首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the reward circuitry in human brain, we conducted activation likelihood estimation (ALE) and parametric voxel-based meta-analyses (PVM) on 142 neuroimaging studies that examined brain activation in reward-related tasks in healthy adults. We observed several core brain areas that participated in reward-related decision making, including the nucleus accumbens (NAcc), caudate, putamen, thalamus, orbitofrontal cortex (OFC), bilateral anterior insula, anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC), as well as cognitive control regions in the inferior parietal lobule and prefrontal cortex (PFC). The NAcc was commonly activated by both positive and negative rewards across various stages of reward processing (e.g., anticipation, outcome, and evaluation). In addition, the medial OFC and PCC preferentially responded to positive rewards, whereas the ACC, bilateral anterior insula, and lateral PFC selectively responded to negative rewards. Reward anticipation activated the ACC, bilateral anterior insula, and brain stem, whereas reward outcome more significantly activated the NAcc, medial OFC, and amygdala. Neurobiological theories of reward-related decision making should therefore take distributed and interrelated representations of reward valuation and valence assessment into account.  相似文献   

2.
Approach-avoidance conflict is an important psychological concept that has been used extensively to better understand cognition and emotion. This review focuses on neural systems involved in approach, avoidance, and conflict decision making, and how these systems overlap with implicated neural substrates of anxiety disorders. In particular, the role of amygdala, insula, ventral striatal, and prefrontal regions are discussed with respect to approach and avoidance behaviors. Three specific hypotheses underlying the dysfunction in anxiety disorders are proposed, including: (i) over-representation of avoidance valuation related to limbic overactivation; (ii) under- or over-representation of approach valuation related to attenuated or exaggerated striatal activation respectively; and (iii) insufficient integration and arbitration of approach and avoidance valuations related to attenuated orbitofrontal cortex activation. These dysfunctions can be examined experimentally using versions of existing decision-making paradigms, but may also require new translational and innovative approaches to probe approach-avoidance conflict and related neural systems in anxiety disorders.  相似文献   

3.
Rutsuko Ito 《Hippocampus》2016,26(4):530-542
The resolution of an approach‐avoidance conflict induced by ambivalent information involves the appraisal of the incentive value of the outcomes and associated stimuli to orchestrate an appropriate behavioral response. Much research has been directed at delineating the neural circuitry underlying approach motivation and avoidance motivation separately. Very little research, however, has examined the neural substrates engaged at the point of decision making when opposing incentive motivations are experienced simultaneously. We hereby examine the role of the dorsal and ventral hippocampus (HPC) in a novel approach‐avoidance decision making paradigm, revisiting a once popular theory of HPC function, which posited the HPC to be the driving force of a behavioral inhibition system that is activated in situations of imminent threat. Rats received pre‐training excitotoxic lesions of the dorsal or ventral HPC, and were trained to associate different non‐spatial cues with appetitive, aversive and neutral outcomes in three separate arms of the radial maze. On the final day of testing, a state of approach‐avoidance conflict was induced by simultaneously presenting two cues of opposite valences, and comparing the time the rats spent interacting with the superimposed ‘conflict’ cue, and the neutral cue. The ventral HPC‐lesioned group showed significant preference for the conflict cue over the neutral cue, compared to the dorsal HPC‐lesioned, and control groups. Thus, we provide evidence that the ventral, but not dorsal HPC, is a crucial component of the neural circuitry concerned with exerting inhibitory control over approach tendencies under circumstances in which motivational conflict is experienced. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Neural and behavioral mechanisms during approach‐avoidance conflict decision‐making are relevant across various psychiatric disorders, particularly anxiety disorders. Studies using approach‐avoidance conflict paradigms in healthy adults have identified preliminary neural mechanisms, but findings must be replicated and demonstrated as reliable before further application. This study sought to replicate previous findings and examine test–retest reliability of behavioral (approach behavior, reaction time) and neural (regions of interest [ROIs]) responses during an approach‐avoidance conflict task conducted during functional magnetic resonance imaging (fMRI). Thirty healthy adults completed an approach‐avoidance conflict task during fMRI on two occasions (mean interval: 17 days; range: 11–32). Effects of task condition during three task phases (decision‐making, affective outcome and monetary reward) and intraclass correlation coefficients (ICCs) were calculated across time points. Results replicated that approach behavior was modulated by conflict during decision‐making. ROI activations were replicated such that dorsal anterior cingulate cortex (dACC) was modulated by conflict during decision‐making, and dACC, striatum, and anterior insula were modulated by valence during affective outcomes (p''s <.0083). Approach behavior during conflict demonstrated excellent reliability (ICCs ≥.77). Activation of dACC during conflict decision‐making and anterior insula during negative outcomes demonstrated fair reliability (ICCs = .51 and .54), and dACC and striatum activation demonstrated good reliability during negative outcomes (ICCs = .63 and .69). Two additional ROIs (amygdala, left dorsolateral prefrontal cortex) showed good reliability during negative outcomes (ICCs ≥.60). These results characterize several specific behavioral and neuroimaging responses that are replicable and sufficiently reliable during approach‐avoidance conflict decision‐making to support future utility.  相似文献   

