首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study shows the influence on plasma glucose concentrations of 45 min of mild exercise (48 +/- 4% of maximum aerobic capacity) performed 180 min after breakfast and 195 min after a subcutaneous injection of regular insulin by six type I (insulin-dependent) diabetic patients on a three-daily insulin injection regimen (regular insulin before breakfast and lunch, regular + intermediate insulin before supper). It has been observed that such exercise does not induce a large plasma glucose decrease. Actually, plasma glucose concentrations were 99 +/- 18 mg/dl before exercise, reached a nadir of 78 +/- 17 mg/dl at 35 min, and were 81 +/- 15 mg/dl at the end of exercise. During the control study at rest, in the same 45-min time interval, plasma glucose decreased from 146 +/- 31 to 128 +/- 31 mg/dl. In the exercise study, one patient began exercising while hypoglycemic, and another patient developed asymptomatic hypoglycemia during exercise. In the control study at rest, one patient showed hypoglycemic glucose concentrations. Throughout the exercise study, plasma free-insulin concentrations decreased (from 32 +/- 5 to 20 +/- 4 microU/ml) as a result of the pharmacokinetics of subcutaneously injected insulin.  相似文献   

2.
We hypothesized that adrenergic mechanisms support the postabsorptive plasma glucose concentration, and prevent hypoglycemia when glucagon secretion is deficient. Accordingly, we assessed the impact of glucagon deficiency, produced by infusion of somatostatin with insulin, without and with pharmacologic alpha- and beta-adrenergic blockade on the postabsorptive plasma glucose concentration and glucose kinetics in normal human subjects. During somatostatin with insulin alone mean glucose production fell from 1.5 +/- 0.05 to 0.7 +/- 0.2 mg/kg per min and mean plasma glucose declined from 93 +/- 3 to 67 +/- 4 mg/dl over 1 h; glucose production then increased to base-line rates and plasma glucose plateaued at 64-67 mg/dl over 2 h. This plateau was associated with, and is best attributed to, an eightfold increase in mean plasma epinephrine. It did not occur when adrenergic blockade was added; glucose production remained low and mean plasma glucose declined progressively to a hypoglycemic level of 45 +/- 4 mg/dl, significantly (P less than 0.001) lower than the final value during somatostatin with insulin alone. These data provide further support for the concept that maintenance of the postabsorptive plasma glucose concentration is a function of insulin and glucagon, not of insulin alone, and that adrenergic mechanisms do not normally play a critical role. They indicate, however, that an endogenous adrenergic agonist, likely adrenomedullary epinephrine, compensates for deficient glucagon secretion and prevents hypoglycemia in the postabsorptive state in humans. Thus, postabsorptive hypoglycemia occurs when both glucagon and epinephrine are deficient, but not when either glucagon or epinephrine alone is deficient, and insulin is present.  相似文献   

3.
The metabolic effects of moderate exercise in the fasting state were examined in 12 insulin-dependent diabetic adolescents treated with continuous subcutaneous insulin infusion (CSII) or intensive conventional therapy (ICT). Six patients received their usual afternoon dose the evening before the study and six received their usual infusion rate during exercise. Insulin was injected subcutaneously in the abdominal wall. Exercise was performed on a bicycle ergometer for 45 min at 50% maximum oxygen consumption. Resting plasma glucose values during both CSII (114 +/- 18 mg/dl, P less than 0.02) and ICT (136 +/- 30 mg/dl, P less than 0.01) were higher than normal (77 +/- 11 mg/dl). Diabetic patients receiving CSII showed a sharp decrease in glycemia after 45 min of exercise (77 +/- 18 mg/dl, P less than 0.02). In contrast, in patients receiving ICT and in control subjects plasma glucose did not change during exercise or recovery. Insulin levels decreased significantly during exercise in the control subjects while there was no change in plasma free insulin levels during exercise in the diabetic subjects. Profiles of intermediary metabolites in response to exercise were similar in all groups with no significant differences in resting values between diabetic subjects and controls. Continuous subcutaneous insulin infusion provides near-normoglycemia in the insulin-dependent diabetic adolescent. However, with the basal insulin infusion rate necessary to achieve near-normal fasting blood glucose levels, moderate exercise in the postabsorptive state may result in hypoglycemia with CSII.  相似文献   

