首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent data indicate that the cell surface glycoprotein CD5 functions as a negative regulator of T cell receptor (TCR)-mediated signaling. In this study, we examined the regulation of CD5 surface expression during normal thymocyte ontogeny and in mice with developmental and/or signal transduction defects. The results demonstrate that low level expression of CD5 on CD4CD8 (double negative, DN) thymocytes is independent of TCR gene rearrangement; however, induction of CD5 surface expression on DN thymocytes requires engagement of the pre-TCR and is dependent upon the activity of p56lck. At the CD4+CD8+ (double positive, DP) stage, intermediate CD5 levels are maintained by low affinity TCR–major histocompatibility complex (MHC) interactions, and CD5 surface expression is proportional to both the surface level and signaling capacity of the TCR. High-level expression of CD5 on DP and CD4+ or CD8+ (single positive, SP) thymocytes is induced by engagement of the α/β-TCR by (positively or negatively) selecting ligands. Significantly, CD5 surface expression on mature SP thymocytes and T cells was found to directly parallel the avidity or signaling intensity of the positively selecting TCR–MHC-ligand interaction. Taken together, these observations suggest that the developmental regulation of CD5 in response to TCR signaling and TCR avidity represents a mechanism for fine tuning of the TCR signaling response.  相似文献   

2.
Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4(-)CD8(-) double-negative (DN) thymocytes into CD4(+)CD8(+) double-positive (DP) cells and for TCR-beta allelic exclusion. The adaptor protein SH2 domain-containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76(-/-) mice are arrested at the CD25(+)CD44(-) DN stage. Here we show that SLP-76(-/-) DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-alpha/beta transgene into the SLP-76(-/-) background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-beta rearrangement in SLP-76(-/-) TCR-transgenic mice or in single CD25(+)CD44(-) DN cells from SLP-76(-/-) mice indicates an essential role of SLP-76 in TCR-beta allelic exclusion.  相似文献   

3.
The first checkpoint in T cell development occurs between the CD4(-)CD8(-) and CD4(+)CD8(+) stages and is associated with formation of the pre-T cell receptor (TCR). The signaling mechanisms that drive this progression remain largely unknown. Here, we show that extracellular signal-regulated kinases (ERKs)-1/2 are activated upon engagement of the pre-TCR. Using a novel experimental system, we demonstrate that expression of the pre-TCR by developing thymocytes induces ERK-1/2 activation within the thymus. In addition, the activation of this pre-TCR signaling cascade is mediated through Lck. These findings directly link pre-TCR complex formation with specific downstream signaling components in vivo.  相似文献   

4.
We recently described a novel way to isolate populations of antigen-reactive CD4(+) T cells with a wide range of reactivity to a specific antigen, using immunization with a fixed dose of nominal antigen and FACS((R)) sorting by CD4(high) expression. Phenotypic, FACS((R)), functional, antibody inhibition, and major histocompatibility complex-peptide tetramer analyses, as well as T cell receptor Vbeta sequence analyses, of the antigen-specific CD4(high) T cell populations demonstrated that a diverse sperm whale myoglobin 110-121-reactive CD4(+) T cell repertoire was activated at the beginning (day 3 after immunization) of the immune response. Within 6 d of immunization, lower affinity clones were lost from the responding population, leaving an expanded population of oligoclonal, intermediate affinity (and residual high affinity) T cells. This T cell subset persisted for at least 4 wk after immunization and dominated the secondary immune response. These data provide evidence that CD4(+) T cell repertoire selection occurs early in the immune response in vivo and suggest that persistence and expansion of a population of oligoclonal, intermediate affinity T cells is involved in CD4(+) T cell memory.  相似文献   