5.
The willingness to incur personal costs to enforce prosocial norms represents a hallmark of human civilization. Although recent neuroscience studies have used the ultimatum game to understand the neuropsychological mechanisms that underlie the enforcement of fairness norms; however, a precise characterization of the neural systems underlying fairness‐related norm enforcement remains elusive. In this study, we used a coordinate‐based meta‐analysis on functional magnetic resonance imaging (fMRI) studies using the ultimatum game with the goal to provide an additional level of evidence for the refinement of the underlying neural architecture of this human puzzling behavior. Our results demonstrated a convergence of reported activation foci in brain networks associated with psychological components of fairness‐related normative decision making, presumably reflecting a reflexive and intuitive system (System 1) and a reflective and deliberate system (System 2). System 1 (anterior insula, ventromedial prefrontal cortex [PFC]) may be associated with the reflexive and intuitive responses to norm violations, representing a motivation to punish norm violators. Those intuitive responses conflict with economic self‐interest, encoded in the dorsal anterior cingulate cortex (ACC), which may engage cognitive control from a reflective and deliberate System 2 to resolve the conflict by either suppressing (ventrolateral PFC, dorsomedial PFC, left dorsolateral PFC, and rostral ACC) the intuitive responses or over‐riding self‐interest (right dorsolateral PFC). Taken together, we suggest that fairness‐related norm enforcement recruits an intuitive system for rapid evaluation of norm violations and a deliberate system for integrating both social norms and self‐interest to regulate the intuitive system in favor of more flexible decision making. Hum Brain Mapp 36:591–602, 2015. © 2014 Wiley Periodicals, Inc .  相似文献   

6.
Feelings of uncontrollability and anxiety regarding possibly harmful events are key features of post‐traumatic stress disorder (PTSD) symptomatology. Due to a lack of studies, the neural correlates of anticipatory anxiety in PTSD are still poorly understood. During functional magnetic resonance imaging, female PTSD patients with interpersonal violence trauma and healthy controls (HC) anticipated the temporally unpredictable presentation of aversive (human scream) or neutral sounds. Based on separate analysis models, we investigated phasic and sustained brain activations. PTSD patients reported increased anxiety during anticipation of aversive versus neutral sounds. Furthermore, we found both increased initial, phasic amygdala activation and increased sustained activation of the bed nucleus of the stria terminalis (BNST) during anticipation of aversive versus neutral sounds in PTSD patients in comparison to HC. PTSD patients as compared with HC also showed increased phasic responses in mid‐cingulate cortex (MCC), posterior cingulate cortex (PCC), mid‐insula and lateral prefrontal cortex (PFC) as well as increased sustained responses in MCC, PCC, anterior insula and lateral and medial PFC. Our results demonstrate a relationship between anticipatory anxiety in PTSD patients and hyperresponsiveness of brain regions that have previously been associated with PTSD symptomatology. Additionally, the dissociation between amygdala and BNST indicates distinct temporal and functional characteristics and suggests that phasic fear and sustained anxiety responses are enhanced during unpredictable anticipation of aversive stimuli in PTSD. Hum Brain Mapp 38:2190–2205, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) studies have shown notable age‐dependent differences in reward processing. We analyzed data from a total of 554 children, 1,059 adolescents, and 1,831 adults from 70 articles. Quantitative meta‐analyses results show that adults engage an extended set of regions that include anterior and posterior cingulate gyri, insula, basal ganglia, and thalamus. Adolescents engage the posterior cingulate and middle frontal gyri as well as the insula and amygdala, whereas children show concordance in right insula and striatal regions almost exclusively. Our data support the notion of reorganization of function over childhood and adolescence and may inform current hypotheses relating to decision‐making across age.  相似文献   