4.
Methyl palmoxirate, an effective hypoglycemic agent administered p.o., has been shown to decrease hepatic glucose production secondary to inhibition of mitochondrial fatty acid oxidation. Because the ability to increase hepatic glucose production is an important counter-regulatory defense against hypoglycemia, we compared the ability of streptozotocin/alloxan-induced diabetic dogs treated p.o. with vehicle or methyl palmoxirate (2.5 mg/kg/day X 7 days) to recover from insulin-induced hypoglycemia. Hepatic glucose production and glucose utilization were determined by isotope dilution before and after acute reduction of plasma glucose by i.v. insulin injection (0.10 or 0.13 U/kg). Diabetic dogs treated with methyl palmoxirate for 6 days had lower overnight fasting plasma glucose levels than vehicle-treated animals (158 +/- 7 vs. 171 +/- 11, respectively, P less than .05). Plasma glucose at 4 hr after the last dose of drug decreased to 115 +/- 5 mg/dl, whereas glucose in the vehicle-treated dogs was unchanged (172 +/- 8 mg/dl). Recovery from insulin-induced hypoglycemia (nadirs of 58 +/- 5 and 42 +/- 4 mg/dl in the vehicle- and methyl palmoxirate-treated groups, respectively) was not significantly different between the two groups of dogs. Restoration of plasma glucose was primarily due to increased hepatic glucose production in both treatment groups, as glucose utilization did not fall significantly below baseline levels. Plasma glucagon levels increased in both vehicle- and methyl palmoxirate-treated dogs in response to hypoglycemia, indicating that release of an important counter-regulatory hormone was not compromised by drug treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have proposed that chronic hyperglycemia alters the ability of glucose to modulate insulin secretion, and have now examined the effects of different levels of hyperglycemia on B cell function in normal rats using chronic glucose infusions. Rats weighing 220-300 g were infused with 0.45% NaCl or 20, 30, 35, or 50% glucose at 2 ml/h for 48 h, which raised the plasma glucose by 18 mg/dl in the 30% rats, 37 mg/dl in the 35% rats, and 224 mg/dl in the 50% group. Insulin secretion was then examined using the in vitro isolated perfused pancreas. Glucose-induced insulin secretion remained intact in the normoglycemic 20% glucose rats and it was potentiated in the mildly hyperglycemic 30% glucose rats. However, with even greater hyperglycemia in the 35% glucose group the insulin response to a high glucose perfusate was severely blunted, and it was totally lost in the most hyperglycemic 50% glucose rats. In a second protocol that examined glucose potentiation of arginine-stimulated insulin release, a similar impairment in the ability of glucose to modulate the insulin response to arginine was found with increasing levels of chronic hyperglycemia. On the other hand, the ability of a high glucose concentration to inhibit arginine-stimulated glucagon release was preserved in all glucose-infused rats, but the glucagon levels attained in response to the arginine at 2.8 mM glucose were much less in the 50% glucose rats than in all the other groups. These data clearly show that after 48 h of marked hyperglycemia, glucose influence upon insulin secretion in the rat is severely impaired. This model provides a relatively easy and reproducible method to study the effects of long-term hyperglycemia on B cell function.  相似文献   

