首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background

Depressive symptoms and fatigue frequently overlap in clinical samples and the general population. The link of depressive symptoms and fatigue with increased risk of cardiovascular disease has been partly explained by shared biological mechanisms including sympathetic overactivity. Prolonged sympathetic overactivity downregulates the responsiveness of the β-adrenergic receptor (β-AR), a receptor that mediates several end-organ sympathetic responses.

Purpose

The authors studied whether depression and fatigue are related to reduced β-AR responsiveness within the human body (in vivo) in an ethnically diverse sample of African and Caucasian Americans.

Methods

The chronotropic25 dose (CD25) was used to determine in vivo β-AR responsiveness in 93 healthy participants. Psychometric measures included the Center of Epidemiological Studies-Depression Scale and the Multidimensional Fatigue Symptom Inventory.

Results

Hierarchical regression analyses (adjusted for age, gender, body mass index, blood pressure, smoking, and ethnicity) revealed that mental fatigue was significantly related to reduced β-AR responsiveness (i.e., higher CD25 values) in the whole sample. Moderation analyses indicated significant ethnicity × depression/fatigue interactions. Depressive symptoms, total fatigue, emotional fatigue, mental fatigue, and physical fatigue were related to reduced β-AR responsiveness in Caucasian American but not in African Americans.

Conclusions

Our findings suggest that symptoms of depression and fatigue are related to decreased in vivo β-AR responsiveness in Caucasian Americans. The lack of this association in African Americans highlights the importance for considering ethnicity as a potential moderator in research focusing on associations between psychological variables and cardiovascular function.  相似文献   

5.
Artificial antigen-presenting cells are expected to stimulate the expansion and acquisition of optimal therapeutic features of T cells before infusion. Here CD32 that binds to a crystallizable fragment of IgG monoclonal antibody was genetically expressed on human K562 leukemia cells to provide a ligand for T-cell receptor. CD86 and 4-1BBL, which are ligands of co-stimulating receptors of CD28 and 4-1BB, respectively, were also expressed on K562 cells. Then we accomplished the artificial antigen-presenting cells by coupling K32/CD86/4-1BBL cell with OKT3 monoclonal antibody against CD3, named K32/CD86/4-1BBL/OKT3 cells. These artificial modified cells had the abilities of inducing CD8^+ T cell activation, promoting CD8^+ T cell proliferation, division, and long-term growth, inhibiting CD8^+ T cell apoptosis, and enhancing CD8^+ T cell secretion of IFN-T and perforin. Furthermore, antigen-specific cytotoxic T lymphocytes could be retained in the culture stimulated with K32/CD86/4-1BBL/OKT3 cells at least within 28 days. This approach was robust, simple, reproducible and economical for expansion and activation of CD8^+ T cells and may have important therapeutic implications for adoptive immunotherapy. Cellular & Molecular Immunology.  相似文献   

6.
7.
The normal human intestinal mucosa contains clonal T cell expansions. Clonal populations of T cells can be determined through evaluation of the idiotypic, hypervariable region of their T cell receptor (TCR). We have previously reported that there exists a highly conserved TCR pattern among intestinal CD8+ T cells in the majority of ulcerative colitis (UC) patients undergoing colectomy that was not present in normal control individuals. This TCR pattern, or motif, was characterized by particular -chain usage (TCRBV3 and TCRBJ1S6) and a defined length in the hypervariable third complementarity determining region (CDR3). The aim of this study was to assess the motif's relationship to disease activity. Subjects were 66 with UC, 19 with Crohn's disease, 14 inflammatory controls, and 6 normal controls. cDNA and gDNA were prepared from colonic biopsies and paraffin blocks, respectively, obtained from study subjects and used to assess TCRBV CDR3 region length and usage, as well as for cloning and sequencing of TCRs. The TCRBV CDR3 region was present in 25 of a series of 48 UC subjects but only 3 of 19 Crohn's disease patients and 3 of 14 inflammatory controls. The motif was more common in UC than either Crohn's disease or inflammatory controls (2 = 7.5, P = 0.006, and 2 = 4.1, P = 0.04, respectively). The motif's presence was not dependent upon histologic disease activity (either active or inactive UC). Clinical UC disease activity was also not significantly associated with an increased presence of the motif in 14 paired biopsies, which were taken during times of clinical activity or inactivity. There was a trend toward persistence of the motif, as it was present in 6 of 14 subjects over a 3- to 6-month time period. The previously described UC-associated TCRBV CDR3 region motif located in the intestinal CD8+ T-cell subset is found in a significant proportion of UC subjects. The TCR motif does not significantly discriminate active from inactive disease states. The persistent and diffuse nature of this TCR-associated motif in UC suggests that an ongoing T-cell response to a particular antigen(s) is occuring in this disorder.  相似文献   

