首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the temporal stability of moving phosphenes and to assess whether moving phosphene thresholds (PTs) correlate with motor thresholds (MTs). Small moving sensations, so-called moving phosphenes, are perceived when V5, an area important for visual motion analysis, is stimulated by transcranial magnetic stimulation (TMS). However, it is still a matter of debate if V5 phosphenes are stable sensations across measurements and if they are a reasonable index of the cortical excitability of V5. Currently, MT is more commonly used as an index of global cortical excitability. However, previous studies have indicated that stationary PTs are suitable alternatives when the primary visual cortex is stimulated by TMS. Using paired-pulse TMS, stationary and moving PTs and applying single pulse TMS, MTs were measured in 11 subjects. PTs were retested in nine subjects 5-7 days later. Stationary and moving PTs were stable within subjects across the two sessions and showed a high inter-correlation. Conversely, PTs and MTs did not correlate. Our results are in agreement with previous studies showing that excitatory measurements of one specific cortex cannot be generalized to the excitability of the whole cortex. Thus, we propose specific measures for cortices of interest: PT for visual experiments and MT for motor experiments.  相似文献   

2.
Objective: To investigate the stability of visual phosphene thresholds and to assess whether they correlate with motor thresholds. Background: Currently, motor threshold is used as an index of cortical sensitivity so that in transcranial magnetic stimulation (TMS) experiments, intensity can be set at a given percentage of this value. It is not known whether this is a reasonable index of cortical sensitivity in non-motor and hence whether it should be used in experiments where other cortical areas are targeted. Previous studies have indicated that phosphene threshold might be a suitable alternative in TMS studies of the visual system. Method: Using single pulse TMS visual phosphene and motor thresholds were measured in 15 subjects. Both thresholds were retested in seven of these subjects a week later. Result: Visual phosphene thresholds, though stable within subjects across the two sessions, showed greater variability than motor thresholds. There was no correlation between the two measures. Conclusion: TMS motor thresholds cannot be assumed to be a guide to visual cortex excitability and by extension are probably an inappropriate guide to the cortical excitability of other non-motor areas of the brain. Phosphene thresholds are proposed as a potential standard for inter-individual comparison in visual TMS experiments.  相似文献   

3.
OBJECTIVES: As repetitive transcranial magnetic stimulation (rTMS) is often applied on different days, it is of interest to know whether motor (MT) and phosphene (PT) thresholds are reproducible across time and whether the intensity determined on the first day can be used in subsequent sessions. METHODS: We studied MT and PT over 5 separate recordings in 10 healthy volunteers using a focal coil and a Magstim(Rapid stimulator. After the initial recording (session 1), the others (2 to 5) were performed respectively after 1 day, 7 days, 1 month and 4 months. RESULTS: Mean MT at rest were 65.30 +/- 5.54%, 65.7 +/- 7.18%, 60.4 +/- 4.27%, 61.8 +/- 4.34%, and 63 +/- 9.1% at sessions 1 to 5. Mean PT were 71.43 +/- 6.68%, 66.29 +/- 10.67%, 60.71 +/- 8.64%, 60.57 +/- 8.08%, and 68.71 +/- 15.48% at sessions 1 to 5. MT and PT were reproducible (ANOVA analysis), however, as shown by coefficients of variation, variability between the first 3 sessions exceeded 10% for MT in 3 subjects and in 4 subjects for PT. CONCLUSIONS: It seems preferable to determine thresholds and adapt output intensity of the stimulator at each rTMS session.  相似文献   