6.
Effects of morphine on glucose homeostasis in the conscious dog.   总被引:1,自引:0,他引:1       下载免费PDF全文
This study was designed to assess the effects of morphine sulfate on glucose kinetics and on glucoregulatory hormones in conscious overnight fasted dogs. One group of experiments established a dose-response range. We studied the mechanisms of morphine-induced hyperglycemia in a second group. We also examined the effect of low dose morphine on glucose kinetics independent of changes in the endocrine pancreas by the use of somatostatin plus intraportal replacement of basal insulin and glucagon. In the dose-response group, morphine at 2 mg/h did not change plasma glucose, while morphine at 8 and 16 mg/h caused a hyperglycemic response. In the second group of experiments, morphine (16 mg/h) caused an increase in plasma glucose from a basal 99 +/- 3 to 154 +/- 13 mg/dl (P less than 0.05). Glucose production peaked at 3.9 +/- 0.7 vs. 2.5 +/- 0.2 mg/kg per min basally, while glucose clearance declined to 1.7 +/- 0.2 from 2.5 +/- 0.1 ml/kg per min (both P less than 0.05). Morphine increased epinephrine (1400 +/- 300 vs. 62 +/- 8 pg/ml), norepinephrine (335 +/- 66 vs. 113 +/- 10 pg/ml), glucagon (242 +/- 53 vs. 74 +/- 14 pg/ml), insulin (30 +/- 9 vs. 10 +/- 2 microU/ml), cortisol (11.1 +/- 3.3 vs. 0.9 +/- 0.2 micrograms/dl), and plasma beta-endorphin (88 +/- 27 vs. 23 +/- 6 pg/ml); all values P less than 0.05 compared with basal. These results show that morphine-induced hyperglycemia results from both stimulation of glucose production as well as inhibition of glucose clearance. These changes can be explained by rises in epinephrine, glucagon, and cortisol. These in turn are part of a widespread catabolic response initiated by high dose morphine that involves activation of the sympathetic nervous system, the endocrine pancreas, and the pituitary-adrenal axis. Also, we report the effect of a 2 mg/h infusion of morphine on glucose kinetics when the endocrine pancreas is clamped at basal levels. Under these conditions, morphine exerts a hypoglycemic effect (25% fall in plasma glucose, P less than 0.05) that is due to inhibition of glucose production (by 25-43%, P less than 0.05). The hypoglycemia was independent of detectable changes in insulin, glucagon, epinephrine and cortisol, and was not reversed by concurrent infusion of a slight molar excess of naloxone. Therefore, we postulate that the hypoglycemic effect of morphine results from the interaction of the opiate with non-mu receptors either in the liver or the central nervous system.  相似文献   

7.
OBJECTIVE--To evaluate whether an insulin regimen with a long-acting zinc insulin (Ultratard HM) could help control fasting hyperglycemia in insulin-dependent diabetes mellitus (IDDM) patients. RESEARCH DESIGN AND METHODS--A randomized sequential crossover trial with 6-wk treatment periods was used. Ten IDDM patients from the diabetes clinic at the Medical School who had persistent fasting hyperglycemia (greater than 10 mmol/L) were studied. Patients with nocturnal hypoglycemia were excluded. All patients completed the study. Insulin regimens consisted of three daily injections of a short-acting insulin (Actrapid HM) before meals and either a long-acting zinc insulin (Ultratard HM) or an intermediate isophane insulin (Protaphane HM) before the evening meal. Each regimen was followed for 6 wk. RESULTS--Fasting blood glucose levels (at 06:00 and 08:00) were significantly lower after the long-acting insulin regimen (6.26 +/- 0.88 vs. 10.82 +/- 4.27 mM, P less than 0.05 and 9.26 +/- 1.02 vs. 14.03 +/- 1.08 mM, P less than 0.05, respectively). Plasma-free insulin levels mirrored blood glucose concentrations because they were significantly higher at 06:00 and 08:00 after the long-acting insulin regimen (49.5 +/- 10.1 vs. 20.1 +/- 4.3 pM, P less than 0.05 and 31.6 +/- 5.0 vs. 16.5 +/- 3.4 pM, P less than 0.05, respectively). At any other time of the day, blood glucose and plasma insulin levels were not significantly different with either one of the two insulin regimens. CONCLUSIONS--A long-acting zinc human insulin injected before the evening meal can help to control persistent fasting hyperglycemia in IDDM patients.  相似文献   

