首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Aim

In our pilot study, we found an increase in tyrosine hydroxylase (Th) mRNA expression in the prefrontal cortex of 72-h REM sleep-deprived (SD) rats, a mania model. Additionally, the expression levels of miR-325-3p, miR-326-3p, and miR-330-5p, the predicted target miRNAs on TH, were significantly decreased. Based on these results, in this study, we investigated whether miRNA-325-3p, miR-326-3p, and miR-330-5p modulate TH and manic-like behaviors in SD rats.

Methods

Manic-like behaviors were assessed using the open field test (OFT) and elevated plus-maze (EPM) test. The direct binding activity of miRNAs to the 3′-untranslated region (3′-UTR) of the Th gene was measured in HEK-293 cells using a luciferase reporter system. We also examined mRNA and protein expression of TH after intracerebroventricular (ICV) injection of miR-330-5p agomir to SD rats, along with manic-like behaviors.

Results

We observed an upregulation in mRNA and protein expression of TH and downregulation in miRNA-325-3p, miR-326-3p, and miR-330-5p expressions in the prefrontal cortex of SD rats, together with increased manic-like behaviors. The luciferase reporter assay showed that miR-330-5p could repress TH expression through direct binding to its target site in the 3′-UTR of Th, whereas miR-326-3p and miR-330-5p could not. In addition, ICV injection of miR-330-5p agomir alleviated the increase in TH expression in the prefrontal cortex of SD rats and manic-like behaviors.

Conclusions

TH expression regulation through miR-330-5p may be implicated in the pathophysiology of mania in SD rats.  相似文献   

3.
O(6)-methylguanine-DNA methyltransferase (MGMT) is a repair enzyme that removes promutagenic O(6)-methylguanine adducts in DNA, to protect cells from acquisition of G:C--> A:T mutations. MGMT promoter methylation and polymorphisms may affect MGMT expression and activity. In the present study, we assessed MGMT promoter methylation and polymorphisms (Leu84Phe, Ile143Val, c.-56C>T) in 371 glioblastomas diagnosed at the population level. MGMT methylation was observed in 165 (44%) glioblastomas, with a higher frequency in females than males (53 vs. 39%; p = 0.0106) and in secondary than primary glioblastomas (73 vs. 43%; p = 0.0074). The frequency of TP53 G:C-->A:T mutations in glioblastomas with MGMT methylation was 25%, which was significantly higher than that in glioblastomas with MGMT methylation (16%; Fisher exact test; p = 0.0385). MGMT 143 Val allele in glioblastomas was significantly less frequent than in a healthy European Caucasian population, and was associated with longer survival than those with the MGMT 143 Ile allele (hazard ratio 0.70; 95% CI 0.48-1.01). These results suggest that MGMT methylation may be associated with susceptibility to acquire TP53 G:C-->A:T mutations, and that MGMT polymorphisms may affect the risk and prognosis of glioblastomas.  相似文献   

4.
5.

Objective

This study investigated whether pyrosequencing can be used to determine the methylation status of the MGMT promoter as a clinical biomarker using relatively old archival tissue samples of glioblastoma. We also examined other prognostic factors for survival of glioblastoma patients.

Methods

The available study set included formalin-fixed paraffin-embedded (FFPE) tissue from 104 patients at two institutes from 1997 to 2012, all of which were diagnosed histopathologically as glioblastoma. Clinicopathologic data were collected by review of medical records. For pyrosequencing analysis, the PyroMark Q96 CpG MGMT kit (Qiagen, Hilden, Germany) was used to detect the level of methylation at exon 1 positions 17–39 of the MGMT gene, which contains 5 CpGs.

Results

Methylation of the MGMT promoter was detected in 43 (41.3%) of 104 samples. The average percentage methylation was 14.0±16.8% overall and 39.0±14.7% for methylated cases. There was no significant pattern of linear increase or decrease according to the age of the FFPE block (p=0.687). In multivariate analysis, age, performance status, extent of surgery, method of adjuvant therapy, and methylation status estimated by pyrosequencing were independently associated with overall survival. Additionally, patients with a high level of methylation survived longer than those with low methylation (p=0.016).

