首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND CONTEXT: Biomechanical studies show that bone-mineral density, pedicle morphology, and screw thread area affect pedicle screw pullout failure. The current literature is based on studies of cylindrical pedicle screw designs. Conical screws have been introduced that may provide better "fit and fill" of the dorsal pedicle as well as improved resistance to screw bending failure. However, there is concern about loss of fixation if conical screws must be backed out after insertion. PURPOSE: To determine that conical screws have comparable initial stiffness and fixation strength compared with standard, cylindrical screws, and to assess whether conical screw fixation deteriorates when screws are backed out from full insertion. STUDY DESIGN/SETTING: This biomechanical analysis compared pullout strength of cylindrical and conical pedicle screw designs, using porcine lumbar vertebrae in a paired testing format. METHODS: Porcine lumbar vertebrae were instrumented with conical and cylindrical pedicle screws with the same thread pitch, area and contour, and an equivalent diameter at the pedicle isthmus, 1.2 cm distal to the hub. Axial pullout was performed at 1.0 mm/minute displacement. Pullout loads, work and stiffness were recorded at 0.02-second intervals. Conical versus cylindrical screws were tested using three paired control configurations: fully inserted, backed out 180 degrees and backed out 360 degrees. Fully inserted values were compared with each set of back-out values to determine relative loss of fixation strength. Screw pullout data were analyzed using a Student's t test. RESULTS: Pullout loads in these porcine specimens were comparable to data from healthy human vertebrae. Conical screws provided a 17% increase in the pullout strength compared with cylindrical screws (P<.10) and a 50% increase in initial stiffness (P<.05) at full insertion. There was no loss in pullout strength, stiffness or work to failure when conical or cylindrical screws were backed out 180 or 360 degrees from full insertion. CONCLUSIONS: Conical screws offer improved initial fixation strength compared with cylindrical screws of the same size and thread design. Our results suggest that appropriately designed conical screws can be backed out 180 to 360 degrees for intraoperative adjustment without loss of pullout strength, stiffness or work to failure. Intraoperative adjustments of these specific conical screws less than 360 degrees should not affect initial fixation strength. These results may not hold true for screws with a smaller thread area or larger minor diameter.  相似文献   

2.
Kim YY  Choi WS  Rhyu KW 《The spine journal》2012,12(2):164-168
Background contextThe pedicle screw fixation system has been used for various spinal disorders. Many studies have been conducted on the fixation ability of the pedicle screw, but variable results have been reported based on bone qualities, pedicle screw properties, insertion techniques, and experimental methods.Study designAn experimental and biomechanical study.PurposeTo evaluate the geometric factors of screws affecting fixation ability after assessing pullout strength based on various pedicle screw designs and different bone densities.MethodsNine types of pedicle screws were prepared according to the outer diameter shape (cylindrical or conical), the inner diameter shape (cylindrical or conical), and thread shape (V shape, buttress shape, and square shape). The pedicle screws were inserted into standardized polyurethane foams of Grades 5, 15, and 20. The pullout strength of each pedicle screw was determined using an MTS 858 machine (Material Testing System Corp., Minneapolis, MN, USA), and the results were analyzed statistically.ResultsPullout strength based on the shape of thread was the highest in the V shape and lowest in the square shape for all foam grades (p<.05). The outer cylindrical and inner conical shape of pedicle screw showed the highest pullout strength in Grades 5 and 15 foam (p<.05). An outer cylindrical and inner conical shape with a V-shaped thread showed the highest pullout strength in all foam grades (p<.05).ConclusionsPedicle screw with an outer cylindrical and inner conical configuration with a V-shaped thread may have maximum pullout strength, regardless of bone density.  相似文献   

3.
Okuyama K  Abe E  Suzuki T  Tamura Y  Chiba M  Sato K 《Spine》2000,25(7):858-864
STUDY DESIGN: An investigation of the relation between intraoperative insertional torque of pedicle screws, bone mineral density of the vertebra, and development of screw loosening in vivo. OBJECTIVES: To determine the usefulness of intraoperative measurement of the insertional torque of pedicle screws. SUMMARY OF BACKGROUND DATA: Some biomechanical studies have demonstrated that the insertional torque is highly correlated with bone mineral density and the stability of pedicle screws in vitro. METHODS: Pedicle screw fixation was performed with posterior lumbar interbody fusion in 62 consecutive patients. The mean age of the patients at the time of surgery was 58 years. The insertional torque of pedicle screws was measured intraoperatively in all patients. The mean follow-up period was 2.7 years. RESULTS: The mean insertional torque was 1.28 +/- 0.37 Nm in patients with screw loosening and 1.50 +/- 0. 40 Nm in patients without the problem. The mean insertional torque in patients with compression fractures in the upper vertebra adjacent to the fixed segment was 0.83 +/- 0.23 Nm. There was no significant difference between the mean insertional torque in patients with screw loosening and those without the condition. The mean insertional torque in patients without screw loosening was significantly greater than in patients with compression fractures (P < 0.01). A high correlation was found between insertional torque and bone mineral density (P < 0.01). CONCLUSIONS: Although a high correlation was found between the insertional torque of pedicle screws and bone mineral density in vivo, the insertional torque could not objectively predict screw loosening.  相似文献   

