首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, two biphasic calcium phosphate biomaterials (BCP) with HA/TCP ratios of 50/50 and 30/70 were obtained from a pure HA biomaterial. The biomaterials which showed the same three-dimensional geometry were implanted into corticocancellous costal defects of sheep. In the specimens of all three biomaterials, abundant bone formation, mineral dissolution from the biomaterial scaffolds, and active cellular resorption of the scaffolds was present after 6 and 12 months. Backscattered electron microscopy showed bone invasion into the pores of the scaffolds and micromechanical interlocking at the bone/biomaterial interface without intervening soft tissue. The pattern of bone formation and scaffold resorption was different for cortical and cancellous bone. No time-based effect, however, was observed. Overall, the BCP biomaterials had formed significantly more bone than the HA biomaterial. Also, scaffold resorption, which was followed by a replacement with newly formed bone, was significantly higher in the BCP biomaterials. Although no significant differences were observed between both BCP biomaterials, the present study had confirmed the assumption that HA/TCP compounding was suitable to improve bone formation and scaffold resorption in the investigated biomaterials and at the same time maintain the osteoconductive properties of the scaffolds.  相似文献   

2.
To investigate the bone formation ability of porous hydroxyapatite (HA) and tricalcium phosphate (TCP), ceramic discs were implanted with or without rat marrow cells into subcutaneous sites in syngeneic rats. The discs of HA and TCP had identical microstructures: pore size was 190-230 microns, porosity was 50-60%, and they were fully interconnected. Implants without marrow cells (discs themselves) did not show bone formation, whereas implants with marrow cells showed bone formation in the pores of the ceramics. The bone formation of both HA and TCP occurred initially on the surface of the ceramic and progressed towards the center of the pore. The de novo bone was quantitated from decalcified serial sections of the implants. One month after implantation with marrow cells, the percentage fractions of the pore area filled with bone for implanted HA and TCP were 16.9 and 15.1, respectively. At 2 months after implantation with marrow cells, the fractions of bone were 34.3 and 30.9, respectively. These results indicate that both HA and TCP ceramics can show comparable osteogenic ability in the presence of marrow cells.  相似文献   

3.
A disadvantage of traditional posterolateral spinal fusion models is that they are highly inefficient for screening multiple conditions. We developed a multiple-condition model that concentrates on the initial process of bone formation from the transverse process and not on a functional fusion. The effect of bone marrow stromal cells (BMSCs) in four different porous ceramic scaffolds was investigated in this setting. Polyacetal cassettes were designed to fit on the goat transverse process and house four different ceramic blocks, i.e: hydroxyapatite (HA) sintered at 1,150 degrees and 1,250 degrees; biphasic calcium phosphate (BCP) and tricalcium phosphate (TCP). Goat BMSCs (n=10) were cultured and per-operatively seeded autologeously on one of two cassettes implanted per animal. The cassettes were bilaterally mounted on the dorsum of decorticated L2-processes for 9 weeks. To asses the dynamics of bone formation, fluorochrome labels were administered and histomorphometry focused on the distribution of bone in the scaffolds. A clear difference in the extent of bone ingrowth was determined for the different scaffold types. An obvious effect of BMSC seeding was observed in three of four scaffold types, especially in scaffold regions adjacent to the overlying muscle. Generally, the BCP and TCP scaffolds showed better osteoconduction and an increased response to BMSCs administration. In conclusion the model provides a reliable and highly efficient method to study bone formation in cell-based tissue engineering. An effect of cell administration was obvious in three of the four scaffold materials.  相似文献   