8.
Here, we combined MRI‐guided electrical microstimulation and viral tracing to examine the function of a corticostriatal circuit implicated by previous cortical microstimulation as modulating affective judgment and decision‐making. Local microstimulation of a small part of the pregenual anterior cingulate cortex (pACC) was found to increase avoidance decisions in a cost‐benefit decision‐making task (Ap‐Av task) in which differing amounts of “good” and “bad” options were given simultaneously. No effect of such stimulation was found when the monkeys performed a task in which both offers were rewarding, but given in different amounts. We asked whether we could identify the targets of such corticostriatal circuits when the cortical microstimulation sites were explicitly identified as affecting approach or avoidance in the Ap‐Av task. We explored the pACC and caudal orbitofrontal cortex (cOFC) to look for such sites. For each cortical region, we found sites at which microstimulation induced increased avoidance behavior. After identifying these sites, we injected viral tracers carrying constructs allowing subsequent track‐tracing post‐mortem. For each site identified behaviorally as increasing avoidance choices, we found strong fiber projections to the anterior striatum with large parts of these targeting striosomes subsequently identified by serial section immunohistochemistry. With fMRI, we demonstrated that microstimulation in an anesthetized monkey at sites pre‐identified as affecting Ap‐Av choices induced blood oxygen level dependent activation of the anterior striatum, confirming that the microstimulation method that we applied was effective in activating the striatum. These findings outline circuits leading from pACC/cOFC to striosomes and causally modulating decision‐making under emotional conflict.  相似文献   

9.
During competitive interactions, such as predator–prey or team sports, the outcome of one's actions is dependent on both their own choices and those of their opponents. Success in these rivalries requires that individuals choose dynamically and unpredictably, often adopting a mixed strategy. Understanding the neural basis of strategic decision making is complicated by the fact that it recruits various cognitive processes that are often shared with non‐strategic forms of decision making, such as value estimation, working memory, response inhibition, response selection, and reward processes. Although researchers have explored neural activity within key brain regions during mixed‐strategy games, how brain activity differs in the context of strategic interactions versus non‐strategic choices is not well understood. We developed a novel behavioral paradigm to dissociate choice behavior during mixed‐strategy interactions from non‐strategic choices, and we used task‐based functional magnetic resonance imaging (fMRI) to contrast brain activation. In a block design, participants competed in the classic mixed‐strategy game, “matching pennies,” against a dynamic computer opponent designed to exploit predictability in players’ response patterns. Results were contrasted with a non‐strategic task that had comparable sensory input, motor output, and reward rate; thus, differences in behavior and brain activation reflect strategic processes. The mixed‐strategy game was associated with activation of a distributed cortico‐striatal network compared to the non‐strategic task. We propose that choosing in mixed‐strategy contexts requires additional cognitive demands present to a lesser degree during the control task, illustrating the strength of this design in probing function of cognitive systems beyond core sensory, motor, and reward processes.  相似文献   

10.
Decision making has both cognitive and affective components, but previous neuroimaging studies in this domain predominantly have focused on affect and reward. The current study examined a decision-making paradigm that placed strong demands on cognitive control processes by making reward payoffs contingent upon decision-making history. Payoffs were maximized by choosing the option that, paradoxically, was associated with a lower payoff on the immediate trial. Temporal integration requirements were manipulated by varying, across conditions, the window of previous trials over which the reward function was calculated. The cognitive demands of the task were hypothesized to engage neural systems responsible for integrating and actively maintaining actions and outcomes over time and the top-down biasing of response selection. Brain activation was monitored with functional magnetic resonance imaging (fMRI) using a mixed-blocked and event-related design to extract both transient and sustained neural responses. A network of brain regions commonly associated with cognitive control functions, including bilateral prefrontal cortex (PFC), bilateral parietal cortex, and medial frontal cortex, showed selectively sustained activation during the task. Increasing temporal integration demands led to a shift from transient to sustained activity in additional regions, including right hemisphere dorsolateral and frontopolar PFC. These results demonstrate the contribution of cognitive control mechanisms to temporally extended decision-making paradigms and highlight the benefits of decomposing activation responses into sustained and transient components.  相似文献   