4.
Screw loosening can threaten pedicle screw fixation of the spine. Conical screws can improve the bending strength, but studies of their pullout strength as compared with that of cylindrical screws have shown wide variation. In the present study, polyurethane foam with two different densities (0.32 and 0.16 gm/cm3) was used to compare the pullout strength and stripping torque among three kinds of pedicle screws with different degrees of core tapering. Three-dimensional finite element models were also developed to compare the structural performance of these screws and to predict their pullout strength. In the mechanical tests, pullout strength was consistently higher in the higher density foam and was closely related to screw insertion torque (r=0.87 and 0.81 for the high and low density foam, respectively) and stripping torque (r=0.92 and 0.78, respectively). Conical core screws with effective foam compaction had significantly higher pullout strength and insertion torque than cylindrical core screws (p<0.05). The results of finite element analyses were closely related to those of the mechanical tests in both situations with or without foam compaction. This study led to three conclusions: polyurethane foam bone yielded consistent experimental results; screws with a conical core could significantly increase pullout strength and insertion torque over cylindrical; and finite element models could reliably reflect the results of mechanical tests.  相似文献   

5.
Study Design: Ex vivo study of the mechanical performance of cylindrical and dual-core pedicle screws after insertion, removal, and reinsertion in the same hole. Objective: To evaluate the effect of repeated use of same screw hole on the insertion torque and the retentive strength of the cylindrical and dual-core screws. Summary of Background Data: Insertion and removal of pedicle screws is sometimes necessary during surgical procedure to assess the integrity of the pilot-hole wall. However, this maneuver may compromise the implant-holding capacity. Methods: Sixty thoracolombar vertebrae (T13–L5), harvested from 10 healthy calves, were used to insert 2 different designs of pedicle screws: cylindrical (5.0-mm outer diameter) and dual-core screws (5.2-mm outer diameter). Three experimental groups were created on the basis of the number of insertions of the screws and 2 subgroups were established according to the core pedicle screw design (dual-core and cylindrical). The insertion torque was measured during initial insertion, second insertion, and third insertion. Pullout screw tests were performed using a universal testing machine to evaluate the pullout strength after initial insertion, second insertion, and third insertion. Results: Significant reductions of 38% in mean insertion torque and 30% in mean pullout strength of dual-core screw were observed between the initial insertion and the third insertion. The cylindrical screw observed significant reductions of 52.5% in mean insertion torque and 42.3% in mean pullout strength between the initial insertion and the third insertion. A reduction of mean insertion torque and pullout strength between the first insertion and the second insertion but without significance was also observed for both types of screws. Conclusion: Insertions and reinsertion of either cylindrical or dual-core pedicle screws have compromised insertion torque and pullout strength of the implants as measured by mechanical tests.  相似文献   

6.
This study examined the effect of washer usage on initial pedicle screw fixation and on the salvage of replaced pedicle screws, and the effect of minor adjustments of pedicle screws on insertional torque. Titanium, nontapered pedicle screws (6.5-mm in diameter and 35-mm in length) from one manufacturer and custom-made 5-mm washers were used in the fixation of porcine lumbar spines. Insertional torque was measured with an electronic torque screwdriver and failure strength was determined by straight pullout of the screws using an MTS machine. Initial insertional torque values were significantly greater in pedicle screws placed with washers compared with screws placed without washers. When the screw placed without a washer was salvaged with the addition of a washer, a significant increase in insertional torque resulted. Pullout testing failed to show a significant difference between the screws that were placed with washers and the screws that were placed without washers. In the second part of the experiment, there was a significant decrease in insertional torque after backing out the screw as little as 90 degrees. This current study showed that (1) washers significantly increase the insertional torque of pedicle screws; (2) screws placed without a washer can be salvaged and replaced with a washer, which results in significantly increased insertional torque; and (3) backing out a pedicle screw 90 degrees significantly decreases its insertional torque. Washers can be used with pedicle screws to enhance the initial stability of the screw constructs, and to maximize insertional torque when screws need to be replaced, revised, or adjusted (backed out).  相似文献   