4.
Scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Bone tissue engineering requires materials that are biocompatible, well vascularized, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells that form new bone. The aim of this study was to compare the osteogenic potential of bone marrow-derived, culture expanded human mesenchymal stem cells (hMSCs) adherent to different scaffolds composed of various calcium phosphates. Cells were loaded onto 2 x 2 mm cubes of coral calcium carbonate-derived apatite, bovine bone-derived apatite, synthetic hydroxyapatite (HA)/tricalcium phosphate (TCP) (60:40%), or synthetic HA/TCP (20:80%) and placed into the dorsum of SCID mice for 5 weeks. Subsequent histomorphometric analysis of bone formation within the cubes revealed the absence of bone formation within the coral-derived apatite and the bovine bone-derived apatite. Bone formation within synthetic HA/TCP scaffolds was measured to be 8.8% (+/-2.7%) and 13.8% (+/-3.6%) of the total tissue present for the 60:40% and 20:80% materials, respectively. Minimal resorption was observed at this early time point. Scanning electron microscopy evaluation of loaded scaffolds indicates that cell loading was not a variable affecting the different bone formation outcomes in these four scaffolds. In this ectopic model, different apatite-containing scaffolds of similar morphology and porosity demonstrated marked differences in their ability to support osteoinduction by implanted hMSCs. The necessary induction of hMSCs along the osteoblastic lineage may be dependent, in part, on the local microenvironment established by the scaffold chemistry and interactions with the host.  相似文献   

5.
Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering.  相似文献   

6.
In a typical bone tissue engineering application, osteogenic cells are harvested and seeded on a three-dimensional (3D) synthetic scaffold that acts as guide and stimulus for tissue growth, creating a tissue engineering construct or living biocomposite. Despite the large number of performed experiments in different laboratories, information on the kinetics of bone growth into the scaffolds is still scarce. Highly porous hydroxyapatite scaffolds were investigated before the implantation and after they were seeded with in vitro expanded bone marrow stromal cells (BMSC) and implanted for 8, 16, or 24 weeks in immunodeficient mice. Synchrotron x-ray computed microtomography (microCT) was used for qualitative and quantitative 3D characterization of the scaffold material and 3D evaluation of tissue engineered bone growth kinetics after in vivo implantation. Experiments were performed taking advantage of a dedicated set up at the European Synchrotron Radiation Facility (ESRF, Grenoble, France), which allowed quantitative imaging at a spatial resolution of about 5 microm. A peculiarity of these experiments was the fact that at first the data were obtained on the different pure scaffolds, then the same scaffolds were seeded by BMSC, implanted, and brought again to ESRF for investigating the formation of new bone. The volume fraction, average thickness, and distribution of the newly formed bone were evaluated as a function of the implantation time. New bone thickness increased from week 8 to week 16, but deposition of new bone was arrested from week 16 to week 24. Instead, mineralization of the newly deposited bone matrix continued up to week 24.  相似文献   

7.
The objective of this research was to investigate the bone formation and angio-conductive potential of hydroxyapatite (HA) scaffolds closely matched to trabecular bone in a canine segmental defect after 3 and 12 weeks post implantation. Histomorphometric comparisons were made between naturally forming trabecular bone (control) and defects implanted with scaffolds fabricated with micro-size (M-HA) and nano-size HA (N-HA) ceramic surfaces. Scaffold architecture was similar to trabecular bone formed in control defects at 3 weeks. No significant differences were identified between the two HA scaffolds; however, significant bone in-growth was observed by 12 weeks with 43.9 +/- 4.1% and 50.4 +/- 8.8% of the cross-sectional area filled with mineralized bone in M-HA and N-HA scaffolds, respectively. Partially organized, lamellar collagen fibrils were identified by birefringence under cross-polarized light at both 3 and 12 weeks post implantation. Substantial blood vessel infiltration was identified in the scaffolds and compared with the distribution and diameter of vessels in the surrounding cortical bone. Vessels were less numerous but significantly larger than native cortical Haversian and Volkmann canals reflecting the scaffold architecture where open spaces allowed interconnected channels of bone to form. This study demonstrated the potential of trabecular bone modeled, highly porous and interconnected, HA scaffolds for regenerative orthopedics.  相似文献   