11.
Although the activation of the prefrontal cortex (PFC) and the striatum had been found in smoking cue induced craving task, whether and how the functional interactions and white matter integrity between these brain regions contribute to craving processing during smoking cue exposure remains unknown. Twenty‐five young male smokers and 26 age‐ and gender‐matched nonsmokers participated in the smoking cue‐reactivity task. Craving related brain activation was extracted and psychophysiological interactions (PPI) analysis was used to specify the PFC‐efferent pathways contributed to smoking cue‐induced craving. Diffusion tensor imaging (DTI) and probabilistic tractography was used to explore whether the fiber connectivity strength facilitated functional coupling of the circuit with the smoking cue‐induced craving. The PPI analysis revealed the negative functional coupling of the left dorsolateral prefrontal cortex (DLPFC) and the caudate during smoking cue induced craving task, which positively correlated with the craving score. Neither significant activation nor functional connectivity in smoking cue exposure task was detected in nonsmokers. DTI analyses revealed that fiber tract integrity negatively correlated with functional coupling in the DLPFC‐caudate pathway and activation of the caudate induced by smoking cue in smokers. Moreover, the relationship between the fiber connectivity integrity of the left DLPFC‐caudate and smoking cue induced caudate activation can be fully mediated by functional coupling strength of this circuit in smokers. The present study highlighted the left DLPFC‐caudate pathway in smoking cue‐induced craving in smokers, which may reflect top‐down prefrontal modulation of striatal reward processing in smoking cue induced craving processing. Hum Brain Mapp 38:4644–4656, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
The Iowa Gambling Task (IGT) is a sensitive test for the detection of decision‐making impairments in several neurological and psychiatric populations. Very few studies have employed the IGT in functional magnetic resonance imaging (fMRI) investigations, in part, because the task is cognitively complex. Here we report a method for exploring brain activity using fMRI during performance of the IGT. Decision‐making during the IGT was associated with activity in several brain regions in a group of healthy individuals. The activated regions were consistent with the neural circuitry hypothesized to underlie somatic marker activation and decision‐making. Specifically, a neural circuitry involving the dorsolateral prefrontal cortex (for working memory), the insula and posterior cingulate cortex (for representations of emotional states), the mesial orbitofrontal and ventromedial prefrontal cortex (for coupling the two previous processes), the ventral striatum and anterior cingulate/SMA (supplementary motor area) for implementing behavioral decisions was engaged. These results have implications for using the IGT to study abnormal mechanisms of decision making in a variety of clinical populations. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Deficits in cost‐benefit decision‐making, as assessed in the Iowa Gambling Task (IGT), are commonly observed in neuropsychiatric disorders such as addiction. There is considerable variation in the maximization of rewards on such tasks, both in the general population and in rodent models, suggesting individual differences in decision‐making may represent a key endophenotype for vulnerability to neuropsychiatric disorders. Increasing evidence suggests that the insular cortex, which is involved in interoception and emotional processes in humans, may be a key neural locus in the control of decision‐making processes. However, the extent to which the insula contributes to individual differences in cost‐benefit decision‐making remains unknown. Using male Sprague Dawley rats, we first assessed individual differences in the performance over the course of a single session on a rodent analogue of the IGT (rGT). Rats were matched for their ability to maximize reward and received bilateral excitotoxic or sham lesions of the anterior insula cortex (AIC). Animals were subsequently challenged on a second rGT session with altered contingencies. Finally, animals were also assessed for instrumental conditioning and reversal learning. AIC lesions produced bidirectional alterations on rGT performance; rats that had performed optimally prior to surgery subsequently showed impairments, and animals that had performed poorly showed improvements in comparison with sham‐operated controls. These bidirectional effects were not attributable to alterations in behavioural flexibility or in motivation. These data suggest that the recruitment of the AIC during decision‐making may be state‐dependent and help guide response selection towards subjectively favourable options.  相似文献   