7.
STUDY DESIGN: Comparative in vitro biomechanical study and finite element analysis. OBJECTIVES: To investigate the bending strength and pullout strength of conical pedicle screws, as compared with conventional cylindrical screws. SUMMARY OF BACKGROUND DATA: Transpedicle screw fixation, the gold standard of spinal fixation, is threatened by screw failure. Conical screws can resist screw breakage and loosening. However, biomechanical studies of bending strength have been lacking, and the results of pullout studies have varied widely. METHODS: Ten types of pedicle screws with different patterns of core tapering and core diameter were specially manufactured with good control of all other design factors. The stiffness, yielding strength, and fatigue life of the pedicle screws were assessed by cantilever bending tests using high-molecular-weight polyethylene. The pullout strength was assessed by pullout tests using polyurethane foam. Concurrently, 3-dimensional finite element models simulating these mechanical tests were created, and the results were correlated to those of the mechanical tests. RESULTS: In bending tests, conical screws had substantially higher stiffness, yielding strength, and fatigue life than cylindrical screws (P<0.01), especially when there was no step at the thread-shank junction. In pullout tests, pullout strength was higher in screws with a conical core and smaller core diameter and also in situations with higher foam density (P<0.01). In finite element analysis, the maximal deflection and maximal tensile stress were closely related to yielding strength (r=-0.91) and fatigue life (r=-0.95), respectively, in the bending analyses. The total reaction force was closely related to the pullout strength in pullout analyses (r=0.84 and 0.91 for different foam densities). CONCLUSIONS: Conical screws effectively increased the bending strength and pullout strength simultaneously. The finite element analyses reliably predicted the results of the mechanical tests.  相似文献   

8.
To compare the mechanical effectiveness of a new conical screw design with a conventional cylindrical screw design, the screw insertion time, torque, and pull-out strength of single-pedicle screw and triangulated-pedicle screw constructs of each type of screw were compared in human cadaveric vertebral bodies. The time required to insert the conical screws was less than that required for cylindrical screws. Regression analysis revealed a positive correlation between insertion torque and pull-out strength of single and triangulated constructs of each type of screw. The conical screw had a greater increase than the cylindrical screw in the pull-out strength of triangulated pedicle screw constructs. Application of the new conical screw design was significantly faster, and the new screw had better mechanical fixation to the vertebral body than did the conventional cylindrical screw tested.  相似文献   

9.
Background contextCurrently, pedicle screw segmental fixation of the spine is considered a standard of care for a number of conditions. Most surgeons employ a free-hand technique using various intraoperative modalities to improve pedicle screw accuracy. Despite continued improvements in technique, pedicle breach remains a frequent occurrence. Once a breach is detected intraoperatively, the most common corrective maneuver is to medially redirect the pedicle screw into the pedicle. To our knowledge, the biomechanical impact of medially redirecting a pedicle screw after a lateral pedicle breach has not been examined.PurposeTo compare the fixation strength of perfectly placed pedicle screws to the fixation strength of pedicle screws that were correctly placed after having been redirected (RD) following a lateral pedicle breach.Study design/settingA biomechanical study using human lumbar vertebrae.MethodsTen fresh human lumbar vertebrae were isolated from five donors. Each vertebra was instrumented with a monoaxial pedicle screw into each pedicle using two different techniques. On one side, a perfect center-center (CC) screw path was created using direct visualization and fluoroscopy. A 6.0-mm-diameter cannulated tap and a pedicle probe were used to develop the pedicle for the 7.0-mm-diameter by 45-mm-long cannulated pedicle screw, which was placed using a digital torque driver. On the contralateral side, an intentional lateral pedicle wall breach was created at the pedicle-vertebral body junction using a guide wire, a 6.0-mm-diameter cannulated tap, and a pedicle probe. This path was then redirected into a CC position, developed, and instrumented with a 7.0-mm-diameter by 45-mm-long cannulated pedicle screw: the RD screw. For each pedicle screw, we assessed four outcome measures: maximal torque, seating torque, screw loosening, and post-loosening axial pullout. Screw loosening and axial pullout were assessed using an MTS machine.ResultsThe biomechanical cost of a lateral pedicle breach and the requirement to redirect the pedicle screw are as follows: an overall drop of 28% (p<.002) in maximal insertion torque and 25% (p<.049) in seating torque, a drop of 25% (p<.040) in resistance to screw loosening, and a drop in axial pullout force of 11% (p<.047).ConclusionsCompared with a CC lumbar pedicle screw, an RD lumbar pedicle screw placed after a lateral wall breach is significantly weaker in terms of maximal insertional torque, seating torque, screw loosening force, and axial pullout strength. These significant decreases in biomechanical properties are clearly important when RD pedicle screws are placed at the cephalad or caudal end of a long construct. In this situation, augmentation of the RD screw is an option.  相似文献   

