contamination. The protocol was standardized on 100 single lymphocytes from a beta-thalassemia heterozygote, including 15 artificially contaminated samples, the latter demonstrated through microsatellite analysis. PCR failure and allele drop-out (ADO) were observed in one (uncontaminated) sample each (1.2%). A pilot study in six clinical PGD cycles with five different beta-globin genotype interactions achieved results (in 5-6 hr) in 46 out of 50 single blastomeres (92%), all concordant with results from an established PGD method applied simultaneously; microsatellite analysis detected only parental alleles, excluding contamination. Beta-globin genotypes were also confirmed in two blastomeres through prenatal diagnosis (twin pregnancy), and in 11 out of 12 spare embryos, revealing one incident of ADO. Overall, the protocol proved to be sensitive, accurate, reliable, rapid, and applicable for many genotype interactions, with internal monitoring of contamination, thus fulfilling all requirements for clinical PGD application.  相似文献   

9.
Preimplantation genetic diagnosis (PGD) for monogenic diseases is widely applied, allowing the transfer to the uterus of healthy embryos. PGD is also employed for the detection of chromosome abnormalities for couples at high risk of producing aneuploid embryos, such as advanced maternal (>35 years). A significant number of patients requesting PGD for monogenic diseases are also indicated for chromosome testing. We optimized and clinically applied a PGD protocol permitting both cytogenetic and molecular genetic analysis. A couple, carriers of two cystic fibrosis (CF) mutations (c.3849 + 10 KbC > T and c.3408C > A) with a maternal age of 38 years and two previously failed IVF-PGD cycles, was enrolled in the study. After ovarian stimulation, six oocytes were obtained. To detect abnormalities for all 23 chromosomes of the oocyte, the first polar body (1PB) was biopsied from five of the oocytes and analyzed using comparative genomic hybridization (CGH). CGH analysis showed that 1PB 1 and 1PB 4 were aneuploid (22X,-9,-13,+19 and 22X,-6, respectively), while 1PB 2, 1PB 3 and 1PB 6 were euploid. Blastomere biopsy was only applicable on embryos formed from Oocyte 3 and Oocyte 6. After whole-genome amplification with multiple displacement amplification, a multiplex PCR, amplifying informative short tandem repeats (D7S1799; D7S1817) and DNA fragments encompassing the mutation sites, was performed. MiniSequencing was applied to directly detect each mutation. Genetic diagnosis showed that Embryo 6 was affected by CF and Embryo 3 carried only the c.3849 + 10 KbC > T mutation. Embryo 3 was transferred achieving pregnancy and a healthy boy was born. This strategy may lead to increased pregnancy rates by allowing preferential transfer of euploid embryos.  相似文献   

10.
Preimplantation genetic diagnosis (PGD) of single gene disorders relies on PCR-based tests performed on single cells (polar bodies or blastomeres). Despite the use of increasingly robust protocols, allele drop-out (ADO; the failure to amplify one of the two alleles in a heterozygous cell) remains a significant problem for diagnosis using single cell PCR. In extreme cases ADO can affect >40% of amplifications and has already caused several PGD misdiagnoses. We suggest that an improved understanding of the origins of ADO will allow development of more reliable PCR assays. In this study we carefully varied reaction conditions in >3000 single cell amplifications, allowing factors influencing ADO rates to be identified. ADO was found to be affected by amplicon size, amount of DNA degradation, freezing and thawing, the PCR programme, and the number of cells simultaneously amplified. Factors found to have little or no affect on ADO were local DNA sequence, denaturing temperature (94 or 96 degrees C) and cell type. Consideration of the causal factors identified during this study should permit the design of PGD protocols that experience little ADO, thus improving the accuracy of PGD for single gene disorders.  相似文献   

