首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of this work was to identify the principal human cytochrome P450s (CYPs) involved in the metabolism of the retinoic acid (RA) isomers, 9-cis- and 13-cis-RA, by using a combination of techniques including human liver microsomes (correlation of activity and inhibition), and lymphoblast microsomes expressing a single CYP. Concerning the 9-cis-RA, 4-OH- and 4-oxo-9-cis-RA were formed with human liver microsomes, and their formation correlated with activities linked to CYPs 3A4/5, 2B6, 2C8, 2A6, and 2C9. The use of lymphoblast microsomes expressing a single human CYP identified CYPs 2C9>2C8>3A7 as the most active in the formation of 4-OH-9-cis-RA. With regard to 13-cis-RA, specific P450 activities linked to CYPs 2B6, 2C8, 3A4/5, and 2A6 were correlated with the formation of 4-OH- and 4-oxo-13-cis-RA. Microsomes expressing a single CYP identified CYPs 3A7, 2C8, 4A11, 1B1, 2B6, 2C9, 2C19, 3A4 (decreasing activity) in the formation of 4-OH-13-cis-RA. The use of CYP-specific inhibitors in human liver microsomes disclosed that the formation of the 4-OH-9-cis-RA was best inhibited by sulfaphenazole (72%) and quercetin (66%), whereas ketoconazole and troleandomycin inhibited its formation by 55 and 38%, respectively; the formation of 4-OH-13-cis-RA was best inhibited by troleandomycin (54%) and ketoconazole (46%), whereas quercetin was a weak inhibitor (14%). In conclusion, adult human CYPs 2C9, 2C8, 3A4 have been identified as active in the 9-cis-RA metabolism, whereas CYPs 3A4 and 2C8 were active in 13-cis-RA metabolism. The fetal form CYP3A7 was also identified as very active in either 9-cis- or 13-cis-RA metabolism. The role of these human CYPs in the biological response or resistance to RA isomers remains to be determined.  相似文献   

3.

Aim:

To examine the anti-cancer effects of chamaejasmenin B and neochamaejasmin C, two biflavonones isolated from the root of Stellera chamaejasme L (known as the traditional Chinese herb Rui Xiang Lang Du) in vitro.

Methods:

Human liver carcinoma cell lines (HepG2 and SMMC-7721), a human non-small cell lung cancer cell line (A549), human osteosarcoma cell lines (MG63, U2OS, and KHOS), a human colon cancer cell line (HCT-116) and a human cervical cancer cell line (HeLa) were used. The anti-proliferative effects of the compounds were measured using SRB cytotoxicity assay. DNA damage was detected by immunofluorescence and Western blotting. Apoptosis and cell cycle distribution were assessed using flow cytometry analysis. The expression of the related proteins was examined with Western blotting analysis.

Results:

Both chamaejasmenin B and neochamaejasmin C exerted potent anti-proliferative effects in the 8 human solid tumor cell lines. Chamaejasmenin B (the IC50 values ranged from 1.08 to 10.8 μmol/L) was slightly more potent than neochamaejasmin C (the IC50 values ranged from 3.07 to 15.97 μmol/L). In the most sensitive A549 and KHOS cells, the mechanisms underlying the anti-proliferative effects were characterized. The two compounds induced prominent expression of the DNA damage marker γ-H2AX as well as apoptosis. Furthermore, treatment of the cells with the two compounds caused prominent G0/G1 phase arrest.

Conclusion:

Chamaejasmenin B and neochamaejasmin C are potential anti-proliferative agents in 8 human solid tumor cell lines in vitro via inducing cell cycle arrest, apoptosis and DNA damage.  相似文献   