10.
BACKGROUND: Understanding of implant failure mechanisms is important in the successful utilization of anterior cervical plates. Many variables influence screw purchase, including the quality of the bone. The purpose of this study was to assess the relationship of screw pullout and screw insertional torque across a wide range of bone mineral densities (BMDs). METHODS: A total of 54 cervical vertebrae in 12 cervical spines were evaluated for BMD using dual-energy x-ray absorptiometry scanning. Actual and perceived peak torques of 3.5-mm anterior cervical screws were determined at each level followed by screw pullout strength testing. RESULTS: A high correlation was observed between screw pullout strength and BMD. However, there was a low correlation of peak insertional torque to pullout strength. CONCLUSION: These findings suggest the quality of the bone is more instrumental in the success or failure of anterior cervical screws than is the insertional torque with which the screws are placed.  相似文献   

11.
BackgroundRigid pedicle screw fixation is mandatory for achieving successful spinal fusion; however, there is no reliable method predicting screw fixation before screw insertion. The purpose of the present study was to investigate the efficacy of measurement of tapping torque to predict pedicle screw fixation.MethodsFirst, different densities of polyurethane foam were used to measure tapping torque. The insertional torque during pedicle screw insertion and axial pullout strength were measured and compared between under-tapped and same-tapped groups. Next, for in vivo study, the tapping and insertional torque of lumbar pedicle screws using the cortical bone trajectory technique were measured intraoperatively in 45 consecutive patients. Then, correlations between tapping torque, the bone mineral density of the femoral neck and lumbar vertebrae, and insertional torque were investigated.ResultsEx vivo tapping torque significantly correlated with the insertional torque and pullout strength regardless of tapping sizes (r = 0.98, p < 0.001). The mean in vivo tapping and insertional torque were 1.48 ± 0.73 and 2.48 ± 1.25 Nm, respectively (p < 0.001). Insertional torque significantly correlated with tapping torque and two BMD parameters, and the correlation coefficient of tapping torque (r = 0.83, p < 0.001) was higher than those of femoral neck BMD (r = 0.59, p < 0.001) and lumbar BMD (r = 0.39, p < 0.001).ConclusionsTapping torque is a reliable predictor of pedicle screw fixation and allows surgeons to improve the integrity of the bone-screw interface by making modification prior to actual screw insertion.  相似文献   

12.
Introduction Failure of pedicle screws by loosening and back out remains a significant clinical problem. Pedicle screw fixation is determined by bone mineral density, pedicle morphology and screw design. The objective of this study was to compare the holding strength of newly developed dual core pedicle screws having a cylindrical design in terms of outer diameter and two cylindrical inner core regions connected by a conical transition with conventional cylindrical pedicle screws.Materials and methods Fifty bovine lumbar vertebrae and 40 human lumbar vertebrae were used. Five different screws were tested in nine experimental “settings” and ten specimens each. The screws were tested for cranial displacement and pullout strength before and after 5,000 cycles of cranio-caudal loading. The tests included a setting with fully inserted and 4 mm backed out screws. For statistical analysis the incomplete balanced block design was used.Results Cyclic loading led to a decrease of pullout force between 24 and 31% and a 9% increase of displacement. The cylindrical screw designs were affected more than the dual core designs. The pullout force of cylindrical screws was smaller than of dual core screws. Even in a backed out condition dual core screws showed a significantly smaller displacement than cylindrical screws.Conclusion Pedicle screws with the dual core design provide good anchorage in the vertebra.  相似文献   

13.

Purpose

To experimentally study the influence of pilot hole diameter (smaller than or equal to the internal (core) diameter of the screw) on biomechanical (insertion torque and pullout strength) and histomorphometric parameters of screw–bone interface in the acute phase and 8 weeks after pedicle screw insertion.