8.
A number of studies have shown in vivo bone regeneration by transplantation of osteogenic cells differentiated in vitro from adipose-derived stromal cells (ADSCs). However, the in vitro osteogenic differentiation process requires an additional culture period, and the dexamethasone that is generally used in the process may be cytotoxic. Here, we tested the hypothesis that ADSCs that are not differentiated osteogenically in vitro prior to transplantation would extensively regenerate bone in vivo when exogenous bone morphogenetic protein-2 (BMP-2) is delivered to the transplantation site. We fabricated a poly(dl-lactic-co-glycolic acid)/hydroxyapatite (PLGA/HA) composite scaffold with osteoactive HA that is highly exposed on the scaffold surface. This scaffold was able to release BMP-2 over a 4-week period in vitro. Human ADSCs cultured on BMP-2-loaded PLGA/HA scaffolds for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) mRNA, while cells on PLGA/HA scaffolds without BMP-2 expressed only ALP. To study in vivo bone formation, PLGA/HA scaffolds (group 1), BMP-2-loaded PLGA/HA scaffolds (group 2), undifferentiated ADSCs seeded on PLGA/HA scaffolds (group 3), and undifferentiated ADSCs seeded on BMP-2-loaded PLGA/HA scaffolds (group 4) were implanted into dorsal, subcutaneous spaces of athymic mice. Eight weeks after implantation, group 4 exhibited a 25-fold greater bone formation area and 5-fold higher calcium deposition than group 3. Bone regeneration by transplanted human ADSCs in group 4 was confirmed by expression of human-specific osteoblastic genes, ALP, collagen type I, OPN, OCN, and bone sialoprotein, while group 3 expressed much lower levels of collagen type I and OPN mRNA only. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of ADSCs without prior in vitro osteogenic differentiation, and that a PLGA/HA composite BMP-2 delivery system stimulates bone regeneration following transplantation of undifferentiated human ADSCs.  相似文献   

9.
Kim SS  Sun Park M  Jeon O  Yong Choi C  Kim BS 《Biomaterials》2006,27(8):1399-1409
Biodegradable polymer/bioceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. However, conventional methods for fabricating polymer/bioceramic composite scaffolds often use organic solvents (e.g., the solvent casting and particulate leaching (SC/PL) method), which might be harmful to cells or tissues. Furthermore, the polymer solutions may coat the ceramics and hinder their exposure to the scaffold surface, which may decrease the likelihood that the seeded osteogenic cells will make contact with the bioactive ceramics. In this study, a novel method for fabricating a polymer/nano-bioceramic composite scaffold with high exposure of the bioceramics to the scaffold surface was developed for efficient bone tissue engineering. Poly(D,L-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/HA) composite scaffolds were fabricated by the gas forming and particulate leaching (GF/PL) method without the use of organic solvents. The GF/PL method exposed HA nanoparticles at the scaffold surface significantly more than the conventional SC/PL method does. The GF/PL scaffolds showed interconnected porous structures without a skin layer and exhibited superior enhanced mechanical properties to those of scaffolds fabricated by the SC/PL method. Both types of scaffolds were seeded with rat calvarial osteoblasts and cultured in vitro or were subcutaneously implanted into athymic mice for eight weeks. The GF/PL scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization compared to the SC/PL scaffolds in vitro. Histological analyses and calcium content quantification of the regenerated tissues five and eight weeks after implantation showed that bone formation was more extensive on the GF/PL scaffolds than on the SC/PL scaffolds. Compared to the SC/PL scaffolds, the enhanced bone formation on the GF/PL scaffolds may have resulted from the higher exposure of HA nanoparticles at the scaffold surface, which allowed for direct contact with the transplanted cells and stimulated the cell proliferation and osteogenic differentiation. These results show that the biodegradable polymer/bioceramic composite scaffolds fabricated by the novel GF/PL method enhance bone regeneration compared with those fabricated by the conventional SC/PL method.  相似文献   