11.
A great majority of patients seeking preimplantation genetic diagnosis (PGD) are women >35 years of age. In addition to being carriers for single gene defects, these women also have a higher risk of having children with Down's syndrome (trisomy 21). For these patients, it would be advantageous if a diagnostic test for trisomy 21 was developed, which could be used in conjunction with tests for single gene defects. Here, we assessed the feasibility of developing an accurate genetic test for diagnosing trisomy 21 and the mutation causing spinal muscular atrophy (SMA) in single cells using multiplex fluorescence polymerase chain reaction (PCR). Single- and two-round PCR were developed using a combination of primers for the survival motor neuron (SMN) gene exons 7 and 8 and two chromosome 21 short tandem repeats (STRs), D21S226 and D21S11. After only 36 cycles, 88 and 68% of normal single cells were screened for SMA mutations and trisomy 21 respectively. In multiplex PCR using only two primers (SMN exon 7 and D21S11) instead of four, the efficiency of SMA diagnosis was increased to 93%. In the same reactions, the D21S11 alleles were detected in 83% of the normal single cells. Clinical applications of this assay should enable detection of those embryos that have inherited three heterozygous alleles and, therefore, benefit many PGD patients who are at an increased risk of Down's syndrome.  相似文献   

12.
Huntington's disease (HD) is a late-onset neurodegenerative disorder transmitted as an autosomal dominant trait. The causative mutation was characterised in 1993. For HD carriers willing to create a family, prenatal diagnosis (PND) or preimplantation genetic diagnosis (PGD) based on the mutation identification can be offered. For at-risk persons who do not want to undergo presymptomatic testing (PT), an exclusion test can be proposed. With such a test, only foetuses or embryos that inherit an allele from the unaffected grandparent are considered as unaffected. In cases of PND, if the foetus has one allele of the affected grandparent, termination of pregnancy is proposed. In cases of PGD, only not at-risk embryos are transferred. Since the beginning of our PGD activity, we have had 43 PGD referrals for HD, of which 24 were from patients who know their genetic status and 19 from patients who do not wish to perform PT. We have developed 12 multiplex fluorescent PCR protocols applied at the single-cell level for PGD, some of which target the CAG repeat while others use two different polymorphic microsatellites. We present here these different protocols and their clinical applications, as well as the characterisation and use of a new highly polymorphic intragenic marker. Between May 2001 and December 2003, 39 PGD cycles have been performed for 17 couples, 11 of whom had a known genetic status and six who did not wish to perform PT, resulting in four pregnancies.  相似文献   

13.
DNA fingerprinting of sister blastomeres from human IVF embryos   总被引:2,自引:0,他引:2  
BACKGROUND: Previously published single cell DNA fingerprinting systems have been plagued by high rates of allele drop-out (ADO) and preferential amplification (PA) preventing clinical application in preimplantation genetic diagnosis. METHODS: Tetranucleotide microsatellite markers with high heterozygosity, known allelic size ranges and minimal PCR stutter artefacts were selected for chromosomes X, 13, 18 and 21 and optimized in a multiplex fluorescent (FL)-PCR format. FL-PCR products were analysed using the ABI Prism 377 DNA sequenator and Genescan software. Validation of the DNA fingerprinting system was performed on single diploid (n = 50) and aneuploid (n = 25) buccal cells and embryonic blastomeres (n = 21). RESULTS: The optimized pentaplex PCR DNA fingerprinting system displayed a high proportion of successful amplifications (>91%) and low ADO and PA (<6%) when assessed on 50 human buccal cells. DNA fingerprints of single cells from a subject with Down's syndrome detected the expected tri-allelic pattern for the chromosome 21 marker, confirming trisomy 21. In a blind study on 21 single blastomeres, all embryos were identifiable by their unique DNA fingerprints and shared parental alleles. CONCLUSIONS: A highly specific multiplex FL-PCR based on the amplification of five highly polymorphic microsatellite markers was developed for single cells. This finding paves the way for the development of a more complex PCR DNA fingerprinting system to assess aneuploidy and single gene mutations in IVF embryos from couples at genetic risk.  相似文献   