8.
The aim of this study was to determine the role of increased plasma cortisol levels in the pathogenesis of hypoglycemia-associated autonomic failure. Experiments were carried out on 16 lean, healthy, overnight fasted male subjects. One group (n = 8) underwent two separate, 2-d randomized experiments separated by at least 2 mo. On day 1 insulin was infused at a rate of 1.5 mU/kg per min and 2 h clamped hypoglycemia (53 +/- 2 mg/dl) or euglycemia (93 +/- 3 mg/dl) was obtained during morning and afternoon. The next morning subjects underwent a 2-h hyperinsulinemic (1.5 mU/kg per min) hypoglycemic (53 +/- 2 mg/dl) clamp study. In the other group (n = 8), day 1 consisted of morning and afternoon 2-h clamped hyperinsulinemic euglycemia with cortisol infused to stimulate levels of plasma cortisol occurring during clamped hypoglycemia (53 mg/dl). The next morning (day 2) subjects underwent a 2-h hyperinsulinemic hypoglycemic clamp identical to the first group. Despite equivalent day 2 plasma glucose and insulin levels, steady state epinephrine, norepinephrine, pancreatic polypeptide, glucagon, ACTH and muscle sympathetic nerve activity (MSNA) values were significantly (R < 0.01) blunted after day 1 cortisol infusion compared to antecedent euglycemia. Compared to day 1 cortisol, antecedent hypoglycemia produced similar blunted day 2 responses of epinephrine, norepinephrine, pancreatic polypeptide and MSNA compared to day 1 cortisol. Antecedent hypoglycemia, however, produced a more pronounced blunting of plasma glucagon, ACTH, and hepatic glucose production compared to day 1 cortisol. We conclude that in healthy overnight fasted men (a) antecedent physiologic increases of plasma cortisol can significantly blunt epinephrine, norepinephrine, glucagon, and MSNA responses to subsequent hypoglycemia and (b) these data suggest that increased plasma cortisol is the mechanism responsible for antecedent hypoglycemia causing hypoglycemia associated autonomic failure.  相似文献   

9.
G protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA(1)) is highly expressed in pancreatic β cells and mediates free fatty acid-induced insulin secretion. This study examined the pharmacological effects and potential for avoidance of lipotoxicity of [(3S)-6-({2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}meth-oxy)-2,3-dihydro-1-benzofuran-3-yl]acetic acid hemi-hydrate) (TAK-875), a novel, orally available, selective GPR40 agonist. Insulinoma cell lines and primary rat islets were used to assess the effects of TAK-875 in vitro. The in vivo effects of TAK-875 on postprandial hyperglycemia, fasting hyperglycemia, and normoglycemia were examined in type 2 diabetic and normal rats. In rat insulinoma INS-1 833/15 cells, TAK-875 increased intracellular inositol monophosphate and calcium concentration, consistent with activation of the Gqα signaling pathway. The insulinotropic action of TAK-875 (10 μM) in INS-1 833/15 and primary rat islets was glucose-dependent. Prolonged exposure of cytokine-sensitive INS-1 832/13 to TAK-875 for 72 h at pharmacologically active concentrations did not alter glucose-stimulated insulin secretion, insulin content, or caspase 3/7 activity, whereas prolonged exposure to palmitic or oleic acid impaired β cell function and survival. In an oral glucose tolerance test in type 2 diabetic N-STZ-1.5 rats, TAK-875 (1-10 mg/kg p.o.) showed a clear improvement in glucose tolerance and augmented insulin secretion. In addition, TAK-875 (10 mg/kg, p.o.) significantly augmented plasma insulin levels and reduced fasting hyperglycemia in male Zucker diabetic fatty rats, whereas in fasted normal Sprague-Dawley rats, TAK-875 neither enhanced insulin secretion nor caused hypoglycemia even at 30 mg/kg. TAK-875 enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia with a low risk of hypoglycemia and no evidence of β cell toxicity.  相似文献   

10.
OBJECTIVE: Postprandial hyperglycemia characterizes early type 2 diabetes. We investigated whether ameliorating postprandial hyperglycemia with acarbose would prevent or delay progression of diabetes, defined as progression to frank fasting hyperglycemia, in subjects with early diabetes (fasting plasma glucose [FPG] <140 mg/dl and 2-h plasma glucose > or =200 mg/dl). RESEARCH DESIGN AND METHODS: Two hundred nineteen subjects with early diabetes were randomly assigned to 100 mg acarbose t.i.d. or identical placebo and followed for 5 years or until they reached the primary outcome (two consecutive quarterly FPG measurements of > or =140 mg/dl). Secondary outcomes included measures of glycemia (meal tolerance tests, HbA(1c), annual oral glucose tolerance tests [OGTTs]), measures of insulin resistance (homeostasis model assessment [HOMA] of insulin resistance and insulin sensitivity index from hyperglycemic clamps), and secondary measures of beta-cell function (HOMA-beta, early- and late-phase insulin secretion, and proinsulin-to-insulin ratio). RESULTS: Acarbose significantly reduced postprandial hyperglycemia. However, there was no difference in the cumulative rate of frank fasting hyperglycemia (29% with acarbose and 34% with placebo; P = 0.65 for survival analysis). There were no significant differences between groups in OGTT values, measures of insulin resistance, or secondary measures of beta-cell function. In a post hoc analysis of subjects with initial FPG <126 mg/dl, acarbose reduced the rate of development of FPG > or =126 mg/dl (27 vs. 50%; P = 0.04). CONCLUSIONS: Ameliorating postprandial hyperglycemia did not appear to delay progression of early type 2 diabetes. Factors other than postprandial hyperglycemia may be greater determinants of progression of diabetes. Alternatively, once FPG exceeds 126 mg/dl, beta-cell failure may no longer be remediable.  相似文献   