4.
Rice false smut has become an increasingly serious fungal disease in rice (Oryza sativa L.) production worldwide. Ustilaginoidins are bis-naphtho-γ-pyrone mycotoxins previously isolated from the rice false smut balls (FSBs) infected by the pathogen Villosiclava virens in rice spikelets on panicles. To investigate the main ustilaginoidins and their distribution in rice FSBs, five main bis-naphtho-γ-pyrones, namely ustilaginoidins A (1), G (2), B (3), I (4) and C (5), were isolated and identified by NMR and high-resolution mass spectrometry as well as by comparison with the data in the literature. The rice FSBs at early, middle and late maturity stages were divided into their different parts and the contents of five main ustilaginoidins for each part were determined by HPLC analysis. The results revealed that the highest levels of ustilaginoidins were in late stage rice FSBs, followed by those at middle stage. Most ustilaginoidins, 96.4% of the total quantity, were distributed in the middle layer at early stage. However, ustilaginoidins were mainly distributed in the outer and middle layers at middle and late stages. Small amounts of ustilaginoidins A (1) and G (2) were found in the inner part of rice FSBs at each maturity stage. The contents of ustilaginoidins A (1) and G (2) without hydroxymethyl groups at C-2 and C-2’ of the γ-pyrone rings in rice FSBs were relatively high at early stage, while the contents of ustilaginoidins B (3), I (4), and C (5) with hydroxymethyl groups at C-2 or C-2’ were relatively high at late stage.  相似文献   

5.
Lash LH  Putt DA  Cai H 《Toxicology》2008,244(1):56-65
We previously catalogued expression and activity of organic anion and cation, amino acid, and peptide transporters in primary cultures of human proximal tubular (hPT) cells to establish them as a cellular model to study drug transport in the human kidney [Lash, L.H., Putt, D.A., Cai, H., 2006. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology 228, 200-218]. Here, we extend our analysis to drug metabolism enzymes. Expression of 11 cytochrome P450 (CYP) enzymes was determined with specific antibodies. CYP1B1, CYP3A4, and CYP4A11 were the only CYP enzymes readily detected in total cell extracts. These same CYP enzymes, as well as CYP3A5 and possibly CYP2D6, were detected in microsomes from confluent hPT cells, although expression levels varied among kidney samples. In agreement with Western blot data, only activity of CYP3A4/5 was detected among the enzyme activities measured. Expression of all three glutathione S-transferases (GSTs) known to be found in hPT cells, GSTA, GSTP, and GSTT, was readily detected. Variable expression of three sulfotransferases (SULTs), SULT1A3, SULT1E, and SULT2A1, and three UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A6, and UGT2B7, was also detected. When examined over the course of cell growth to confluence, expression of all enzymes was generally maintained at readily measurable levels, although they were often lower than in fresh tissue. These results indicate that primary cultures of hPT cells possess significant capacity to metabolize many classes of drugs, and can be used as an effective model to study drug metabolism.  相似文献   

6.
Membrane transporters are now recognized as important determinants of the transmembrane passage of drugs. Organic anion transporting polypeptides (OATP) form a family of influx transporters expressed in various tissues important for pharmacokinetics. Of the 11 human OATP transporters, OATP1B1, OATP1B3 and OATP2B1 are expressed on the sinusoidal membrane of hepatocytes and can facilitate the liver uptake of their substrate drugs. OATP1A2 is expressed on the luminal membrane of small intestinal enterocytes and at the blood-brain barrier, potentially mediating drug transport at these sites. Several clinically used drugs have been identified as substrates of OATP transporters (e.g. many statins are substrates of OATP1B1). Some drugs may inhibit OATP transporters (e.g. cyclosporine) causing pharmacokinetic drug–drug interactions. Moreover, genetic variability in genes encoding OATP transporters can result in marked inter-individual differences in pharmacokinetics. For example, a single nucleotide polymorphism (c.521T > C, p.Val174Ala) in the SLCO1B1 gene encoding OATP1B1 decreases the ability of OATP1B1 to transport active simvastatin acid from portal circulation into the liver, resulting in markedly increased plasma concentrations of simvastatin acid and an enhanced risk of simvastatin-induced myopathy. SLCO1B1 polymorphism also affects the pharmacokinetics of many other, but not all (fluvastatin), statins and that of the antidiabetic drug repaglinide, the antihistamine fexofenadine and the endothelin A receptor antagonist atrasentan. This review compiles the current knowledge about the expression and function of human OATP transporters, their substrate and inhibitor specificities, as well as pharmacogenetics.  相似文献   