5.
The CDR3 regions of T cell receptor (TCR)-alpha and -beta chains play central roles in the recognition of antigen (Ag)-MHC complex. TCR repertoire is created on the basis of Ag recognition specificity by CDR3s. To analyze the potential spectrum of TCR-alpha and -beta to exhibit Ag specificity and generate TCR repertoire, we established hundreds of TCR transfectants bearing a single TCR-alpha or -beta chain derived from a cytotoxic T cell (CTL) clone, RT-1, specific for HIVgp160 peptide, and randomly picked up TCR-beta or -alpha chains. Surprisingly, one-third of such TCR-beta containing random CDR3 beta from naive T cells of normal mice could reconstitute the antigen-reactive TCR coupling with RT-1 TCR-alpha. A similar dominant function of TCR-alpha in forming Ag-specific TCR, though low-frequency, was obtained for lymphocytic choriomeningitis virus-specific TCR. Subsequently, we generated TCR-alpha and/or -beta transgenic (Tg) mice specific for HIVgp160 peptide, and analyzed the TCR repertoire of Ag-specific CTLs. Similar to the results from TCR reconstitution, TCR-alpha Tg generated CTLs with heterogeneous TCR-beta, whereas TCR-beta Tg-induced CTLs bearing a single TCR-alpha. These findings of Ag recognition with minimum involvement of CDR3 beta expand our understanding regarding the flexibility of the spectrum of TCR and suggest a predominant role of TCR-alpha chain in determining the preimmune repertoire of Ag-specific TCR.  相似文献   

6.
Transgenic mice that carry on a large fraction of their T cells an alpha/beta T cell receptor that recognizes the male antigen in the context of H-2Db molecules were constructed. An mAb specific for the transgenic receptor was developed and used to analyze T cell subsets in male transgenic H-2b mice. The vast majority of immature CD4+8+ T cells that express the transgenic TCR were deleted in the male transgenic mouse. Nevertheless, the majority of T cells spared by this deletion process expressed a high level of the transgenic TCR. These T cells, however, had an abnormal CD4/CD8 phenotype in that they expressed either no CD8 molecules or only low levels.  相似文献   

7.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease that can be induced in laboratory animals by immunization with the major myelin proteins, myelin basic protein (MBP) and proteolipid protein (PLP). We analyzed the role of the T cell receptor (TCR) repertoire in susceptibility to EAE induced by these two autoantigens. Autoreactive T cells induced after immunization with MBP use a limited set of TCR. In contrast, we demonstrate that T cell clones that recognize the encephalitogenic PLP epitope (PLP 139-151) use diverse TCR genes. When the TCR repertoire is limited by introduction of a novel rearranged TCR V beta 8.2 chain in transgenic SJL mice, EAE could be induced in the transgenic mice by immunization with the encephalitogenic epitopes of PLP, but not with the encephalitogenic epitope of MBP. Thus, skewing the TCR repertoire affects the susceptibility to EAE by immunization with MBP but not with PLP. These data demonstrate the biological consequences of the usage of a more diverse T cell repertoire in the development of an autoimmune disease.  相似文献   

8.
Importance of the field: Adoptive T cell therapy (ACT) with tumour infiltrating lymphocytes is currently the best treatment option for metastatic melanoma. Despite its clinical successes, ACT has limitations in availability and generation of therapeutic T cells for a larger group of patients. Introduction of tumour-specific T cell receptors into T cells, termed TCR gene therapy, can provide an alternative for ACT that is more widely applicable and might be extended to other types of cancer.

Areas covered in this review: The current status of TCR gene therapy studies including clinical challenges, such as on-target toxicity, compromised anti-tumour T cell responses, compromised T cell persistence and potential immunogenicity of receptor transgenes. Strategies to address these challenges are covered.

What the reader will gain: A listing and discussion of strategies that aim at improving the efficacy and safety of TCR gene therapy. Such strategies address antigen choice, TCR mis-pairing, functional avidity and persistence of T cells, immune responses towards receptor transgenes, and combination of ACT with other therapies.