11.
In situ hybridization of proinsulin and proglucagon mRNA was performed in rat pancreas to assess prohormone gene expression during various glucopenic conditions. During a 4-d fast mean blood glucose declined by 48 mg/dl; proinsulin mRNA signal density remained normal while proglucagon mRNA signal density more than doubled. At the end of a continuous 12-d insulin infusion blood glucose averaged 53 +/- 12 mg/dl; proinsulin mRNA signal density declined to 30% of controls while proglucagon mRNA signal density more than doubled. In insulinoma-bearing NEDH rats blood glucose averaged 34 +/- 3.5 mg/dl; the proinsulin mRNA signal was virtually undetectable and proglucagon mRNA signal density was more than twice the controls. There was no detectable change in either beta-cell area or islet number in rats subjected to fasting or insulin infusion, but in insulinoma-bearing rats beta cell area was markedly reduced. Thus compensation during 4 d of starvation involves an increase in glucagon gene expression without change in insulin gene expression or beta cell mass. In moderate insulin-induced hypoglycemia glucagon gene expression is increased and insulin gene expression decreased. In more profound insulinoma-induced hypoglycemia, in addition to the foregoing changes in hormone gene expression, there is a profound reduction in the number of insulin-expressing cells.  相似文献   

12.
Tissue sensitive to insulin and insulin binding to monocytes were evaluated in 15 nonobese maturity-onset diabetics and in 16 healthy controls. Insulin sensitivity was determined by the insulin clamp technique in which the plasma insulin is acutely raised and maintained 100 muU/ml above the fasting level and plasma glucose is held constant at fasting levels by a variable glucose infusion. The amount of glucose infused is a measure of overall tissue sensitivity to insulin.In the diabetic group, the fasting plasma glucose concentration (168+/-4 mg/dl) was 85% greater than controls (P < 0.01) whereas the plasma insulin level (15+/-1 muU/ml) was similar to controls. During the insulin clamp study, comparable plasma insulin levels were achieved in the diabetics (118+/-5) and the controls (114+/-5 muU/ml). However, the glucose infusion rate in the diabetics (4.7+/-0.4 mg/kg.min) was 30% below controls (P < 0.01). Among the diabetics, the glucose infusion rate correlated directly with the fasting plasma glucose level (r = 0.57, P < 0.05). In five diabetic subjects, glucose metabolism was similar to controls, and these diabetics had the highest fasting glucose levels. When they were restudied after prior normalization (with insulin) of the fasting plasma glucose (100+/-1 mg/dl), the glucose infusion rate during the insulin clamp was 30% lower than observed in association with hyperglycemia (P < 0.01). Studies that employed tritiated glucose to measure endogenous glucose production indicated comparable 90-95% inhibition of hepatic glucose production during hyperinsulinemia in the diabetic and control subjects.(125)I-insulin binding to monocytes in the diabetics (5.5+/-0.6%) was 30% below that in controls (P < 0.01). Insulin binding to monocytes and insulin action as determined with the insulin clamp were highly correlated in both control (r = 0.67, P < 0.01), and diabetic subjects (r = 0.88, P < 0.001).We conclude that (a) tissue sensitivity to physiologic hyperinsulinemia is reduced in most maturity-onset diabetics; (b) this decrease in sensitivity is located, at least in part, in extrahepatic tissues; (c) the resistance to insulin may be mediated by a reduction in insulin binding; and (d) in maturity-onset diabetics with normal tissue sensitivity to insulin, hyperglycemia may be a contributing factor to the normal rates of insulin-mediated glucose uptake.  相似文献   