7.
8.
9.
The expression, inducibility, and activities of several cytochrome P450 (CYP) enzymes were investigated in a human tongue carcinoma cell model, CAL 27, and compared with the human liver model HepG2 cells. The modulation effects of green tea on various CYP isoforms in both cell lines were also examined. RT-PCR analysis of CAL 27 cells demonstrated constitutive expression of mRNA for CYPs 1A1, 1A2, 2C, 2E1, 2D6, and 4F3. The results were negative for CYP2A6, 2B6/7, 3A3/4, and 3A7. Both cell lines displayed identical expression and induction profiles for all of the isoforms examined in this study except 3A7 and 2B6/7, which were produced constitutively in HepG2 but not Cal-27 cells. CYP1A1 and 1A2 were both induced by treatment with beta-napthoflavone as indicated by RT-PCR and Western blotting, while CYP2C mRNA was upregulated by all-trans retinoic acid and farnesol. RT-PCR and Western blot analysis showed that the expressions of CYP1A1 and 1A2 were induced by green tea extract (GTE), which also caused an increase in mRNA for CYP2E1, CYP2D6, and CYP2C isoforms. The four tea catechins, EGC, EC, EGCG and ECG, applied to either HepG2 or Cal-27 cells at the concentration found in GTE failed to induce CYP1A1 or CYP1A2, as determined by RT-PCR. Of the isoforms that were apparently induced by GTE, only 7-ethoxycoumarin deethylase (ECOD) activity could be detected in CAL 27 or HepG2 cells. Interestingly, mRNA and protein for CYP1A1 and CYP1A2 were detected in both cell lines, and although protein and mRNA levels of CYP1A1 and CYP1A2 were increased by GTE, the observed ECOD activity in both cell lines was decreased.  相似文献   

10.
In vitro quantitative studies of the oxidative metabolism of (5-methoxy-N,N-diisopropyltryptamine, 5-MeO-DIPT, Foxy) were performed using human liver microsomal fractions and recombinant CYP enzymes and synthetic 5-MeO-DIPT metabolites. 5-MeO-DIPT was mainly oxidized to O-demethylated (5-OH-DIPT) and N-deisopropylated (5-MeO-IPT) metabolites in pooled human liver microsomes. In kinetic studies, 5-MeO-DIPT O-demethylation showed monophasic kinetics, whereas its N-deisopropylation showed triphasic kinetics. Among six recombinant CYP enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) expressed in yeast or insect cells, only CYP2D6 exhibited 5-MeO-DIPT O-demethylase activity, while CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP3A4 showed 5-MeO-DIPT N-deisopropylase activities. The apparent Km value of CYP2D6 was close to that for 5-MeO-DIPT O-demethylation, and the Km values of other CYP enzymes were similar to those of the low-Km (CYP2C19), intermediate-Km (CYP1A2, CYP2C8 and CYP3A4) and high-Km phases (CYP2C9), respectively, for N-deisopropylation in human liver microsomes. In inhibition studies, quinidine (1 microM), an inhibitor of CYP2D6, almost completely inhibited human liver microsomal 5-MeO-DIPT O-demethylation at a substrate concentration of 10 microM. Furafylline, a CYP1A2 inhibitor, quercetin, a CYP2C8 inhibitor, sulfaphenazole, a CYP2C9 inhibitor and ketoconazole, a CYP3A4 inihibitor (5 microM each) suppressed about 60%, 45%, 15% and 40%, respectively, of 5-MeO-DIPT N-deisopropylation at 50 microM substrate. In contrast, omeprazole (10 microM), a CYP2C19 inhibitor, suppressed only 10% of N-deisopropylation by human liver microsomes, whereas at the same concentration the inhibitor suppressed the reaction by recombinant CYP2C19 almost completely. These results indicate that CYP2D6 is the major 5-MeO-DIPT O-demethylase, and CYP1A2, CYP2C8 and CYP3A4 are the major 5-MeO-DIPT N-deisopropylase enzymes in the human liver.  相似文献   

11.
12.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

  • Organic anion transporting polypeptide 1B1 is an influx transporter expressed on the basolateral membrane of hepatocytes.
  • A common single nucleotide polymorphism, c.521T→C (p.Val174Ala), of the SLCO1B1 gene has been associated with increased plasma repaglinide concentrations in healthy volunteers.
  • Previous studies at low repaglinide doses have suggested that the effect of SLCO1B1 c.521T→C polymorphism on the pharmacokinetics of repaglinide could be dose-dependent.