Conclusion

In this study, the status and extent of methylation of the MGMT promoter analyzed by pyrosequencing were associated with overall survival in glioblastoma patients. Pyrosequencing is a quantitative method that overcomes the problems of MSP and a simple technique for accurate analysis of DNA sequences.  相似文献   

6.
The median survival time of patients with glioblastoma multiforme (GBM) is 12 months, and only 3-5% of patients survive longer than 3 years. We performed histomorphological and detailed molecular analyses of seven long-term survivors of GBM to identify any prognostic factors that potentially contribute to survival. Morphology and immunohistochemistry for p53, phosphatase and tensin homologue (PTEN) and epidermal growth factor receptor (EGFR) protein expression were investigated. EGFR amplification and 1p/19q deletion were assessed by fluorescent in situ hybridization. The O6-methylguanine-DNA methyltransferase (MGMT) gene methylation status was evaluated by performing methylation-specific polymerase chain reaction assays. All tumors were classical GBMs and no significant oligodendroglial differentiation was noted. The majority showed EGFR amplification (4/7), PTEN protein expression (6/7) and MGMT promoter methylation (5/6). Immunopositivity for p53 was noted in three of seven patients. Deletion of chromosome 1p/19q, either isolated or combined, was not identified in any of the se patients. All patients were treated by gross total resection followed by radiotherapy; six patients received additional temozolomide treatment. A relatively young age of onset (48 years), with a high MGMT promoter methylation and PTEN protein expression were favorable factors for long-term survival. The presence of EGFR amplification indicates that more than a single factor determines survival in GBM.  相似文献   

7.
Meningeal hemangiopericytomas (HPCs) are aggressive dural‐based tumors, for which no prognostic or predictive marker has been identified. Gross total resection is treatment of choice, but not easily achieved; hence, alkylating agents like temozolomide (TMZ) are now being tried. O6‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation has proven prognostic and predictive value in glioblastomas. This study evaluates MGMT promoter methylation in meningeal HPCs to determine its role in HPC oncogenesis and its association with patient outcome. Meningeal HPCs diagnosed between 2002 and 2011 were retrieved and clinicopathological features reviewed. MGMT promoter methylation status was assessed by methylation‐specific polymerase chain reaction (MSP) and immunohistochemistry (IHC) for MGMT protein. HPCs accounted for 1.1% of all CNS tumors. Forty cases were analyzed; the majority were adults (mean age = 41.4 years). Seventy percent were primary and 30% were recurrent tumors; 60% were grade II and 40% were grade III. MGMT promoter methylation was identified in 45% of cases, including Grade II (54.2%) and Grade III (31.3%) (P = 0.203). Promoter methylation was significantly (P = 0.035) more frequent in primary (57.1%) than in recurrent (16.7%) tumors. No correlation was noted between MGMT promoter methylation by MSP and MGMT protein expression by IHC, or with progression‐free survival. Thus, a significant proportion of HPCs demonstrate MGMT promoter methylation, suggesting possible susceptibility to TMZ. As promoter methylation is more frequent in primary tumors, TMZ may serve as a therapeutic option in residual primary tumors. Epigenetic inactivation of MGMT in HPCs necessitates the assessment of prognostic and predictive value of MGMT promoter methylation in HPCs in larger clinical trials.  相似文献   

8.
In 2011, we reported a predominant prognostic/predictive role of MGMT promoter methylation status on progression-free survival (PFS) in unresectable glioblastoma patients undergoing upfront radiotherapy plus concomitant and maintenance temozolomide (RTX/TMZ → TMZ). We, here, present the final results of this prospective study focussing on the prognostic/predictive value of MGMT promoter methylation status for death risk stratification. Overall, 56 adult patients with unresectable, biopsy proven glioblastoma were prospectively assigned to upfront RTX/TMZ → TMZ treatment between March 2006 and August 2008. Last follow-up was performed in June 2016. MGMT promoter methylation was determined using methylation-specific PCR (MSP) and sodium bisulfite sequencing. Analyses were done by intention to treat. Prognostic factors were obtained from proportional hazard models. At the time of the final analysis 55 patients showed progressive disease and 53 patients had died. MGMT promoter was methylated (unmethylated) in 30 (26) patients. Methylation of the MGMT promoter was the strongest favorable predictor for overall survival (OS, median: 20.3 vs. 7.3 months, p < 0.001, HR 0.30, 95% CI 0.16–0.55), and PFS (median: 15.0 vs. 6.1 months, p < 0.001, HR 0.31, 95% CI 0.17–0.57) and was also associated with higher frequencies of treatment response and prolonged post-recurrence survival (PRS, median: 4.5 vs. 1.4 months, p < 0.002, HR 0.39, 95% CI 0.21–0.71). Knowledge of MGMT promoter methylation status is essential for patients’ counseling, prognostic evaluation, and for the design of future trials dealing with unresectable glioblastomas.  相似文献   

9.