Methods

Fifteen sheep were operated upon and pedicle screws inserted in the L1–L3 pedicles bilaterally. The pilot hole was smaller (2.0 mm) than the internal diameter (core) of the screw on the left side pedicle and equal (2.8 mm) to the internal diameter (core) of the screw on the right side pedicle. Ten animals were sacrificed immediately (five animals were assigned to pullout strength tests and five animals were used for histomorphometric bone–screw interface evaluation). Five animals were sacrificed 8 weeks after pedicle screw insertion for histomorphometric bone–screw interface evaluation.

Results

The insertion torque and pullout strength were significantly greater in pedicle screws inserted into pilot holes smaller than internal (core) diameter of the screw. Histomorphometric evaluation of bone–screw interface showed that the percentage of bone-implant contact, the area of bone inside the screw thread and the area of bone outside the screw thread were significantly higher for pilot holes smaller than the internal (core) diameter of the screw immediately after insertion and after 8 weeks.

Conclusion

A pilot diameter smaller than the internal (core) diameter of the screw improved the insertion torque and pullout strength immediately after screw insertion as well the pedicle screw–bone interface contact immediately and 8 weeks after screw placement in sheep with good bone mineral density.  相似文献   

14.

Background  

This study was designed to derive the theoretical formulae to predict the pullout strength of pedicle screws with an inconstant outer and/or inner diameter distribution (conical screws). For the transpedicular fixation, one of the failure modes is the screw loosening from the vertebral bone. Hence, various kinds of pedicle screws have been evaluated to measure the pullout strength using synthetic and cadaveric bone as specimens. In the literature, the Chapman's formula has been widely proposed to predict the pullout strength of screws with constant outer and inner diameters (cylindrical screws).  相似文献   

15.
Loosening of sacral screw fixation under in vitro fatigue loading.   总被引:2,自引:0,他引:2  
Sacral screw fixation is frequently used for fusion of the lower lumbar spine, but sacral screws appear to offer less secure fixation than lumbar pedicle screws, and failure due to loosening under fatigue loading is common. The aim of this study was to examine in vitro the stability of medial and lateral bicortical and unicortical sacral screw fixation under a physiologically relevant fatigue-loading pattern. Bone mineral density, screw insertion torque, and screw-fixation stiffness were measured prior to cyclic loading between 40 and 400 N compression at 2 Hz for 20,000 cycles. The screw-fixation stiffness was measured every 500 cycles, and the axial pullout strength of the screws was recorded following loading. All of the lateral insertions loosened under the applied loading, but some of the medial insertions remained stable. Medial insertions proved stiffer and stronger than lateral insertions, and bicortical fixations were stronger than unicortical fixations. Bone mineral density and insertion torque were correlated with screw stiffness and pullout strength, although better correlation was found for insertion torque than bone mineral density. Bone mineral density is a good preoperative indicator of sacral screw-fixation strength, and insertion torque is a good intraoperative indicator. An insertion torque greater than 1.5 Nm is suggested as an indicative value for a stable medial unicortical insertion, whereas an insertion torque greater than 2 Nm suggests a stable medial bicortical insertion. It appears that, apart from the choice of technique (screw orientation and depth), minimizing the load on the screws during the initial part of the fusion process is also critical to maintain stability of the fused section and to obtain a solid fusion mass.  相似文献   

16.

Background:

The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD), diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws.

Materials and Methods:

Sixty fresh human cadaveric vertebrae (D10–L2) were harvested. Dual-energy X-ray absorptiometry (DEXA) scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm) were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a) standard pedicle screw (no cortical perforation); b) screw with medial cortical perforation; and c) screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine.

Results:

Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra (P = 0.105), but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD (P = 0.901).

Conclusion:

The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.  相似文献   

17.
Improving the pullout strength of pedicle screws by screw coupling   总被引:5,自引:0,他引:5  
The objective of this study was to determine the effect of pedicle screw coupling on the pullout strength of pedicle screws in the osteoporotic spine. The vertebral bone mineral density (BMD) of 33 cadaveric lumbar vertebrae were measured by quantitative computed tomography. Pedicle screws were inserted into each pedicle. The pullout strength and displacement of the screws, without coupling and with single or double couplers, were studied, and the relationship between pullout strength and BMD was analyzed. The average pullout strength of the pedicle screws without screw coupling was 909.3 +/- 188.6 N (n = 9), that coupled with a single coupler was 1,409.0 +/- 469.1 N (n = 9), and that with double couplers was 1,494.0 +/- 691.6 N (n = 9). The pullout strength of the screws coupled with single or double couplers was significantly greater than that of screws without couplers (p < 0.01); however, there was no significant difference between the groups of single and double couplers. The improvement of pullout strength by screw coupling was significant in a test group with BMD of more than 90 mg/ml (p < 0.01), but was not in the group with BMD less than 90 mg/ml (p = 0.55). These results suggest that the coupling of pedicle screws improves pullout strength; however, the effect tends to be less significant in severely osteoporotic spines.  相似文献   