10.
Porous interconnected hydroxyapatite (HA) and HA/tricalcium phosphate (TCP) (60/40) ceramics are promising materials for hard tissue repair. However, the mechanical properties of these materials have not been accurately determined under weight-bearing conditions. In this study, newly developed HA and HA/TCP (60/40) ceramics were used with intramedullary fixation in segmental bone defects of rabbits. Early radiological, histological, densitometric and biomechanical changes were evaluated. The mean radiological grade of healing and bonding to bone was higher in HA/TCP (60/40) ceramics than that of pure HA ceramics but the difference was not statistically significant. The densities of both implanted ceramics improved with time, supported by the histological evaluation of bone matrix ingrowth into ceramic pores, whereas the densities at the bone–ceramic interface decreased gradually. Flexural resonant frequencies and three-point bending strength increased, revealing an increase in mechanical stability during this early critical time interval where implant and/or bone–implant interface failures occur frequently. It can be concluded that both HA and HA/TCP (60/40) ceramics have a limited application in the treatment of load-bearing segmental bone defects but did not fail at the early stages of implantation.  相似文献   

11.
12.
Biodegradable polymer/ceramic scaffolds can overcome the limitations of conventional ceramic bone substitutes. However, the conventional methods of polymer/ceramic scaffold fabrication often use organic solvents, which might be harmful to cells or tissues. Moreover, scaffolds fabricated with the conventional methods have limited ceramic exposure on the scaffold surface since the polymer solution envelopes the ceramic particles during the fabrication process. In this study, we developed a novel fabrication method for the efficient exposure of ceramic onto the scaffold surface, which would enhance the osteoconductivity and wettability of the scaffold. Poly(D,L-lactide-co-glycolide)/nanohydroxyapatite (PLGA/HA) scaffolds were fabricated by the gas foaming and particulate leaching (GF/PL) method without the use of organic solvents. Selective staining of ceramic particles indicated that HA nanoparticles exposed to the scaffold surface were observed more abundantly in the GF/PL scaffold than in the conventional solvent casting and particulate leaching (SC/PL) scaffold. Both types of scaffolds were implanted to critical size defects in rat skulls for 8 weeks. The GF/PL scaffolds exhibited significantly enhanced bone regeneration when compared with the SC/PL scaffolds. Histological analyses and microcomputed tomography of the regenerated tissues showed that bone formation was more extensive on the GF/PL scaffolds than on the SC/PL scaffolds. Compared with the SC/PL scaffolds, the enhanced bone formation on the GF/PL scaffolds may result from the higher exposure of HA nanoparticles to the scaffold surface. These results show that the biodegradable polymer/ceramic composite scaffolds fabricated with the novel GF/PL method can enhance bone regeneration compared with those fabricated with the conventional SC/PL method.  相似文献   

13.
The relative osteoconductivity and the change in the mechanical properties of hydroxyapatite (HA) scaffolds with multi-scale porosity were compared to scaffolds with a single pore size. Non-microporous (NMP) scaffolds contained only macroporosity (250-350 microm) and microporous (MP) scaffolds contained both macroporosity and microporosity (2-8 microm). Recombinant human bone morphogenetic protein-2 (rhBMP-2) was incorporated into all scaffolds via gelatin microspheres prior to implantation into the latissimus dorsi muscle of Yorkshire pigs. After 8 weeks, only the MP scaffolds contained bone. The result demonstrates the efficacy of the MP scaffolds as drug carriers. Implanted and as-fabricated scaffolds were compared using histology, microcomputed tomography, scanning electron microscopy, and compression testing. Implanted scaffolds exhibited a stress-strain response similar to that of cancellous bone with strengths between those of cancellous and cortical bone. The strength and stiffness of implanted NMP scaffolds decreased by 15% and 46%, respectively. Implanted MP scaffolds lost 30% of their strength and 31% of their stiffness. Bone arrested crack propagation effectively in MP scaffolds. The change in mechanical behavior is discussed and the study demonstrates the importance of scaffold microporosity on bone ingrowth and on the mechanical behavior of HA implant materials.  相似文献   