14.
Nusslock R, Almeida JRC, Forbes EE, Versace A, Frank E, LaBarbara EJ, Klein CR, Phillips ML. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 2012: 14: 249–260. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective: Bipolar disorder may be characterized by a hypersensitivity to reward‐relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward‐processing and approach‐related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods: Twenty‐one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card‐guessing paradigm designed to examine reward‐related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results: Region‐of‐interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right‐sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward relative to healthy controls (p < 0.05, corrected). Whole‐brain analyses indicated that bipolar disorder, relative to healthy, participants also displayed elevated left‐lateral OFC (BA 47) activity during reward anticipation (p < 0.05, corrected). Conclusions: Elevated ventral striatal and OFC activity during reward anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward‐relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward‐related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness.  相似文献   

15.
Adolescent anxiety is common and impairing and often persists into adulthood. There is growing evidence that adult anxiety is characterized by abnormal fear responses to threat and safety cues, along with perturbations in fear-related neural circuits. Although some of this work has been extended to adolescents, with promising results, it is not yet clear whether changes in these circuits across developmental age varies between anxious and non-anxious adolescents. Here we used fMRI to examine how age modulates neural responses as adolescents are exposed to threat and safety cues. Participants were 15 anxious and 11 non-anxious adolescents (age 12–17) who completed a fear conditioning paradigm. The paradigm incorporated a threat cue comprising a neutral face which was paired with a fearful, screaming face, a safety cue comprising a different neutral face, and a control stimulus. Across the whole sample, neural activation to the threat cue (relative to the control cue) correlated positively with age in a number of regions, including the dorsal anterior cingulate and bilateral dorsolateral prefrontal cortex (PFC). However, neural activation to the safety cue (relative to the control cue) was modulated differently by age in the two groups: a more positive association between activation and age was observed in the control group compared to the anxious group in various regions including medial and dorsolateral PFC, anterior insula, and amygdala. These findings suggest that maturation of the neural substrates of fear responses to safety cues may be perturbed in anxious adolescents, potentially contributing to the emergence and maintenance of anxiety disorders in adulthood.  相似文献   

16.
Social anxiety disorder (SAD), which is characterized by the fear of being rejected and negatively evaluated, involves altered brain activation during the processing of negative emotions in a social context. Although associated temperament traits, such as shyness or behavioral inhibition, have been studied, there is still insufficient knowledge to support the dimensional approach, which assumes a continuum from subclinical to clinical levels of social anxiety symptoms. This study used functional magnetic resonance imaging (fMRI) to examine the neural bases of individual differences in social anxiety. Our sample included participants with both healthy/subclinical as well as clinical levels of social anxiety. Forty-six participants with a wide range of social anxiety levels performed a gender decision task with emotional facial expressions during fMRI scanning. Activation in the left anterior insula and right lateral prefrontal cortex in response to angry faces was positively correlated with the level of social anxiety in a regression analysis. The results substantiate, with a dimensional approach, those obtained in previous studies that involved SAD patients or healthy and subclinical participants. It may help to refine further therapeutic strategies based on markers of social anxiety.  相似文献   

17.
The timeline of brain‐wide neural activity relative to a behavioral event is crucial when decoding the neural implementation of a cognitive process. Yet, fMRI assesses neural processes indirectly via delayed and regionally variable hemodynamics. This method‐inherent temporal distortion impacts the interpretation of behavior‐linked neural timing. Here we describe a novel behavioral protocol that aims at disentangling the BOLD dynamics of the pre‐ and post‐response periods in response time tasks. We tested this response‐locking protocol in a perceptual decision‐making (random dot) task. Increasing perceptual difficulty produced expected activity increases over a broad network involving the lateral/medial prefrontal cortex and the anterior insula. However, response‐locking revealed a previously unreported functional dissociation within this network. preSMA and anterior premotor cortex (prePMV) showed post‐response activity modulations while anterior insula and anterior cingulate cortex did not. Furthermore, post‐response BOLD activity at preSMA showed a modulation in timing but not amplitude while this pattern was reversed at prePMV. These timeline dissociations with response‐locking thus revealed three functionally distinct sub‐networks in what was seemingly one shared distributed network modulated by perceptual difficulty. These findings suggest that our novel response‐locked protocol could boost the timing‐related sensitivity of fMRI.  相似文献   