4.
OBJECTIVES: To quantify phosphene thresholds evoked by transcranial magnetic stimulation (TMS) in the occipital cortex as a function of induced current direction. METHODS: Phosphene thresholds were determined in 6 subjects. We compared two stimulator types (Medtronic-Dantec and Magstim) with monophasic pulses using the standard figure-of-eight coils and systematically varied hemisphere (left and right) and induced current direction (latero-medial and medio-lateral). Each measurement was made 3 times, with a new stimulation site chosen for each repetition. Only those stimulation sites were investigated where phosphenes were restricted to one visual hemifield. Coil positions were stereotactically registered. Functional magnetic resonance imaging (fMRI) of retinotopic areas was performed in 5 subjects to individually characterize the borders of visual areas; TMS stimulation sites were coregistered with respect to visual areas. RESULTS: Despite large interindividual variance we found a consistent pattern of phosphene thresholds. They were significantly lower if the direction of the induced current was oriented from lateral to medial in the occipital lobe rather than vice versa. No difference with respect to the hemisphere was found. Threshold values normalized to the square root of the stored energy in the stimulators were lower with the Medtronic-Dantec device than with the Magstim device. fMRI revealed that stimulation sites generating unilateral phosphenes were situated at V2 and V3. Variability of phosphene thresholds was low within a cortical patch of 2x2cm(2). Stimulation over V1 yields phosphenes in both visual fields. CONCLUSIONS: The excitability of visual cortical areas depends on the direction of the induced current with a preference for latero-medial currents. Although the coil positions used in this study were centered over visual areas V2 and V3, we cannot rule out the possibility that subcortical structures or V1 could actually be the main generator for phosphenes.  相似文献   

5.
OBJECTIVES: Phosphene thresholds (PTs) to transcranial magnetic stimulation over the occipital cortex and motor thresholds (MTs) have been used increasingly as measures of the excitability of the visual and motor cortex. MT has been utilized as a guide to the excitability of other, non-motor cortical areas such as dorsolateral prefrontal cortex. The aims of this study were to compare the PTs to MTs; to assess their stability across sessions; and to investigate their relation to MTs. METHODS: PTs and MTs were determined using focal transcranial magnetic stimulation over the visual and motor cortex. RESULTS: PTs were shown to be significantly higher than MTs. Both PTs and MTs were stable across sessions. No correlation between PTs and MTs could be established. CONCLUSIONS: Phosphene threshold is a stable parameter of the visual cortex excitability. MTs were not related to the excitability of non-motor cortical areas.  相似文献   

6.
A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabilitation and the development robot hand designs. In the present study, 11 healthy volunteers performed a different target force-tracking task, which involved the index finger alone, index and middle finger together, and the combination of four fingers (i.e., index, middle, ring, and little). The target force trace corresponded to 3 levels of 20% maximal voluntary changes (MVC), 30% MVC, and 40% MVC in 20 seconds. In the test, an unexpected single 120% motor threshold transcranial magnetic stimulation was applied to the primary motor cortex (M1) during force tracking. Results revealed that peak force changes increased with increasing background force and the number of involved task fingers. These results demonstrate that M1 neural activities correlate with finger-force production, and M1 plays a role in finger-force control. Moreover, different neuronal networks were required for different finger patterns; a complicated task required multi-finger combinations and a complicated neuronal network comprised a large number of neurons.  相似文献   

7.

Introduction

In Alzheimer's disease (AD), transcranial magnetic stimulation (TMS) studies have been limited to test motor cortical excitability. The aim of this study was to investigate the inhibitory circuits of the motor cortex and to relate these to measures of cognitive function in AD patients. Results were compared with those of a control group of healthy subjects matched for age, sex and education.

Patients and methods

Forty-five AD patients and 37 healthy volunteers were included in the study. Each participant received a neurological evaluation, Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR). Neurophysiological evaluations included resting and active motor threshold (rMT and aMT), motor evoked potential (MEP), cortical silent period (CSP), and transcallosal inhibition (TI).

Results

AD patients showed significantly reduced rMT, aMT and shorter MEP onset latency; in addition there was a prolongation of both CSP and TI. There was a significant positive correlation between the MMSE and CDR, on the one hand, and aMT and rMT, on the other hand, whereas the correlation was negative with CSP and TI durations.