Take home message: To ensure further clinical development of TCR gene therapy, it is necessary to choose safe T cell target antigens, and implement (combinations of) strategies that enhance the correct pairing of TCR transgenes and the functional avidity and persistence of T cells.  相似文献   

9.
Transgenic mice carrying and expressing the human CD3 epsilon gene incorporate the corresponding protein product into T cell receptor (TCR)/CD3 complexes on thymocyte and T cell surfaces. The chimeric antigen receptors allow normal T cell development and selection of repertoires in vivo and are able to transduce activation signals in vitro. We have exploited the ability to distinguish mouse (m) and human (h)CD3 epsilon chains to analyze the stoichiometry of CD3 epsilon in transgenic mouse TCRs. Immunoprecipitation and fluorescence resonance energy transfer experiments demonstrate that such TCRs can contain both h- and mCD3 epsilon chains, implying that more than one CD3 epsilon subunit occurs per TCR. Antigen comodulation studies are consistent with a stochastic use of h- or mCD3 epsilon during receptor assembly, and further suggest a structure for the TCR/CD3 complex with two CD3 epsilon chains. The determination of CD3 epsilon subunit stoichiometry, together with existing biochemical data, allows the generation of a minimal model for the structure of the TCR and illustrates the potential value of the transgenic approach to the analysis of complex receptors.  相似文献   

10.
Fas-mediated apoptosis is essential for activation-induced cell death of alpha/beta T cells, but it is not clear what role, if any, it plays in regulating other components of the immune system. To study the role of Fas in gamma/delta T cell development, Fas-deficient lpr mice were bred with T cell receptor alpha gene-ablated (TCR-alpha-/-) mice to generate mice deficient in one or both genes. The TCR-alpha-/-, lpr/lpr mice had a nearly 10-fold increase in total lymph node cell (LNC) number compared with Fas-intact TCR-alpha-/- mice, because of expansion of TCR-gamma/delta+ and TCR-beta+ cells. In Fas-intact TCR-alpha-/- mice, approximately one third of the LNCs expressed TCR-gamma/delta. These were evenly divided between the CD4-, CD8-alpha+ and the CD4-, CD8- subsets, and rarely expressed the B220 epitope of CD45. In contrast, in TCR-alpha-/-, lpr/lpr mice, TCR-gamma/delta+ cells comprised half of the LNCs and were primarily CD4-, CD8-, and B220+. Moreover, Fas deficiency in TCR-alpha-/- mice caused a preferential expansion of gamma/delta T cells expressing variable region genes characteristic of intestinal intraepithelial lymphocytes. These results demonstrate a role for Fas in regulating the gamma/delta T cell contribution to peripheral lymph nodes. This mechanism may be most important in limiting the access of activated intestinal intraepithelial lymphocytes to the peripheral lymphoid system.  相似文献   

11.
T cell receptor (TCR)-interacting molecule (TRIM) is a recently identified transmembrane adaptor protein, which is exclusively expressed in T cells. Here we demonstrate that in mature T cells, TRIM preferentially interacts with the TCR via the TCR-zeta chains and to a lesser extent via the CD3-straightepsilon/gamma heterodimer. Transient or stable overexpression of TRIM in Jurkat T cells results in enhancement of TCR expression on the cell surface and elevated induction of Ca(2+) mobilization after T cell activation. TRIM-mediated upregulation of TCR expression results from inhibition of spontaneous TCR internalization and stabilization of TCR complexes on the cell surface. Collectively, our data identify TRIM as a novel integral component of the TCR complex and suggest that one function of TRIM might be to modulate the strength of signals transduced through the TCR through regulation of TCR expression on the cell surface.  相似文献   

12.
13.
HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA- A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL, respectively, but < 0.19% of V beta 2+ sequences expressed in PBL. These results are consistent with the hypothesis that a clonal expansion/accumulation of a melanocyte-lineage-specific and HLA-A2-restricted T cell clone occurred in vivo at the site of tumor growth.  相似文献   

14.
The stoichiometry of the subunits that comprise the T cell antigen receptor (TCR) complex is not completely known. In particular, it is uncertain whether TCR alpha and TCR beta proteins are present in the TCR complex as one or multiple heterodimeric pairs. In this study we have used mice transgenic for two different TCR alpha and two different TCR beta proteins to determine the number of TCR alpha and TCR beta chains in a single TCR complex. Individual thymocytes and splenic T cells from double TCR transgenic mice simultaneously expressed all four transgenic TCR proteins on their surfaces. Because the individual TCR alpha and individual TCR beta proteins were biochemically distinguishable, we were able to examine association among the transgenic TCR products. We found that each TCR alpha chain paired with each TCR beta chain, but that each TCR complex contained only one TCR alpha and one TCR beta protein. Furthermore, quantitative immunofluorescence revealed that T cells expressed twice as many CD3 epsilon as TCR beta proteins. These findings demonstrate that there are precisely one TCR alpha, one TCR beta, and two CD3 epsilon chains in each TCR/CD3 complex expressed on the surfaces of both thymocytes and mature T cells.  相似文献   