18.
OBJECT: Elastic deformation has been proposed as a mechanism by which vertebral pedicles can maintain pullout strength when conical screws are backed out from full insertion. The response to the insertion technique may influence both the extent of deformation and the risk of acute fracture during screw placement. The aim of this study was to determine the deformation characteristics of the lumbar pedicle cortex during screw placement. METHODS: Lumbar pedicles with linear strain gauges attached at the lateral and medial cortices were instrumented using 7.5-mm pedicle screws with or without preconditioning by insertion and removal of 6.5-mm screws. The strains and elastic recoveries of the medial and lateral cortices were determined. RESULTS: Mean medial wall strains tended to be lower than mean lateral wall strains when the 6.5-mm and 7.5-mm screw data were pooled (p = 0.07). After the screws had been removed, 71 to 79% of the deformation at the lateral cortex and 70 to 96% of the deformation at the medial cortex recovered. When inserted first, the 7.5-mm screw caused more plastic deformation at the cortex than it did when inserted after the 6.5-mm screw. Occasional idiosyncratic strain patterns were observed. No gross fracture was observed during screw placement. CONCLUSIONS: Screw insertion generated plastic deformation at the pedicle cortex even though the screw did not directly contact the cortex. The lateral and medial cortices responded differently to screw insertion. The technique of screw insertion affected the deformation behavior of the lumbar pedicles. With myriad options for screw selection and placement available, further study is needed before optimal placement parameters can be verified.  相似文献   

19.
Previous investigations have suggested that conical and cylindrical pedicle screws have comparable holding strengths. So far, the remaining performance in screws turned back or loose as a result of other reasons has not been determined. Twenty-four cadaveric spines from 6- to 8-week-old calves were examined. After bone mineral density was determined, four pedicle screws (two conical and two cylindrical screws) were inserted. The screws were fully inserted and half of them turned back 180 degrees. Twenty-four axial pullout and 24 cyclic loading tests with subsequent pullout tests were conducted. The pullout strengths of conical screws turned back 180 degrees are significantly smaller (1.8 kN) than those of cylindrical screws (4.3 kN). After cyclic loading, the displacement of conical screws is significantly greater (6.9 mm) than that of cylindrical screws (4.7 mm). Pedicle screws, especially conical ones, need to be placed to a correct depth, and they should not have to be backed out.  相似文献   

20.
BACKGROUND CONTEXT: Extrapedicular screws are placed more laterally than intrapedicular screws and pass through the transverse process or rib head before entering the vertebral body. These screws are sometimes placed to salvage failed pedicle screws, but the change in pullout resistance of extrapedicular screws after salvage has not been quantified. PURPOSE: To quantify the pullout resistance of thoracic extrapedicular screws compared with intrapedicular screws and the pullout resistance of newly inserted screws compared with extrapedicular screws used as salvage for failed intrapedicular screws. STUDY DESIGN: In vitro paired comparison of screw pullout resistance in isolated thoracic vertebrae. METHODS: Tapered monoaxial pedicle screws were inserted in the left or right pedicle of 11 human cadaveric thoracic vertebrae. An extrapedicular screw was inserted on the contralateral side. Both screws were pulled out axially at 0.5 mm/s using a servohydraulic test frame while applied load was recorded. Then a fresh extrapedicular screw was inserted as a salvage screw on the intrapedicular screw side and pulled out. RESULTS: In uncompromised vertebrae, the pullout strength of extrapedicular screws was 80+/-32% of that of intrapedicular screws (p=.073, repeated-measures one-way analysis of variance/Tukey). Salvage screws restored pullout strength to 65+/-30% of that of intrapedicular screws (p=.003). CONCLUSIONS: Extrapedicular screws provided comparable but slightly lower pullout resistance to intrapedicular screws in uncompromised vertebrae. They are therefore a feasible salvage technique when a compromised pedicle precludes reinsertion of an intrapedicular screw, but the salvage screw is significantly weaker than the original screw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号