WHAT THIS STUDY ADDS

  • Repaglinide peak plasma concentration and area under the plasma concentration–time curve increased linearly along with repaglinide dose ranging from 0.25 to 2 mg in both the predominant c.521TT and rare c.521CC genotype group.
  • The effect of SLCO1B1 c.521T→C polymorphism on repaglinide pharmacokinetics persists over a wide dose range.

AIMS

To establish whether the effect of SLCO1B1[encoding organic anion transporting polypeptide 1B1 (OATP1B1)] c.521T→C (p.Val174Ala) polymorphism on the pharmacokinetics of repaglinide is dose-dependent.

METHODS

Twelve healthy volunteers with the SLCO1B1 c.521TT genotype (controls) and eight with the c.521CC genotype ingested a single 0.25-, 0.5-, 1- or 2-mg dose of repaglinide in a dose-escalation study with a wash-out period of ≥1 week.

RESULTS

The mean area under the plasma concentration–time curve from time 0 to infinity (AUC0–∞) of 0.25, 0.5, 1 or 2 mg repaglinide was 82% (95% confidence interval 47, 125), 72% (24, 138), 56% (24, 95) or 108% (59, 171) (P ≤ 0.001) larger in participants with the SLCO1B1 c.521CC genotype than in those with the c.521TT genotype, respectively. Repaglinide peak plasma concentration and AUC0–∞ increased linearly along with repaglinide dose in both genotype groups (r > 0.88, P < 0.001). There was a tendency towards lower blood glucose concentrations after repaglinide administration in the participants with the c.521CC genotype than in those with the c.521TT genotype.

CONCLUSIONS

The effect of SLCO1B1 c.521T→C polymorphism on the pharmacokinetics of repaglinide persists throughout the clinically relevant dose range.  相似文献   

13.
Coffee drinking appears to reduce cancer risk in liver and colon. Such chemoprevention may be caused by the diterpenes kahweol and cafestol (K/C) contained in unfiltered beverage. In animals, K/C treatment inhibited the mutagenicity/tumorigenicity of several carcinogens, likely explicable by beneficial modifications of xenobiotic metabolism, particularly by stimulation of carcinogen-detoxifying phase II mechanisms. In the present study, we investigated the influence of K/C on potentially carcinogen-activating hepatic cytochrome P450 (CYP450) and sulfotransferase (SULT). Male F344 rats received 0.2% K/C (1:1) in the diet for 10 days or unfiltered and/or filtered coffee as drinking fluid. Consequently, K/C decreased the metabolism of four resorufin derivatives representing CYP1A1, CYP1A2, CYP2B1, and CYP2B2 activities by approximately 50%. For CYP1A2, inhibition was confirmed at the mRNA level, accompanied by decreased CYP3A9. In contrast to K/C, coffee increased the metabolism of the resorufin derivatives up to 7-fold which was only marginally influenced by filtering. CYP2E1 activity and mRNA remained unchanged by K/C and coffee. K/C but not coffee decreased SULT by approximately 25%. In summary, K/C inhibited CYP450s by tendency but not universally. Inhibition of CYP450 and SULT may contribute to chemoprevention with K/C but involvement in the protection of coffee drinkers is unlikely. The data confirm that the effects of complex mixtures may deviate from those of their putatively active components.  相似文献   