Conclusion

AD is associated with hyperexcitability of the motor cortex, which supports the hypothesis that changes in GABAb and glutamate function are important factors in cognitive impairment.  相似文献   

8.
OBJECTIVES: In order to learn more about the physiology of the motor cortex during motor imagery, we evaluated the changes in excitability of two different hand muscle representations in the primary motor cortex (M1) of both hemispheres during two imagery conditions. MATERIALS AND METHODS: We applied focal transcranial magnetic stimulation (TMS) over each M1, recording motor evoked potentials (MEPs) from the contralateral abductor pollicis brevis (APB) and first dorsal interosseus (FDI) muscles during rest, imagery of contralateral thumb abduction (C-APB), and imagery of ipsilateral thumb abduction (I-APB). We obtained measures of motor threshold (MT), MEP recruitment curve (MEP-rc) and F waves. RESULTS: Motor imagery compared with rest significantly decreased the MT and increased MEPs amplitude at stimulation intensities clearly above MT in condition C-APB, but not in condition I-APB. These effects were not significantly different between right and left hemisphere. MEPs simultaneously recorded from the FDI, which was not involved in the task, did not show facilitatory effects. There were no significant changes in F wave amplitude during motor imagery compared with rest. CONCLUSIONS: Imagery of unilateral simple movements is associated with increased excitability only of a highly specific representation in the contralateral M1 and does not differ between hemispheres.  相似文献   

9.
OBJECTIVES: Resting motor threshold is the basic unit of dosing in transcranial magnetic stimulation (TMS) research and practice. There is little consensus on how best to estimate resting motor threshold with TMS, and only a few tools and resources are readily available to TMS researchers. The current study investigates the accuracy and efficiency of 5 different approaches to motor threshold assessment for TMS research and practice applications. METHODS: Computer simulation models are used to test the efficiency and accuracy of 5 different adaptive parameter estimation by sequential testing (PEST) procedures. For each approach, data are presented with respect to the mean number of TMS trials necessary to reach the motor threshold estimate as well as the mean accuracy of the estimates. RESULTS: A simple nonparametric PEST procedure appears to provide the most accurate motor threshold estimates, but takes slightly longer (on average, 3.48 trials) to complete than a popular parametric alternative (maximum likelihood PEST). Recommendations are made for the best starting values for each of the approaches to maximize both efficiency and accuracy. CONCLUSIONS: In light of the computer simulation data provided in this article, the authors review and suggest which techniques might best fit different TMS research and clinical situations. Lastly, a free user-friendly software package is described and made available on the world wide web that allows users to run all of the motor threshold estimation procedures discussed in this article for clinical and research applications.  相似文献   

10.
Small moving sensations, so-called moving phosphenes are perceived, when V5, a visual area important for visual motion analysis, is stimulated by transcranial magnetic stimulation (TMS). However, it is still a matter of debate if only V5 takes part in movement perception or other visual areas are also involved in this process. In this study we tested the involvement of V1 in the perception of moving phosphenes by applying transcranial direct current stimulation (tDCS) to this area. tDCS is a non-invasive stimulation technique known to modulate cortical excitability in a polarity-specific manner. Moving and stationary phosphene thresholds (PT) were measured by TMS before, immediately after and 10, 20 and 30 min after the end of 10 min cathodal and anodal tDCS in nine healthy subjects. Reduced PTs were detected immediately and 10 min after the end of anodal tDCS while cathodal stimulation resulted in an opposite effect. Our results show that the excitability shifts induced by V1 stimulation can modulate moving phosphene perception. tDCS elicits transient, but yet reversible effects, thus presenting a promising tool for neuroplasticity research.  相似文献   

11.

Objective

To investigate motor cortical excitability, inhibition, and facilitation with navigated transcranial magnetic stimulation (TMS) in migraine in a blinded cross-sectional study.

Methods

Resting motor threshold (RMT), cortical silent period (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were compared in 27 interictal migraineurs and 33 controls. 24 female interictal migraineurs and 27 female controls were compared in subgroup analyses. Seven preictal migraineurs were also compared to the interictal group in a hypothesis-generating analysis. Investigators were blinded for diagnosis during recording and analysis of data.

Results

SICI was decreased in interictal migraineurs when compared to healthy controls (p = 0.013), CSP was shortened in female interictal migraineurs (p = 0.041). ICF was decreased in preictal compared to interictal migraineurs (p = 0.023). RMT and ICF were not different between interictal migraineurs and controls.

Conclusion

Cortical inhibition was decreased in migraineurs between attacks, primarily in a female subgroup, indicating an importance of altered cortical inhibition in migraine.