Purpose  

Relatively few studies have been performed on molecular properties of pediatric glioblastoma multiforme (GBM). Methylation of DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) promoter region has been associated with favorable prognosis and prolonged survival in adult GBM patients treated with temozolomide (TMZ). We explored the frequency of MGMT gene promoter methylation in pediatric glioblastomas and compared it with the known molecular alterations in p53.  相似文献   

10.
MicroRNAs play key regulatory roles in cellular processes including neurogenesis, synapse development and plasticity in the brain. Psychostimulants induces strong neuroadaptive changes through a surfeit of gene regulatory mechanisms leading to addiction. MicroRNA profiling for identifying miRNAs regulating cocaine-induced, plasticity-related genes revealed significant regulation of a set of miRNAs upon cocaine administration, especially let-7d, miR-181a and the brain-specific miR-124. These miRNAs target many genes involved in cocaine addiction. Precursor and mature miRNA quantification by qRT-PCR showed that miR-124 and let-7d are significantly downregulated, whereas miR-181a is induced in the mesolimbic dopaminergic system under chronic cocaine administration. Results were confirmed by in situ hybridization, Northern blots, FISH analysis and RNase protection assay. Using lentiviral-mediated miRNA expression, we show a significant downregulation of BDNF and D3R both at mRNA and protein levels by miR-124 and let-7d, respectively. Our data suggest that miR-124, let-7d and miR-181a may be involved in a complex feedback loop with cocaine-responsive plasticity genes, highlighting the possibility that some miRNAs are key regulators of the reward circuit and may be implicated in addiction.  相似文献   

11.
The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg1243587 and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p < 0.001) using a training-set of 63 glioblastomas from homogenously treated patients, for whom MGMT methylation was previously shown to be predictive for outcome based on classification by methylation-specific PCR. MGMT-STP27 was successfully validated in an independent cohort of chemo-radiotherapy-treated glioblastoma patients (n = 50; kappa = 0.88; outcome, log-rank p < 0.001). Lower prevalence of MGMT methylation among CpG island methylator phenotype (CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.  相似文献   

12.
Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair follicles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA(miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist(agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist(antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regulating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.  相似文献   

13.

Objective

We analyzed the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter in World Health Organization (WHO) grade III gliomas in association with other molecular markers to evaluate their prevalence.

Methods

The samples of a total of 36 newly WHO grade III glioma patients including 19 anaplastic oligodendrogliomas (AO), 7 anaplastic oligoastrocytomas (AOA), and 10 anaplastic astrocytomas (AA) were analyzed. The methylation status of the MGMT gene promoter was confirmed by methylation-specific polymerase chain reaction. The 1p/19q chromosomal deletion status and EGFR amplification were assessed by Fluorescence In-Situ Hybridization. MGMT, EGFR, EGFRvIII, and p53 expression were analyzed by immunohistochemical staining.

Results

The MGMT gene promoter was methylated in 32 (88.9%) and unmethylated in 4 (11.2%). Among them, all of the AO and AOA had methylated MGMT gene promoter without exception. Significant associations between MGMT gene promoter hypermethylation and 1p/19q deletion was observed (p = 0.003). Other molecular markers failed to show significant associations between MGMT gene promoter statuses.