14.
Enterovirus 71 (EV71) is the predominant cause of hand, foot and mouth disease (HFMD). The antiviral activity of hederasaponin B from Hedera helix against EV71 subgenotypes C3 and C4a was evaluated in vero cells. In the current study, the antiviral activity of hederasaponin B against EV71 C3 and C4a was determined by cytopathic effect (CPE) reduction method and western blot assay. Our results demonstrated that hederasaponin B and 30% ethanol extract of Hedera helix containing hederasaponin B showed significant antiviral activity against EV71 subgenotypes C3 and C4a by reducing the formation of a visible CPE. Hederasaponin B also inhibited the viral VP2 protein expression, suggesting the inhibition of viral capsid protein synthesis.These results suggest that hederasaponin B and Hedera helix extract containing hederasaponin B can be novel drug candidates with broad-spectrum antiviral activity against various subgenotypes of EV71.  相似文献   

15.
Animal studies indicate that the anxiolytic properties of the antipsychotic agent cyamemazine may result from blockade of serotonin 5-HT(2C) receptors and to a lesser extent from blockade of serotonin 5-HT(3) receptors. Here, we used human recombinant receptors to determine the relative affinity of cyamemazine for serotonin and dopamine receptor subtypes. In addition, cyamemazine was tested in other brain receptor types and subtypes which are considered to mediate central nervous systems effects of drugs. Hence, cyamemazine affinity was determined in human recombinant receptors expressed in CHO cells (hD(2), hD(3), and hD(4.4) receptors, h5-HT(1A), h5-HT(2A), h5-HT(2C), and h5-HT(7), and hM(1), hM(2), hM(3), hM(4), and hM(5) receptors), L-cells (hD(1) receptor), and HEK-293 cells (h5-HT(3) receptors) or natively present in N1E-115 cells (5-HT(3) receptors) or in rat cerebral cortex (non-specific alpha(1)- and alpha(2)-adrenoceptors, GABA(A) and GABA(B) receptors, H(3) histamine receptors), and guinea-pig cerebellum (H(1) central and H(2) histamine receptors) membranes. Similarly to atypical antipsychotics, cyamemazine exhibited high affinity for: (i) h5-HT(2A) receptors (K(i)=1.5+/-0.7 nM, mean+/-SEM, N=3) and this was four times higher than for hD(2) receptors (K(i)=5.8+/-0.8 nM), (ii) h5-HT(2C) receptors (K(i)=11.8+/-2.2nM), and (iii) 5-HT(7) receptors (K(i)=22 nM). Conversely, cyamemazine exhibited very low affinity for h5-HT(3) receptors (K(i)=2.9+/-0.4 microM). In conclusion, similarly to atypical antipsychotic agents, cyamemazine, possesses high affinity for h5-HT(2A), h5-HT(2C), and h5-HT(7) receptors, a feature which can explain its low propensity to cause extrapyramidal adverse reactions in clinical practice. The high affinity for h5-HT(2C) receptors, but not for h5-HT(3) receptors, can account for the anxiolytic activity of cyamemazine in human subjects.  相似文献   

16.
魏韡  杨海伟  宋为娟  魏继福  何韶衡 《江苏医药》2012,38(16):1866-1868,1856
目的探讨趋化因子T细胞激活分泌调节因子(RANTES)对肥大细胞Toll样受体4(TLR4)表达的调节作用。方法将小鼠肥大细胞P815分为:RANTES 0.1、1.0、10、100ng/ml处理组(分别为A1、A2、A3、A4组)、RANTES 100ng/ml+RANTES阻断抗体10、30μg/ml组(分别为B1、B2组)以及空白对照组(C组)。作用2、6、16h后,采用流式细胞术、免疫荧光、RT-PCR检测肥大细胞上TLR4的表达情况。结果与C组相比,RANTES呈剂量依赖性地上调P815细胞中TLR4mRNA和蛋白表达(P<0.05),而B1、B2组能明显抑制该上调过程(P<0.05)。结论 RANTES上调P815细胞中TLR4的表达,从而加重过敏反应。  相似文献   