14.
Integration of dense HA rods into cortical bone   总被引:1,自引:0,他引:1  
HA ceramics are daily used in human surgery for bone healing partly due to their ability to integrate into bone. They are generally used under a macroporous form. The behaviour of dense HA after implantation is not so well known. We implanted within cortical sheep femurs dense pure HA-ceramics cylinders for periods from 2 weeks to 18 months. The samples were then sectioned and examined using back-scattered and secondary SEM and the interface was analysed using EDS. Histomorphometry measurement was also performed using an image analysis device coupled to a light microscope. It appeared that the cylinders were in direct contact with immature bone after three weeks. The bone maturated within three months. The implant surface showed moderate signs of resorption and some grains were released from the surface. The resorption zone was only a few microm thick after 18 months. The bulk ceramic contained default zones of increased porosity. They can constitute fragile zone when located close to the surface in which the resorption rate is increased. We conclude that dense pure HA is poorly degraded when implanted in cortical bone. Degradation depends on the defaults found on the ceramic structure and the remodelling of bone surrounding the material.  相似文献   

15.
Osteonecrosis of the femoral head is a debilitating and painful orthopedic condition characterized by joint collapse. Salvage of the femoral head is highly desirable to preserve the contour and mechanical properties and prevent joint collapse. This study aimed to develop a new tissue-engineering approach for treatment of large bone defect in femoral head, that is, after osteonecrosis. The biphasic calcium phosphate (BCP) ceramic scaffolds were fabricated by a 3D gel-lamination technique based on micro-computed tomography (micro-CT) images of the cancellous bone microarchitecture of femoral heads. After seeding with autologous bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, the cell-scaffold composite was implanted into a bone defect surgically induced in canine femoral head via trapdoor procedure, which was a common procedure for treatment of osteonecrosis. A total of 24 adult dogs were randomly divided into three groups (n = 8 each) for implantation of the BCP scaffold with or without with BMSCs, and also the autologous bone chips for comparisons. All animals were sacrificed at 30 weeks postoperatively and processed for radiological and histological evaluations. The contour of the femoral head was well preserved with implantation of BCP scaffolds with or without BMSCs, whereas joint collapse was found after treatment with autologous bone chips. The osteointegration and new bone formation was significantly greater with BCP scaffold implantation with than without BMSC seeding and showed greater strength and compressive modulus in the repair site. Micro-CT-based bone ceramic scaffolds seeding with BMSC might be a promising way to repair bone defects in the femoral head.  相似文献   

16.
For bone regeneration applications, scaffolds made from a composite of a biodegradable polymer and ceramic have advantages over scaffolds made from only one component (biodegradable polymer or ceramic alone). In this study, a simple and rapid method was developed to induce hydroxyapatite (HA) nanoparticle adsorption on polyglycolic acid (PGA) scaffold surfaces. PGA meshes were coated with HA nanoparticles by immersing the scaffolds in a buffer solution containing 3,4-dihydroxyphenylalanine (DOPA), a critical, functional element in mussel adhesive protein known to strongly bind to various materials. Substantial HA coating on PGA scaffolds was achieved within 24 hours of immersion, as determined according to selective staining of ceramic particles, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive spectroscopy. To evaluate the osteoconduction efficacy of the scaffolds in vivo, PGA scaffolds, DOPA-coated PGA scaffolds, PGA scaffolds immersed in HA solution, and HA- and DOPA-coated PGA (HA-DOPA-PGA) scaffolds were implanted in critical-sized defects in mouse skulls for 8 weeks. Micro-computed tomography and histological analyses showed that bone regeneration in vivo was far more extensive on HA-DOPA-PGA scaffolds than on the other scaffolds. DOPA offers an efficient and simple method of HA coating on polymer scaffolds. HA-polymer composite scaffolds fabricated using this method could be useful as bone graft.  相似文献   