15.
Phosphatidyl choline (PtC)-specific B cells segregate to the B-1 subset, where they comprise up to 10% of the B-1 repertoire. About half express V(H)12 and Vkappa4/5H and are restricted in V(H)CDR3. We have previously reported that anti-PtC V(H)CDR3 is enriched among V(H)12-expressing cells by selective elimination of pre-B cells. We report here a bias for Vkappa4/5H expression among V(H)12-expressing B cells, even among those that do not bind PtC and are not B-1. This is due in part to an inability of V(H)12 to associate with many light (L) chains but must also be due to a selective advantage in survival or clonal expansion in the periphery for Vkappa4/5H-expressing cells. Thus, the bias for Vkappa4/5H expression is independent of PtC binding, and, as segregation to B-1 occurs after Ig gene expression, it precedes segregation to the B-1 subset. In 6-1 mice, splenic B-1 cells reside in follicles but segregate to follicles distinct from those that contain B-2 cells. These data indicate that selection at multiple developmental checkpoints ensures the co-expression of an anti-PtC V(H)CDR3 and L chain in a high frequency of V(H)12 B cells. This focus toward specificity for PtC facilitates the development of a large anti-PtC B-1 repertoire.  相似文献   

16.
The T cell receptor (TCR)gammadelta and the pre-TCR promote survival and maturation of early thymocyte precursors. Whether these receptors also influence gammadelta versus alphabeta lineage determination is less clear. We show here that TCRgammadelta gene rearrangements are suppressed in TCRalphabeta transgenic mice when the TCRalphabeta is expressed early in T cell development. This situation offers the opportunity to examine the outcome of gammadelta versus alphabeta T lineage commitment when only the TCRalphabeta is expressed. We find that precursor thymocytes expressing TCRalphabeta not only mature in the alphabeta pathway as expected, but also as CD4(-)CD8(-) T cells with properties of gammadelta lineage cells. In TCRalphabeta transgenic mice, in which the transgenic receptor is expressed relatively late, TCRgammadelta rearrangements occur normally such that TCRalphabeta(+)CD4(-)CD8(-) cells co-express TCRgammadelta. The results support the notion that TCRalphabeta can substitute for TCRgammadelta to permit a gammadelta lineage choice and maturation in the gammadelta lineage. The findings could fit a model in which lineage commitment is determined before or independent of TCR gene rearrangement. However, these results could be compatible with a model in which distinct signals bias lineage choice and these signaling differences are not absolute or intrinsic to the specific TCR structure.  相似文献   

17.
To identify novel genes that are involved in positive selection of thymocytes, we performed polymerase chain reaction (PCR)-based subtractive hybridization between selecting and nonselecting thymi. OT-1 T cell receptor (TCR) transgenic thymocytes on a recombination activating gene (RAG) null background are efficiently selected into the CD8 lineage in H-2(b) mice (RAG-2(-/-)OT-1, selecting thymi), but are not selected on a transporter associated with antigen processing (TAP) null background (RAG-2(-/-)TAP-1(-/-)OT-1, nonselecting thymi). We report here our studies of one gene, ITM2A, whose expression is dramatically higher in T cells in the selecting thymus. The expression pattern of ITM2A in thymocyte subsets correlates with upregulation during positive selection. In addition, ITM2A expression is higher in the thymus than in either the spleen or lymph nodes, but can be upregulated in peripheral T cells upon activation. ITM2A expression was also induced in RAG-2(-/-) thymocytes in vivo upon CD3 cross-linking. We demonstrate that ITM2A is a type II membrane glycoprotein that exists as two species with apparent M(r) of 45 and 43 kD and appears to localize primarily to large cytoplasmic vesicles and the Golgi apparatus, but is also expressed on the cell surface. Expression on the surface of EL4 cells increases with activation by phorbol myristate acetate (PMA) and ionomycin. Finally, overexpression of ITM2A under control of the lck proximal promoter in mice results in partial downregulation of CD8 in CD4(+)CD8(+) double positive (DP) thymocytes, and a corresponding increase in the number of CD4(+)CD8(lo) thymocytes. Possible roles for this novel activation marker in thymocyte development are discussed.  相似文献   