Conclusion

There was extensive epigenetic silencing of MGMT gene in high grade gliomas with oligodendroglial component. Together with frequent 1p/19q co-deletion in oligodendroglial tumors, this may add plausible explanations supporting the relative favorable prognosis in oligodendroglial tumors compared with pure astrocytic tumors.  相似文献   

14.
IntroductionCurrently, no single diagnostic modality allows the distinction between early progression (EP) and pseudo-progression (Psp) in glioblastoma patients. Herein we aimed to identify the characteristics associated with EP and Psp, and to analyze their diagnostic value alone and in combination.Material and methodsWe reviewed the clinical, conventional magnetic resonance imaging (MRI), and molecular characteristics (MGMT promoter methylation, IDH mutation, and EGFR amplification) of glioblastoma patients who presented an EP (n = 59) or a Psp (n = 24) within six months after temozolomide radiochemotherapy. We analyzed relative cerebral blood volume (rCBV) and relative vessel permeability on K2 maps (rK2) in a subset of 33 patients using dynamic-susceptibility-contrast MRI.ResultsIn univariate analysis, EP was associated with neurological deterioration, higher doses of dexamethasone, appearance of a new enhanced lesion, subependymal enhancement, higher rCBV and rK2 values. Psp occurred earlier after radiotherapy completion and was associated with IDH1 R132H mutation, and MGMT methylation. In multivariate analysis, rCBV, rK2, and MGMT methylation status were independently associated with EP and Psp. All patients with a methylated MGMT promoter and a low rCBV (< 1.75) were classified as Psp while all patients with an unmethylated MGMT promoter and a high rCBV (≥ 1.75) were classified as EP. Among patients with discordant MGMT methylation and rCBV characteristics, higher rK2 values tended to be associated with EP.ConclusionCombined analysis of MGMT methylation, rCBV and vessel permeability on K2 maps seems helpful to distinguish EP from Psp. A prospective study is warranted to confirm these results.  相似文献   

15.

Purpose of Review

Glioblastoma represents one of the major challenges in neurooncology and approximately half of the patients are 60 years or older. We summarize the particular situation of elderly glioblastoma patients with a focus on therapeutic considerations.

Recent Findings

Favorable molecular markers such as mutations in the isocitrate dehydrogenase (IDH) 1 or 2 genes are virtually absent in glioblastomas in elderly patients. Treatment options are similar to the situation in young patients and comprise surgical resection, radiation therapy, and alkylating chemotherapy. The performance status as well as comorbidities may have a stronger impact on the individual treatment decision than in young patients. The MGMT promoter methylation status allows for a stratification of treatment beyond the surgical intervention. In patients with MGMT promoter methylated tumors, monotherapy with temozolomide is superior to radiotherapy alone. Similarly, the benefit conferred by combined temozolomide-based chemoradiotherapy compared to radiotherapy alone is largely restricted to patients with MGMT promoter-methylated tumors. At recurrence, no standard treatment has been established.

Summary

The prognosis for elderly patients with glioblastoma remains poor. The MGMT promoter methylation status helps guiding treatment decisions and withholding inactive, but potentially harmful treatments.
  相似文献   

16.
IntroductionLocal DNA hypermethylation is a potential source of cancer biomarkers. While the evaluation of single gene methylation has limited value, their selected panel may provide better information.AimsThis study aimed to analyze the promoter methylation level in a 7‐gene panel in brain tumors and verifies the usefulness of methylation‐sensitive high‐resolution melting (MS‐HRM) for this purpose.MethodsForty‐six glioma samples and one non‐neoplastic brain sample were analyzed by MS‐HRM in terms of SFRP1, SFRP2, RUNX3, CBLN4, INA, MGMT, and RASSF1A promoter methylation. The results were correlated with patients’ clinicopathological features.ResultsDNA methylation level of all analyzed genes was significantly higher in brain tumor samples as compared to non‐neoplastic brain and commercial, unmethylated DNA control. RASSF1A was the most frequently methylated gene, with statistically significant differences depending on the tumor WHO grade. Higher MGMT methylation levels were observed in females, whereas the levels of SFRP1 and INA promoter methylation significantly increased with patients’ age. A positive correlation of promoter methylation levels was observed between pairs of genes, for example, CBLN4 and INA or MGMT and RASSF1A.ConclusionsOur 7‐gene panel of promoter methylation can be helpful in brain tumor diagnosis or characterization, and MS‐HRM is a suitable method for its analysis.  相似文献   