18.
Converging evidence points to a link between anxiety proneness and altered emotional functioning, including threat‐related biases in selective attention and higher susceptibility to emotionally ambiguous stimuli. However, during these complex emotional situations, it remains unclear how trait anxiety affects the engagement of the prefrontal emotional control system and particularly the anterior cingulate cortex (ACC), a core region at the intersection of the limbic and prefrontal systems. Using an emotional conflict task and functional magnetic resonance imaging (fMRI), we investigated in healthy subjects the relations between trait anxiety and both regional activity and functional connectivity (psychophysiological interaction) of the ACC. Higher levels of anxiety were associated with stronger task‐related activation in ACC but with reduced functional connectivity between ACC and lateral prefrontal cortex (LPFC). These results support the hypothesis that when one is faced with emotionally incompatible information, anxiety leads to inefficient high‐order control, characterized by insufficient ACC‐LPFC functional coupling and increases, possibly compensatory, in activation of ACC. Our findings provide a deeper understanding of the pathophysiology of the neural circuitry underlying anxiety and may offer potential treatment markers for anxiety disorders. Hum Brain Mapp 36:2207–2214, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Animal approach-avoidance conflict paradigms have been used extensively to characterize effects of anxiolytic agents and probe neural circuitry related to anxiety. However, there are few behavioral approaches to measure conflict in human populations, limiting the translation of findings from animal conflict tasks to human clinical research. We developed a novel approach-avoidance conflict (AAC) paradigm involving situations in which the same decision is associated with “reward” (points) and “punishment” (negative affective stimuli). The AAC task was completed by 95 young adults (56 female) with varying levels of self-reported trait anxiety. As expected, conflict-related approach behavior correlated with self-reported motivation to approach reward and avoid punishment and greater reward level increased approach behavior. Additionally, females exhibited less approach behavior than males. Anxiety Sensitivity Index (Physical subscale) scores related negatively to approach behavior for males, while Behavioral Activation Scale (BAS, Fun Seeking subscale) scores related positively to approach behavior for females. Results support the utility of the AAC task as a behavioral test that has strong reverse translational features. Findings indicate that approach drives and anxiety sensitivity may be important in determining conflict behavior for females and males respectively. The approach-avoidance conflict task offers a novel, translational measure to probe neural systems underlying conflict behavior, motivational processes, and anxiety disorders.  相似文献   

20.
Mathematical word problems are ubiquitous and standard for teaching and evaluating generalization of mathematical knowledge for real‐world contexts. It is therefore concerning that the neural mechanisms of word problem solving are not well understood, as these insights represent strong potential for improving education and remediating deficits in this domain. Here, we investigate neural response to word problems via functional magnetic resonance imaging (fMRI). Healthy adults performed sentence judgment tasks on word problems that either contained one‐step mathematical operations, or nonarithmetic judgments on parallel narratives without any numerical information. Behavioral results suggested that the composite efficiency measurement of combining accuracy and RT did not differ between the two problem types. Arithmetic sentence judgments elicited greater activation in the fronto‐insular‐parietal network including intraparietal sulcus (IPS), dorsolateral prefrontal cortex (PFC), and anterior insula (AI) than narrative sentence judgment. Narrative sentence judgments, conversely, resulted in greater activation predominantly in the left ventral PFC, angular gyrus and perisylvian cortex compared with reading arithmetic sentences. Moreover, task‐dependent functional connectivity analyses showed the AI circuits were more strongly coupled with IPS during arithmetic sentence judgments than nonarithmetic sentences. Finally, activations in the IPS during arithmetic were highly correlated with out‐of‐scanner performance on a distinct set of problems with the same characteristics. These results show arithmetic word problem performance differences may rely more heavily on fronto‐insular‐parietal circuits for mathematical model building than narrative text comprehension of similar difficulty. More broadly, our study suggests that quantitative measurements of brain mechanisms can provide pivotal role for uncovering crucial arithmetic skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号