13.
We have examined the effect of chronic (4 wk) hyperglycemia on insulin secretion in vivo in an awake, unstressed rat model. Three groups of animals were examined: control, partial (90%) pancreatectomy, and partial pancreatectomy plus phlorizin, in order to normalize plasma glucose levels. Insulin secretion in response to arginine (2 mM), hyperglycemia (+100 mg/dl), and arginine plus hyperglycemia was evaluated. In diabetic compared with control animals three specific alterations were observed: (a) a deficient insulin response, in both first and second phases, to hyperglycemia; (b) an augmented insulin response to the potentiating effect of arginine under basal glycemic conditions; and (c) an inability of hyperglycemia to augment the potentiating effect of arginine above that observed under basal glycemic conditions. Normalization of the plasma glucose profile by phlorizin treatment in diabetic rats completely corrected all three beta cell abnormalities. These results indicate that chronic hyperglycemia can lead to a defect in in vivo insulin secretion which is reversible when normoglycemia is restored.  相似文献   

14.
This study was carried out to determine if, in fasting, an adaptation to utilization of ketones could prevent cerebral dysfunction during periods of acute, insulin-induced glucopenia.In the course of standard insulin tolerance tests (0.1-0.2 U/kg), nine obese subjects manifested frank hypoglycemic reactions resulting in an increase in urinary catecholamine excretion from 61 to 113 mug/24 hr (P < 0.01). After fasting 2 months, administration of weight-adjusted doses of insulin produced identical maximum insulin concentrations and disappearance curves. However, no insulin reactions nor significant rises in catecholamine excretion occurred despite equal extent and rate of glucose fall. Glucose concentrations as low as 0.5 mmoles/liter (9 mg/100 ml) failed to precipitate hypoglycemic reactions. During the postfast insulin tolerance tests, mean plasma 2-hydroxybutyrate (beta-OHB) decreased from 8.02 to 6.69 mmoles/liter (P < 0.01). In another five fasting subjects tested, the A-V difference for beta-OHB across brain increased progressively from 0.21 to 0.70 mmoles/liter whereas across the forearm no consistent uptake could be demonstrated. Simultaneously, the A-V difference across the brain for glucose decreased from 0.24 to 0.07 mmoles/liter of plasma.In addition to insulin-induced suppression of hepatic ketogenesis, the augmented cerebral ketone uptake during insulin hypoglycemia contributes to the net fall in plasma beta-OHB. Ketoacids, extracted by the fast-adapted brain, supplant glucose as a metabolic substrate preventing overt hypoglycemic reactions during acute glucopenia.  相似文献   

15.
The pattern of urinary catecholamine excretion in fasting differs in pregnant and nonpregnant rats, which suggests that the sympathoadrenal response to fasting is altered by pregnancy. In fasting nonpregnant animals, urinary norepinephrine (NE) excretion decreases and epinephrine (E) excretion remains unchanged, whereas the excretion of both catecholamines rises significantly with refeeding. In contrast, fasting third-trimester pregnant rats exhibit a 420% increase in urinary E and a 345% increase in urinary NE, elevations which fall with refeeding. Specific evaluation of sympathoadrenal activity in fasting pregnant rats reveals stimulation of the adrenal medulla and suppression of sympathetic nerves. In fasting third-trimester rats the adrenal content of E is 37% lower in innervated adrenals as compared with contralateral denervated glands, which indicates the presence of neurally-mediated adrenal medullary activation. Adrenalectomy completely abolishes the fasting-induced rise in urinary E and NE in pregnant rats. Studies with 2-deoxy-D-glucose suggest that stimulation of the adrenal medulla results from hypoglycemia, which is present after 3 d of fasting in pregnant rats (plasma glucose 36.7 mg/dl). Sympathetic nervous system activity, as measured by [(3)H]NE turnover in the heart, decreases in fasting pregnant rats despite hypoglycemia, a response similar to that seen in fasting nonpregnant animals where plasma glucose is maintained above 50 mg/dl. The calculated NE turnover rate is 44% lower in 2-d fasted pregnant rats than in fed pregnant animals (17.6 +/- 1.3 vs. 31.3 +/- 1.8 ng NE/heart per h, respectively). Thus adrenal medullary and sympathetic nervous system responses in fasting pregnant rats appear to be dissociated, which suggests that diet-induced changes in sympathetic activity and stimulation of the adrenal medulla by hypoglycemia may be independently regulated.  相似文献   