17.
Segmental defect regeneration has been a clinical challenge. Current tissue-engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices (bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP) composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein-2 (BMP-2) carrier. Twenty-two scaffolds were implanted in 5mm segmental defects in rat femurs stabilized with K-wire for 6 and 15 weeks with and without 10 microg of rhBMP-2. Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro-computer tomography (microCT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging. The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone length and allow successfully regeneration in segmental defects.  相似文献   

18.
Purpose of this study was the analysis of the role of density and pore interconnection pathway in scaffolds to be used as bone substitutes. We have considered 2 hydroxyapatite bioceramics with identical microstructure and different macro-porosity, pore size distribution and pore interconnection pathway. The scaffolds were obtained with two different procedures: (a) sponge matrix embedding (scaffold A), and (b) foaming (scaffold B). Bone ingrowth within the two bioceramics was obtained using an established model of in vivo bone formation by exogenously added osteoprogenitor cells. The histological analysis of specimens at different time after in vivo implantation revealed in both materials a significant extent of bone matrix deposition. Interestingly enough, scaffold B allowed a faster occurrence of bone tissue, reaching a steady state as soon as 4 weeks. Scaffold A on the other hand reached a comparable level of bone formation only after 8 weeks of in vivo implantation. Both scaffolds were well vascularised, but larger blood vessels were observed in scaffold A. Here we show that porosity and pore interconnection of osteoconductive scaffolds can influence the overall amount of bone deposition, the pattern of blood vessels invasion and finally the kinetics of the bone neoformation process.  相似文献   

19.
Arinzeh TL  Tran T  Mcalary J  Daculsi G 《Biomaterials》2005,26(17):3631-3638
For the repair of bone defects, a tissue engineering approach would be to combine cells capable of osteogenic (i.e. bone-forming) activity with an appropriate scaffolding material to stimulate bone regeneration and repair. Human mesenchymal stem cells (hMSCs), when combined with hydroxyapatite/beta-tricalcium phosphate (HA/TCP) ceramic scaffolds of the composition 60% HA/40% TCP (in weight %), have been shown to induce bone formation in large, long bone defects. However, full repair or function of the long bone could be limited due to the poor remodeling of the HA/TCP material. We conducted a study designed to determine the optimum ratio of HA to TCP that promoted hMSC induced bone formation yet be fully degradable. In a mouse ectopic model, by altering the composition of HA/TCP to 20% HA/80% TCP, hMSC bone induction occurred at the fastest rate in vivo over the other formulations of the more stable 100% HA, HA/TCP (76/24, 63/37, 56/44), and the fully degradable, 100% TCP. In vitro studies also demonstrated that 20/80 HA/TCP stimulated the osteogenic differentiation of hMSCs as determined by the expression of osteocalcin.  相似文献   

20.
Successful bone-tissue engineering (TE) has been reported for various strategies to combine cells with a porous scaffold. In particular, the period after seeding until implantation of the constructs may vary between hours and several weeks. Differences between these strategies can be reduced to (a) the presence of extracellular matrix, (b) the differentiation status of the cells, and (c) the presence of residual potentially immunogenic serum proteins. These parameters are investigated in two types of calcium phosphate scaffolds in a goat model of ectopic bone formation. Culture-expanded bone-marrow stromal cells from eight goats were seeded onto two types of hydroxyapatite granules: HA60/400 (60% porosity, 400-microm average pore size) and HA70/800. Scaffolds seeded with cells and control scaffolds were cultured for 6 days in medium containing autologous or semisynthetic serum, in the presence or absence of dexamethasone. Other scaffolds were seeded with cells just before implantation in medium with or without serum. All conditions were implanted autologously in the paraspinal muscles. After 12 weeks, bone had formed in 87% of all TE constructs, as demonstrated by histology. Histomorphometry indicated significantly more bone in the HA70/800 scaffolds. Furthermore, a significant advantage in bone formation was found when the constructs had been cultured for 6 days. In conclusion, both scaffold characteristics (porosity) and TE strategy (culturing of the constructs) were demonstrated to be important for bone TE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号