14.
We report an improvement in the PGD test for fragile X syndrome (FXS). Recently, multiple displacement amplification (MDA) has been reported to yield large amounts of DNA from single cells. Taking into account this technique, we developed a new PGD test for FXS, enabling combined analysis of linked polymorphic markers with the study of the non-expanded CGG repeat. Single cell amplification efficiency was first assessed on single lymphocytes. Amplification rate of the different markers ranged from 85 to 95% with an allele drop-out (ADO) rate comprised between 7 and 34%. Using this test, eight PGD cycles were carried out for six couples, and 37 embryos were analysed after preliminary MDA. Amplification rate was increased by this technique from 41 to 66% so that embryos with no results were rarer (14 versus 45% without MDA). Reliability of the test was considerably improved by combining direct with indirect genetic analysis. Furthermore, in cases of fully expanded alleles too large to be amplified by PCR, this test gives an internal amplification control. Embryonic transfers were carried out in all but one PGD cycles. One biochemical and one clinical pregnancy resulted, and a healthy child was born. This single diagnosis procedure could be suitable to most patients carrying FXS.  相似文献   

15.
Spinocerebellar ataxia 3 (SCA3) is an autosomal dominant neurodegenerative disorder characterized by variable expression and a variable age of onset. SCA3/MJD (Machado-Joseph disease) is caused by an expansion of a (CAG)(n) repeat in the MJD1 gene on chromosome 14q32.1. A single cell PCR protocol has been developed for preimplantation genetic diagnosis (PGD) of SCA3 to select unaffected embryos on the basis of the CAG genotype. Single leukocytes and blastomeres served as a single cell amplification test system to determine the percentage of allelic drop-out (ADO) and PCR efficiency. Out of 105 tested heterozygous single leukocytes, 103 (98.1%) showed a positive amplification signal, while five cells (4.9%) showed ADO. Amplification in single blastomeres was obtained in 13 out of a total of 14, and ADO was observed in two out of the 13 single blastomeres. PGD of SCA3 was performed in a couple with paternal transmission of the SCA3 allele. Seven embryos were available for biopsy, all biopsied blastomeres showed amplification and no ADO occurred. One embryo was diagnosed as affected whereas six embryos were diagnosed as unaffected. Two unaffected embryos were transferred and resulted in a singleton pregnancy and the birth of a healthy girl.  相似文献   

16.
BACKGROUND: We report on our experience with preimplantation genetic diagnosis (PGD) for single gene disorders (SGDs), from 1999 to 2004, describing strategies and overall clinical outcome of 250 cycles in 174 couples for 23 different genetic conditions. METHODS: PGD cycles included 15 for autosomal dominant, 148 for autosomal recessive and 19 for X-linked SGDs. In addition, 68 cycles of PGD for SGDs were performed in combination with HLA matching. The strategy in each case used an initial multiplex PCR, followed by minisequencing to identify the mutation(s) combined with multiplex PCR for closely linked informative markers to increase accuracy. Linkage analysis, using intragenic and/or extragenic polymorphic microsatellite markers, was performed in cases where the disease-causing mutation(s) was unknown or undetectable. RESULTS: In 250 PGD cycles, a total of 1961 cleavage stage embryos were biopsied. PCR was successful in 3409 out of 3149 (92.4%) biopsied blastomeres and a diagnosis was possible in 1849 (94.3%) embryos. Four hundred and twenty-seven embryos were transferred in 211 cycles, resulting in 71 pregnancies (33.6% per embryo transfer), including 15 biochemical pregnancies, six spontaneous miscarriages, two ectopic pregnancies, which were terminated, and nine pregnancies which are still ongoing. The remaining pregnancies were confirmed to be unaffected and went to term without complications, resulting in the birth of 35 healthy babies. CONCLUSIONS: Minisequencing for mutation detection combined with multiplex fluorescence PCR for linkage analysis is an efficient, accurate and widely applicable strategy for PGD of SGDs. Our experience provides a further demonstration that PGD is an effective clinical tool and a useful option for many couples with a high risk of transmitting a genetic disease.  相似文献   