16.
Glucose control has repeatedly been shown to influence favorable outcomes in the surgical intensive care unit (ICU). Intensive insulin therapy has recently been associated with reduced infections complications in burn patients. However, traditional protocols are associated with rates of severe hypoglycemia as high as 19%. Two commercial computer glucose control programs have reported rates of severe hypoglycemia (glucose <50 mg/dl) of 0.6 and 0.4%. Recently, the authors' burn ICU adopted an intensive insulin computer-based protocol created at their institution and already successfully in use in their surgical ICU. The authors hypothesized that their protocol can be used effectively in the burn patient population without an increase risk of severe hypoglycemia. All patients admitted to the burn ICU have blood glucose (BG) values checked routinely. With two consecutive hyperglycemic values >200 mg/dl, patients are placed on a computer-based protocol intravenous insulin drip. Once initiated, BGs are tested hourly with adjustments made according to the computer protocol. Values recorded from January to December 2008 were abstracted from the database and analyzed. Thirty-one patients were treated using the computer glucose control protocol and 12,699 measurements were performed. There were eight measurements <50 mg/dl (0.07%). Seventy-six percent of values were within the target range of 90 to 150 mg/dl. Few patients had severe hyperglycemia with BG >300 mg/dl (0.2%). There were no adverse events associated with the hypoglycemic episode. The computer-based protocol is more effective than those previously used at the institution and provides safe, reliable results in the burn patients.  相似文献   

17.
To evaluate the roles of iatrogenic hypoglycemia and diabetes per se in the pathogenesis of defective hormonal counterregulation against hypoglycemia in insulin-dependent diabetes mellitus (IDDM), nondiabetic, and spontaneously diabetic BB/Wor rats were studied using a euglycemic/hypoglycemic clamp. In nondiabetic rats, recurrent (4 wk) insulin-induced hypoglycemia (mean daily glucose, MDG, 59 mg/dl) dramatically reduced glucagon and epinephrine responses by 84 and 94%, respectively, to a standardized glucose fall from 110 to 50 mg/dl. These deficits persisted for > 4 d after restoring normoglycemia, and were specific for hypoglycemia, with normal glucagon and epinephrine responses to arginine and hypovolemia, respectively. After 4 wk of normoglycemia, hormonal counterregulation increased, with the epinephrine, but not the glucagon response reaching control values. In diabetic BB rats (MDG 245 mg/dl with intermittent hypoglycemia), glucagon and epinephrine counterregulation were reduced by 86 and 90%, respectively. Chronic iatrogenic hypoglycemia (MDG 52 mg/dl) further suppressed counterregulation. Prospective elimination of hypoglycemia (MDG 432 mg/dl) improved, but did not normalize hormonal counterregulation. In diabetic rats, the glucagon defect appeared to be specific for hypoglycemia, whereas deficient epinephrine secretion also occurred during hypovolemia. We concluded that both recurrent hypoglycemia and the diabetic state independently lead to defective hormonal counterregulation. These data suggest that in IDDM iatrogenic hypoglycemia magnifies preexisting counterregulatory defects, thereby increasing the risk of severe hypoglycemia.  相似文献   

18.
Nateglinide and mitiglinide   总被引:4,自引:0,他引:4  
Patients with type 2 diabetes mellitus are associated with insulin resistance and/or impaired insulin secretion. Previous observations indicate that Japanese patients with type 2 diabetes tend to have impaired insulin response after glycemic load more often than Caucasian counterparts. Recently it has been reported that hyperglycemia after glucose load is itself a risk factor for the development of cardiovascular complications in the absence of elevated fasting plasma glucose. Recent observations on the association of post-challenge or post-prandial hyperglycemia with cardiovascular events suggest that lowering post-prandial plasma glucose may protect patients from developing cardiovascular diseases. Results of STOP-NIDDM trial suggest that nateglinide, which attenuates post-prandial glycemic surge in type 2 diabetes, may also be helpful for the protection against cardiovascular events. Nateglinide exerts its effects shortly after its administration and the effects continue for only about 3 hours. The patients receiving this agent rarely gain weight and develop hypoglycemia. This agent exerts hypoglycemic effects additively with alpha-gulucosidase inhibitors or metformin.  相似文献   