Significance

Previous studies on motor cortical excitability in migraineurs have yielded varying results. This relatively large and blinded study provides support for altered cortical inhibition in migraine. Measuring intracortical facilitation in the period preceding migraine attacks may be of interest for future studies.  相似文献   

12.
OBJECTIVE: We compared motor and movement thresholds to transcranial magnetic stimulation (TMS) in healthy subjects and investigated the effect of different coil positions on thresholds and MEP (motor-evoked potential) amplitudes. METHODS: The abductor pollicis brevis (APB) 'hot spot' and a standard scalp position were stimulated. APB resting motor threshold (APB MEP-MT) defined by the '5/10' electrophysiological method was compared with movement threshold (MOV-MT), defined by visualization of movements. Additionally, APB MEP-MTs were evaluated with the '3/6 method,' and MEPs were recorded at a stimulation intensity of 120% APB MEP-MT at each position. RESULTS: APB MEP-MTs were significantly lower by stimulation of the 'hot spot' than of the standard position, and significantly lower than MOV-MTs (n=15). There were no significant differences between the '3/6' and the '5/10' methods, or between APB MEP amplitudes by stimulating each position at 120% APB MEP-MT. CONCLUSIONS: Coil position and electrophysiological monitoring influenced motor threshold determinations. Performing 6 instead of 10 trials did not produce different threshold measurements. Adjustment of intensity according to APB MEP-MT at the stimulated position did not influence APB MEP amplitudes. SIGNIFICANCE: Standardization of stimulation positions, nomenclature and criteria for threshold measurements should be considered in design and comparison of TMS protocols.  相似文献   

13.
14.
OBJECTIVE: To examine the relationship between coil-cortex distance and effective cortical stimulation using transcranial magnetic stimulation (TMS) in the left and right motor cortex. We also compare the effect of coil-cortex distance using 50 and 70 mm figure-eight stimulating coils. METHODS: Coil-cortex distance was manipulated within each participant using 5 and 10 mm acrylic separators placed between the coil and scalp surface. The effect of cortical stimulation was indexed by resting motor threshold (MT). RESULTS: Increasing distance between the coil and underlying cortex was associated with a steep linear increase in MT. For each additional millimetre separating the stimulating coil from the scalp surface, an additional approximately 2.8% of absolute stimulator output (approximately 0.062 T) was required to reach MT. The gradient of the observed distance effect did not differ between hemispheres, and no differences were observed between the 50 and 70 mm TMS coils. CONCLUSIONS: Coil-cortex distance directly influences the magnitude of cortical stimulation in TMS. The relationship between TMS efficacy and coil-cortex distance is well characterised by a linear function, providing a simple and effective method for scaling stimulator output to a distance adjusted MT. SIGNIFICANCE: MT measured at the scalp-surface is dependent on the underlying scalp-cortex distance, and therefore does not provide an accurate index of cortical excitability. Distance-adjusted MT provides a more accurate index of cortical excitability, and improves the safety and efficacy of MT-calibrated TMS.  相似文献   

15.
Introduction: In this study we investigated the effects of aging on corticospinal tract conduction by measuring the corticoconus motor conduction time (CCCT). Methods: Motor evoked potentials were recorded from the right tibialis anterior muscle in 100 healthy volunteers. To activate the most proximal part of the cauda equina, magnetic stimulation was performed using a MATS coil over the L1 spinous process (L1‐level latency). Transcranial magnetic stimulation of the motor cortex was also conducted (cortical latency). To obtain the CCCT, the L1‐level latency was subtracted from the cortical latency. Results: Age was significantly correlated with L1‐level latency, but it was not significantly correlated with CCCT. Conclusions: CCCT is the most direct indicator of corticospinal tract conduction, whereas L1‐level latency reflects whole peripheral motor conduction. Central motor conduction was found to be relatively less affected by aging compared with peripheral motor conduction. Muscle Nerve 000: 000–000, 2012  相似文献   