17.
Petreska L, Koceva S, Plaseska D, Chernick M, Gordova-Muratovska A, Fustic S, Nestorov R, Efremov GD. Molecular basis of cystic fibrosis in the Republic of Macedonia. Clin Genet 1998: 54: 203–209. 0 Munksgaard, 1998
Eighty-three cystic fibrosis (CF) patients and their families, belonging to various ethnic groups living in the Republic of Macedonia were studied for molecular defects in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and for the associated extragenic marker loci XV-2c and KM 19. The DNA methodology used included characterization of CFTR mutations in 19 exons (and flanking sequences) of the gene and analysis of distribution of the XV-2c/KM19 haplotypes among normal (N) and CF chromosomes by polymerase chain reaction (PCR) amplification followed by dot blot hybridization, restriction digestion, single-strand conformational polymorphism, constant denaturing gel electrophoresis, denaturing gradient gel elec-trophoresis, and sequencing. We identified 58.4% (97/166) of the CF chromosomes. Nine different CFTR gene mutations, including three novel ones. were found. Eight known and one new CFTR intragene polymorphisrns were also characterized. The haplotype analysis of the XV-2c/TaqI and KM19/PstI polymorphic loci have shown that haplotype C is the most frequently found haplotype among the non-AF508 CF chromosomes from Macedonia (36.5%). The results demonstrate the broad heterogeneity of CF origin in this part of the Balkan Peninsula.  相似文献   

18.
In order to carry out preimplantation genetic diagnosis (PGD) for beta-thalassaemia, we have applied direct sequencing of single cell PCR products to detect mutations and polymorphic loci within the beta-globin gene. Conventional duplex PCR was used to amplify two regions of the beta-globin gene with an amplification efficiency of 79% for blastomeres. Sequencing data were obtained for 100% of amplified products, with 12% having confirmed allele drop-out (ADO). A double ADO event was observed at least twice, confirming the real risk of such an event during PGD. In one couple, the presence of a polymorphism linked to the female partner's mutation enabled us to eliminate the risk of misdiagnosis due to double ADO without having to amplify both mutations within the same PCR product. We present here the data from eight clinical PGD cycles for three couples resulting in a singleton pregnancy and a twin pregnancy with all babies confirmed to be free from beta-thalassaemia (major).  相似文献   

19.
The most common mutation in the cystinosis gene, CTNS, is a 65-kb deletion thought to have originated in Germany. Although homozygotes for this deletion are detectable by the absence of the D17S829 polymorphic marker, no method exists to identify heterozygotes. We identified the 65-kb deletion breakpoints and used flanking PCR primers to amplify a 423-bp fragment present only in the deletion alleles. Using this method, we determined that 121 of 216 (56%) cystinosis alleles examined bore the 65-kb deletion. We found no non-Europeans with the deletion, and the deletion size and breakpoints appeared identical in all patients studied, supporting the concept of a founder effect. The addition of D17S829 primers (266 bp apart) to the PCR created a multiplex PCR system useful for diagnosing cystinosis patients homozygous and heterozygous for the 65-kb deletion.  相似文献   

20.
Ornithine transcarbamylase (OTC) deficiency is an X-linked co-dominant disorder. A couple, with a previous history of a neonatal death and a therapeutical termination due to OTC deficiency, was referred to our center for preimplantation genetic diagnosis (PGD). The female partner has a nonsense mutation in the exon 9 of the OTC gene (R320X). We carried out nested polymerase chain reaction (PCR) for R320X mutation and fluorescence in situ hybridization (FISH) for aneuploidy screening. Among a total of 11 embryos, two blastomeres per embryo from 9 embryos were biopsied and analyzed by duplex-nested PCR and FISH, and one blastomere per embryo from 2 embryos by only duplex-nested PCR. As a result of PCR and restriction fragment length polymorphism analysis, four embryos were diagnosed as unaffected embryos having the normal OTC gene. Among these embryos, only one embryo was confirmed as euploidy for chromosome X, Y and 18 by FISH analysis. A single normal embryo was transferred to the mother, yielding an unaffected pregnancy and birth of a healthy boy. Based on our results, PCR for mutation loci and FISH for aneuploidy screening with two blastomeres from an embryo could provide higher accuracy for the selection of genetically and chromosomally normal embryos in the PGD for single gene defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号