19.
OBJECTIVE: In some studies intensive diabetes treatment in patients with type 2 diabetes may be associated with increased cardiovascular events. It is not clear whether these events are related to hypoglycemic episodes. To determine whether episodes of hypoglycemia were more likely to be associated with cardiac ischemia than normoglycemia or hyperglycemia, we carried out a study in 21 patients with coronary artery disease (CAD) and type 2 diabetes treated with insulin who had good glycemic control. RESEARCH DESIGN AND METHODS: We carried out 72-h continuous glucose monitoring along with simultaneous cardiac Holter monitoring for ischemia. Patients also recorded symptoms of cardiac ischemia (chest pain) and symptoms of hypoglycemia. RESULTS: Satisfactory continuous glucose monitoring system recordings were obtained in 19 patients. We recorded 54 episodes of hypoglycemia (blood glucose <70 mg/dl; 26 of these were symptomatic) and 59 episodes of hyperglycemia (blood glucose >200 mg/dl; none symptomatic). Of the 54 episodes of hypoglycemia, 10 were associated with symptoms of chest pain, during 4 of which electrocardiographic abnormalities were documented. In contrast, only 1 episode of chest pain occurred during 59 episodes of hyperglycemia. No chest pain or electrocardiographic abnormalities occurred when the blood glucose was within the normal range. The difference between the frequency of ischemia during hypoglycemia and the frequency during both hyperglycemia and normoglycemia was statistically significant (P < 0.01). There were 50 episodes during which the blood glucose changed by >100 mg over a 60-min period, and ischemic symptoms occurred during 9 of these episodes (P < 0.01 compared with stable normoglycemia or hyperglycemia). CONCLUSIONS: Hypoglycemia is more likely to be associated with cardiac ischemia and symptoms than normoglycemia and hyperglycemia, and it is particularly common in patients who experience considerable swings in blood glucose. These data may be important in the institution of insulin treatment and attempting near-normal glycemia in patients with known CAD. Further research is needed to determine strategies to prevent ischemia associated with hypoglycemia.  相似文献   

20.
The purpose of these experiments was to estimate insulin biosynthesis in vivo in a rat model for non-insulin-dependent diabetes. Insulin biosynthesis rates were determined in 4-wk-old animals that had been injected with 90 mg/kg of streptozotocin 2 d postpartum. Control and diabetic animals did not differ in body weight or fasting plasma glucose. Fed plasma glucose was significantly elevated (186 +/- 13 micrograms/dl vs. 139 +/- 7 mg/dl, P less than 0.05) and pancreatic insulin content was reduced (41 +/- 2 micrograms/g vs. 63 +/- 8 micrograms/g, P less than 0.05) in the diabetic rats. Insulin biosynthesis was estimated in vivo by measuring and comparing [3H]leucine incorporation into proinsulin with that into total pancreatic protein 45 min after injection. Insulin biosynthesis was 0.391 +/- 0.07% of pancreas protein synthesized in control rats and 0.188 +/- 0.015% (P less than 0.05) in diabetic rats. In animals of the same age, the fractional and absolute rate of pancreatic protein synthesis were determined. Total pancreatic protein synthesis was not reduced in streptozotocin treated animals (185.5 +/- 14.1%/d vs. 158.6 +/- 14.9%/d, NS) but was markedly reduced in control rats after a 48-h fast (to 70.8 +/- 5.5%/d, P less than 0.01). Because total pancreatic protein synthesis was not decreased in the diabetic rats, the decrease in the fraction of radiolabel incorporated into insulin seems to represent an absolute decrease in the rate of insulin biosynthesis in this animal model for diabetes. Through RNA blot hybridization with 32P-labeled cloned rat insulin complementary DNA, proinsulin messenger RNA (mRNA) was estimated as the rate of insulin biosynthesis in control and diabetic animals. There was a 61% reduction in proinsulin mRNA at 4 wk and an 85% reduction at 7 wk (P less than 0.001) in the diabetic animals. After streptozotocin injection in neonatal rats, there is marked beta-cell damage and hyperglycemia. Beta-cell regeneration occurs with return to normoglycemia, but with age hyperglycemia develops. The reduction in insulin synthesis and proinsulin mRNA seemed disproportionate with the more modest reduction in beta-cell number. The importance of these observations is that, in this animal model, diabetes is associated with a limited ability to regenerate beta-cell mass and to synthesize insulin. The relationship between the defect in glucose-stimulated insulin release and impaired insulin biosynthesis has yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号