16.
Human precision grip requires precise scaling of the grip force to match the weight and frictional conditions of the object. The ability to produce an accurately scaled grip force prior to lifting an object is thought to be the result of an internal feedforward model. However, relatively little is known about the roles of various brain regions in the control of such precision grip-lift synergies. Here we investigate the role of the primary motor (M1) and sensory (S1) cortices during a grip-lift task using inhibitory transcranial magnetic theta-burst stimulation (TBS). Fifteen healthy individuals received 40 s of either (i) M1 TBS, (ii) S1 TBS or (iii) sham stimulation. Following a 5-min rest, subjects lifted a manipulandum five times using a precision grip or completed a simple reaction time task. Following S1 stimulation, the duration of the pre-load phase was significantly longer than following sham stimulation. Following M1 stimulation, the temporal relationship between changes in grip and load force was altered, with changes in grip force coming to lag behind changes in load force. This result contrasts with that seen in the sham condition where changes in grip force preceded changes in load force. No significant difference was observed in the simple reaction task following either M1 or S1 stimulation. These results further quantify the contribution of the M1 to anticipatory grip-force scaling. In addition, they provide the first evidence for the contribution of S1 to object manipulation, suggesting that sensory information is not necessary for optimal functioning of anticipatory control.  相似文献   

17.
The size of the motor evoked potential (MEP) elicited by transcranial magnetic stimulation increases soon after a nonexhaustive voluntary contraction of the target muscle (postexercise facilitation). Our aim was to determine whether the duration or intensity of voluntary muscle contraction influenced postexercise facilitation in normal subjects. We recorded the MEP from the thenar muscles following contractions of different durations (5, 15, and 30 s) and intensities (10%, 25%, and 50% of maximal voluntary contraction). We found that every combination of the tested intensities and durations of physical effort could induce postexercise MEP facilitation. Although the degree of postexercise MEP facilitation was comparable across the different durations and intensities, the maximal facilitation was observed with the shortest and strongest muscle contraction. Our study thus defines the optimal setting to study postexercise facilitation for clinical purposes.  相似文献   

18.
19.
OBJECTIVE: The motor cortex may be subject to tonic inhibitory drive. One inhibitory mechanism is supported by activity at benzodiazepine (BZP) receptors. In this study we investigate whether or not the BZP antagonist, flumazenil, increases cortical motor excitability in humans. METHODS: Eight healthy subjects received a 1 mg intravenous (i.v.) loading dose of flumazenil followed by a 0.5 mg i.v. infusion over the next 30 min. Before, during, and 1 h after flumazenil infusion, we measured cortical motor excitability using transcranial magnetic stimulation (TMS). This included resting motor threshold (rMT), paired-pulse measurements of intracortical inhibition and facilitation (ICI and ICF), recruitment curve (RC), and silent period (SP). We also measured F response and compound muscle action potential (CMAP) with peripheral nerve stimulation. The study was carried out using a randomized, double-blind crossover design controlled with a saline infusion. RESULTS: None of the measures of cortical or peripheral excitability were significantly affected by drug administration. CONCLUSIONS: Our findings suggest that flumazenil has no effect on cortical motor excitability in normal humans. SIGNIFICANCE: There does not appear to be any tonic activity at benzodiazepine receptors in the normal resting human motor cortex.  相似文献   

20.
The objective was to assess the changes in cortical excitability after sleep deprivation in normal subjects. Sleep deprivation activates EEG epileptiform activity in an unknown way. Transcranial magnetic stimulation (TMS) can inform on the excitability of the primary motor cortex. Eight healthy subjects (four men and four women) were studied. Transcranial magnetic stimulation (single and paired) was performed by a focal coil over the primary motor cortex, at the "hot spot" for the right first dorsal interosseous muscle. The following motor evoked potential features were measured: (a) active and resting threshold to stimulation; (b) duration of the silent period; (c) amount of intracortical inhibition on paired TMS at the interstimulus intervals of 2 and 3 ms and amount of facilitation at interstimulus intervals of 14 and 16 ms. The whole TMS session was repeated after a sleep deprivation of at least 24 hours. After the sleep deprivation, the threshold to stimulation (in the active and resting muscle), as well as the silent period, did not change significantly. By contrast, the paired stimulus study showed a significant (p<0.05) reduction in both intracortical inhibition and facilitation. Thus, TMS showed that sleep deprivation is associated with changes in inhibition-facilitation balance in the primary motor cortex of normal subjects. These changes might have a link with the background factors of the "activating" effects of sleep deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号