8.
Many viral epitope specific T cell receptors (TCRs) in MHC-matched individuals have been demonstrated to involve conserved amino acid motifs in β chain complementarity-determining region 3 (CDR3). However, it is not sure whether the conserved motifs can also be found in TCR β chain. In previous studies, we developed a modified method to enlarge the percentage of cytomegalovirus (CMV) pp65 peptide-specific CD8^+ T cells in PBMC by continuous peptide stimulation in vitro, which provides sufficient number of specific T cells for detection. In this study, we further analyzed the restrictive usage of TCR Vα and Vβ gene families and investigated the CDR3 gene sequence of pp65 peptide-specific CD8β T cells. Analysis of CDR3 spectratypes suggested a restricted usage of TCR α chain AV8, AV12, AV21, AV31 families and TCR βchain BV3, BV14, BV21, BV23, BVll families in donor CD8^+ T cells stimulated by pp65 peptide. The sequences of these T cells involved similar sequence (TX) G (X) A in CDR3 region of TCR α chain and L (XT) G (X) A in TCR β chain.  相似文献   

9.
Uncontrolled cytomegalovirus (CMV) reactivation after allogeneic hematopoietic stem cell transplantation causes significant morbidity and mortality. Adoptive transfer of CMV-specific cytotoxic T lymphocytes (CTLs) is a promising therapy to treat reactivation and prevent viral disease. In this article, we describe the generation of clinical-grade CMV-specific CTLs directly from granulocyte colony-stimulating factor–mobilized hemopoietic progenitor cell (G-HPC) products collected for transplantation. This method requires less than 2.5% of a typical G-HPC product to reproducibly expand CMV-specific CTLs ex vivo. Comparison of 11 CMV CTL lines generated from G-HPC products with 52 CMV CTL lines generated from nonmobilized peripheral blood revealed similar expansion kinetics and phenotype. G-HPC–derived CTLs produced IFN-γ after reexposure to CMVpp65 antigen and exhibited CMV-directed cytotoxicity but no alloreactivity against transplantation recipient–derived cells. Seven patients received CMV-specific CTL lines expanded from G-HPC products in a prophylactic adoptive immunotherapy phase I/II clinical trial. Use of G-HPC products will facilitate integration of CTL generation into established quality systems of transplantation centers and more rapid inclusion of T cell therapies into routine clinical care.  相似文献   

10.
Latency protein LMP2A of Epstein–Barr virus (EBV) has been implicated in EBV related tumorigenesis. To understand the host cell dependent expression of the LMP2A gene, it is necessary to analyse the regulatory mechanisms of the LMP2A promoter (LMP2Ap). By transient transfection and in vitro binding analyses two CBF1 sites have previously been shown to be involved in the regulation of LMP2Ap. However, the promoter structure has not been examined at the nucleotide level in vivo. Therefore we undertook a comprehensive analysis of in vivo protein binding and of CpG-methylation patterns at LMP2Ap in a panel of B cell lines carrying latent EBV genomes. The presence of characteristic footprints on two CBF1 and further binding-sites, together with overall hypomethylation of CpG dinucleotides correlated well with promoter activity. In contrast, the absence of several genomic footprints, as well as the presence of patches of highly methylated CpG dinucleotides were characteristic of silent LMP2Aps.  相似文献   