17.
Consequences of subchronic exposure to aflatoxin B1 (AFB1) on liver monooxygenase and transferase enzymes were compared in control pigs and pigs given 385, 867 or 1,807 microg AFB1/kg of feed for 4 weeks. Animals exposed to the highest dose of toxin developed clinical signs of aflatoxicosis, like liver fibrosis, hepatic dysfunction and decreased weight gain. This group had significantly lower levels of liver cytochrome P450, ethoxyresorufin O-deethylase (EROD) activity, testosterone metabolism, P450 1A and P450 3A protein expression. By comparison, mild degenerative hepatic changes, no hepatic dysfunction but a similar pattern of liver P450 enzymes activity without changes in P450 3A expression were observed in pigs exposed to 867 microg AFB1/kg of feed. Benzphetamine and aminopyrine N-demethylase activities were increased in pigs exposed to 867 or 1,807microg AFB1/kg of feed. Pigs exposed to 385 microg AFB1/kg of feed had low levels of EROD activity and all other biotransformation and clinical parameters remained at control levels. Aniline hydroxylase activity, P450 2C protein expression, UDP-glucuronosyl and glutathione S-transferase activities were unaffected at all doses of AFB1. In conclusion, P450 1A and P450 3A appear to be specific targets of AFB1 even if pig did not display clinical sign of liver toxicosis.  相似文献   

18.
The aim of the present study was to evaluate the effect of long-term cyanidin 3-O-β-D-glucoside (C3G) and/or Ochratoxin A (OTA)-exposure on dimethylarginine dimethylamino hydrolase/nitric oxide synthase (DDAH/NOS) pathway in rats. The experiments were performed in rats supplemented with C3G (1 g/kg feed), OTA (200 ppb), and OTA + C3G. After 4 weeks of daily treatment, liver and kidneys were processed for eNOS, iNOS and DDAH-1 Western blotting, nitrite levels evaluation and DDAH activity determination. Results show that OTA is able to induce iNOS both in kidney and liver, whereas OTA is able to induce eNOS and DDAH-1 overexpression and DDAH activation only in kidney, resulting in increased nitrite levels. In kidney of OTA + C3G fed rats, iNOS, eNOS and DDAH-1 expression were less pronounced compared with those observed in the OTA-treated group. Coherent with the decreased iNOS, eNOS and DDAH-1 expression a decrease in nitrite levels and DDAH activity was observed in the OTA + C3G group. Results demonstrate that C3G is able to counteract the deleterious effects of chronic consumption of OTA and also suggest a possible involvement of iNOS-eNOS-DDAH impairment in OTA nephrocarcinogenity.  相似文献   

19.
This study was performed to examine the hepatoprotective effect of isorhamnetin-3-O-galactoside, a flavonoid glycoside isolated from Artemisia capillaris Thunberg (Compositae), against carbon tetrachloride (CCl4)-induced hepatic injury. Mice were treated intraperitoneally with vehicle or isorhamnetin-3-O-galactoside (50, 100, and 200 mg/kg) 30 min before and 2 h after CCl4 (20 μl/kg) injection. Serum aminotransferase activities and hepatic level of malondialdehyde were significantly higher after CCl4 treatment, and these increases were attenuated by isorhamnetin-3-O-galactoside. CCl4 markedly increased serum tumor necrosis factor-α level, which was reduced by isorhamnetin-3-O-galactoside. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 (COX-2), and heme oxygenase-1 (HO-1) protein and their mRNA expression levels were significantly increased after CCl4 injection. The levels of HO-1 protein and mRNA expression levels were augmented by isorhamnetin-3-O-galactoside, while isorhamnetin- 3-O-galactoside attenuated the increases in iNOS and COX-2 protein and mRNA expression levels. CCl4 increased the level of phosphorylated c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, and isorhamnetin-3-O-galactoside reduced these increases. The nuclear translocation of nuclear factor kappa B (NF-κB), activating protein-1, and nuclear factor erythroid 2-related factor 2 (Nrf2) were signifi cantly increased after CCl4 administration. Isorhamnetin-3-O-galactoside attenuated the increases of NFB and c-Jun nuclear translocation, while it augmented the nuclear level of Nrf2. These results suggest that isorhamnetin-3-O-galactoside ameliorates CCl4-induced hepatic damage by enhancing the anti-oxidative defense system and reducing the inflammatory signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号