17.
MicroRNAs (miRNA) are short (~ 22 nt) single stranded RNAs that downregulate gene expression. Although recent studies indicate extensive miRNA changes in response to ischemic brain injury, there is currently little information on the roles of specific miRNAs in this setting. Heat shock proteins (HSP) of the HSP70 family have been extensively studied for their multiple roles in cellular protection, but there is little information on their regulation by miRNAs. We used bioinformatics to identify miR-181 as a possible regulator of several HSP70 family members. We validated GRP78/BIP as a target by dual luciferase assay. In response to stroke in the mouse we find that miR-181 increases in the core, where cells die, but decreases in the penumbra, where cells survive. Increased levels of miR-181a are associated with decreased GRP78 protein levels, but increased levels of mRNA, implicating translational arrest. We manipulated levels of miR-181a using plasmid overexpression of pri-miR-181ab or mimic to increase, and antagomir or inhibitor to reduce levels. Increased miR-181a exacerbated injury both in vitro and in the mouse stroke model. Conversely, reduced levels were associated with reduced injury and increased GRP78 protein levels. Studies in C6 cells show that if GRP78 levels are maintained miR-181a no longer exerts a toxic effect. These data demonstrate that miR-181 levels change in response to stroke and inversely correlate with levels of GRP78. Importantly, reducing or blocking miR-181a protects the brain from stroke.  相似文献   

18.
Many studies have shown decreased cortical muscarinic M1 receptors (CHRM1) in schizophrenia (Sz), with one study showing Sz can be separated into two populations based on a marked loss of CHRM1 (∼75%) in ∼25% of people (Def-Sz) with the disorder. To better understand the mechanism contributing to the loss of CHRM1 in Def-Sz, we measured specific markers of gene expression in the cortex of people with Sz as a whole, people differentiated into Def-Sz and people with Sz that do not have a deficit in cortical CHRM1 (Non-Def-Sz) and health controls. We now report that cortical CHRM1 gene promoter methylation and CHRM1 mRNA are decrease in Sz, Def-Sz and Non-Def-Sz but levels of the micro RNA (miR)-107, a CHRM1 targeting miR, are increased only in Def-Sz. We also report in vitro data strongly supporting the notion that miR-107 levels regulate CHRM1 expression. These data suggest there is a reversal of the expected inverse relationship between gene promoter methylation and CHRM1 mRNA in people with Sz and that a breakdown in gene promoter methylation control of CHRM1 expression is contributing to the global pathophysiology of the syndrome. In addition, our data argues that increased levels of at least one miR, miR-107, is contributing to the marked loss of cortical CHRM1 in Def-Sz and this may be a differentiating pathophysiology. These latter data continue to support the hypothesis that microRNAs (miRNA) have a role in the underlying neurobiology of Sz but argue they are differentially affected in subsets of people within that syndrome.  相似文献   

19.
Cerebral cavernous malformations (CCM) are vascular lesions associated with loss-of-function mutations in one of the three genes encoding KRIT1 (CCM1), CCM2, and PDCD10. Recent understanding of the molecular mechanisms that lead to CCM development is limited. The role of microRNAs (miRNAs) has been demonstrated in vascular pathologies resulting in loss of tight junction proteins, increased vascular permeability and endothelial cell dysfunction. Since the relevance of miRNAs in CCM pathophysiology has not been elucidated, the primary aim of the study was to identify the miRNA-mRNA expression network associated with CCM. Using small RNA sequencing, we identified a total of 764 matured miRNAs expressed in CCM patients compared to the healthy brains. The expression of the selected miRNAs was validated by qRT-PCR, and the results were found to be consistent with the sequencing data. Upon application of additional statistical stringency, five miRNAs (let-7b-5p, miR-361-5p, miR-370-3p, miR-181a-2-3p, and miR-95-3p) were prioritized to be top CCM-relevant miRNAs. Further in silico analyses revealed that the prioritized miRNAs have a direct functional relation with mRNAs, such as MIB1, HIF1A, PDCD10, TJP1, OCLN, HES1, MAPK1, VEGFA, EGFL7, NF1, and ENG, which are previously characterized as key regulators of CCM pathology. To date, this is the first study to investigate the role of miRNAs in CCM pathology. By employing cutting edge molecular and in silico analyses on clinical samples, the current study reports global miRNA expression changes in CCM patients and provides a rich source of data set to understand detailed molecular machinery involved in CCM pathophysiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号