11.
12.
Restenosis in peripheral arteries is a major health care problem in the United States. Typically, 30–40% of angioplasties result in restenosis and hence alternative treatment techniques are being actively investigated. Cryoplasty, a novel technique involving simultaneous stretching and freezing of the peripheral arteries (e.g., femoral, iliac, popliteal) using a cryogen-filled balloon catheter, has shown the potential to combat restenosis. However, evaluation of the thermal and biophysical mechanisms that affect cellular survival during cryoplasty is lacking. To achieve this, the thermal history in arteries was predicted for different balloon temperatures using a thermal model. Cellular biophysical responses (water transport (WT) and intracellular ice formation (IIF)) were then characterized, using in vitro model systems, based on the thermal model predictions. The thermal and biophysical effects on cell survival were eventually determined. For this study, smooth muscle cells (SMC) isolated from porcine femoral arteries were used in suspensions and attached in vitro systems (monolayer and fibrin gel). Results showed that for different balloon temperatures, the thermal model predicted cooling rates from 2200 to 5 °C/min in the artery. Biophysical parameters (WT & IIF) were higher for SMCs in attached systems as compared to suspensions. The “combined” fit WT parameters for SMCs in suspension (at 5, 10, and 25 °C/min) are L pg = 0.12 μm/(min atm) and E Lp = 24.1 kcal/mol. Individual WT parameters for SMCs in attached cell systems at higher cooling rates are approximately an order of magnitude higher compared to suspensions (e.g., at 130 °C/min, WT parameters in monolayer and fibrin TE systems are L pg = 18.6, 19.4 μm/(min atm) and E Lp = 112, 127 kcal/mol, respectively). Similarly, IIF parameters assessed at 130 °C/min are higher for SMCs in attached systems than suspensions ( = 1.1, 354, 378 (× 108 (1/m2 s)) and κo = 1.6, 1.8, 2.1 (× 109 K5) for suspensions, monolayer, and fibrin TE, respectively). One possible reason for the differences in IIF kinetics was verified to be the presence of gap junctions, which facilitate cell–cell connections through which ice can propagate. This is reflected by the change in the predicted IIF parameters when a gap junction inhibitor was added and tested in monolayer ( (1/m2 s)); κo = 2.1 × 109 K5). SMC viability was affected by the model system (lower viability in attached systems), the thermal conditions and the biophysics. For e.g., IIF is lethal to cells and SMC viability was verified to be the least in fibrin TE (most % IIF) and the most in suspensions (least % IIF) at all cooling rates. Using the results from the fibrin TE (suggested as the best in vitro system to mimic a restenosis environment), conservative estimates of injury regimes in the artery during cryoplasty is predicted. The results can be used to suggest future optimizations and modifications during cryoplasty and also to design future in vivo studies.
John C. BischofEmail:
  相似文献   

13.
14.
The Plasmodium falciparum circumsporozoite (CS) protein (CSP) is a major vaccine target for preventing malaria infection. Thus, developing strong and durable antibody and T cell responses against CSP with novel immunogens and potent adjuvants may improve upon the success of current approaches. Here, we compare four distinct full-length P. falciparum CS proteins expressed in Escherichia coli or Pichia pastoris for their ability to induce immunity and protection in mice when administered with long-chain poly(I·C) [poly(I·C)LC] as an adjuvant. CS proteins expressed in E. coli induced high-titer antibody responses against the NANP repeat region and potent CSP-specific CD4+ T cell responses. Moreover, E. coli-derived CS proteins in combination with poly(I·C)LC induced potent multifunctional (interleukin 2-positive [IL-2+], tumor necrosis factor alpha-positive [TNF-α+], gamma interferon-positive [IFN-γ+]) CD4+ effector T cell responses in blood, in spleen, and particularly in liver. Using transgenic Plasmodium berghei expressing the repeat region of P. falciparum CSP [Pb-CS(Pf)], we showed that there was a 1- to 4-log decrease in malaria rRNA in the liver following a high-dose challenge and ∼50% sterilizing protection with a low-dose challenge compared to control levels. Protection was directly correlated with high-level antibody titers but not CD4+ T cell responses. Finally, protective immunity was also induced using the Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) as the adjuvant, which also correlated with high antibody titers yet CD4+ T cell immunity that was significantly less potent than that with poly(I·C)LC. Overall, these data suggest that full-length CS proteins and poly(I·C)LC or GLA-SE offer a simple vaccine formulation to be used alone or in combination with other vaccines for preventing malaria infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号