18.
We have studied recombinatorial events of the T cell receptor delta and gamma chain genes in hematopoietic malignancies and related these to normal stages of lymphoid differentiation. T cell receptor delta gene recombinatorial events were found in 91% of acute T cell lymphoblastic leukemia, 68% of non-T, non-B lymphoid precursor acute lymphoblastic leukemia (ALL) and 80% of mixed lineage acute leukemias. Mature B-lineage leukemias and acute nonlymphocytic leukemias retained the T-cell receptor delta gene in the germline configuration. The incidence of T cell receptor gamma and delta was particularly high in CD10+CD19+ non-T, non-B lymphoid precursor ALL. In lymphoid precursor ALL, T cell receptor delta was frequently rearranged while T cell receptor gamma was in the germline configuration. This suggests that TCR delta rearrangements may precede TCR gamma rearrangements in lymphoid ontogeny. In T-ALL, only concordant T cell receptor delta and gamma rearrangements were observed. Several distinct rearrangements were defined using a panel of restriction enzymes. Most of the rearrangements observed in T-ALL represented joining events of J delta 1 to upstream regions. In contrast, the majority of rearrangements in lymphoid precursor ALL most likely represented D-D or V-D rearrangements, which have been found to be early recombinatorial events of the TCR delta locus. We next analyzed TCR delta rearrangements in five CD3+TCR gamma/delta+ ALL and cell lines. One T-ALL, which demonstrated a different staining pattern with monoclonal antibodies against the products of the TCR gamma/delta genes than the PEER cell line, rearranges J delta 1 to a currently unidentified variable region.  相似文献   

19.
We have investigated the level of TCR occupancy required to elicit different biological responses in human CTL clones specific for an influenza matrix peptide. Specific cytotoxicity could be detected at extremely low peptide concentrations (10(-12) to 10(-15) M). However, IFN-gamma production, responsiveness to IL-2 and Ca++ fluxes were observed only at peptide concentrations > 10(-9) M, while autonomous proliferation required even higher peptide concentrations. In parallel experiments we measured TCR downregulation to estimate the number of TCRs triggered. We observed that at low peptide concentrations, where only cytotoxicity is triggered, TCR downregulation was hardly detectable. Conversely, induction of IFN-gamma production and proliferation required triggering of at least 20-50% of TCRs. Taken together these results indicate that a single CTL can graduate different biological responses as a function of antigen concentration and that killing of the specific target does not necessarily result in full activation.  相似文献   

20.
Epithelial tissues in which carcinomas develop often contain systemically derived T cell receptor (TCR)alphabeta+ cells and resident intraepithelial lymphocytes that are commonly enriched in TCRgammadelta+ cells. Recent studies have demonstrated that gammadelta cells protect the host against chemically induced cutaneous malignancy, but the role of alphabeta T cells has been enigmatic, with both protective and tumor-enhancing contributions being reported in different systems. This study aims to clarify the contributions of each T cell type to the regulation of squamous cell carcinoma induced in FVB mice by a two-stage regimen of 7,12-dimethylbenz[a]anthracene initiation followed by repetitive application of the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. This protocol permits one to monitor the induction of papillomas and the progression of those papillomas to carcinomas. The results show that whereas gammadelta cells are strongly protective, the nonredundant contributions of alphabeta T cells to the host's protection against papillomas are more modest. Furthermore, at both high and low doses of carcinogens, alphabeta T cells can contribute to rather than inhibit the progression of papillomas to carcinomas. As is likely to be the case in humans, this study also shows that the contribution of T cells to tumor immunosurveillance is regulated by modifier genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号