首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Background: Methylprednisolone, dexamethasone, and other glucocorticoids have been found effective against nausea and vomiting induced by chemotherapy and surgery. Although the specific 5-hydroxytriptamine3 (5-HT3) receptor antagonists such as ondansetron and ramosetron are used as antiemetics, reports show that the use of 5-HT3 receptor antagonists with some glucocorticoids brings additional effects. Glucocorticoids are reported to be antiemetic. The effect of glucocorticoids on 5-HT3 receptor, however, has not been well characterized. This study was designed to examine whether dexamethasone and methylprednisolone had direct effects on human-cloned 5-HT3A receptor expressed in Xenopus oocytes.

Methods: Homomeric human-cloned 5-HT3A receptor was expressed in Xenopus oocytes. The authors used the two-electrode voltage-clamping technique to study the effect of methylprednisolone and dexamethasone on 5-HT-induced current.

Results: Both dexamethasone and methylprednisolone concentration-dependently attenuated 5-HT-induced current. Dexamethasone inhibited 2 [mu]m 5-HT-induced current, which was equivalent to EC30 concentration for 5-HT3A receptor, with an inhibitory concentration 50% of 5.29 +/- 1.02 [mu]m. Methylprednisolone inhibited 2 [mu]m 5-HT-induced current with an inhibitory concentration 50% of 1.07 +/- 0.15 mm. The mode of inhibition with either dexamethasone or methylprednisolone was noncompetitive and voltage-independent. When administered together with the 5-HT3 receptor antagonists, ramosetron or metoclopramide, both glucocorticoids showed an additive effect on 5-HT3 receptor.  相似文献   


2.
Background: General anesthetics can modulate the 5-hydroxytryptamine type 3 (5-HT3) receptor, which may be involved in processes mediating nausea and vomiting, and peripheral nociception. The effects of the new volatile anesthetic sevoflurane and the gaseous anesthetics nitrous oxide (N2O) and xenon (Xe) on the 5-HT3 receptor have not been well-characterized.

Methods: Homomeric human-cloned 5-HT3A receptors were expressed in Xenopus oocytes. The effects of halothane, isoflurane, sevoflurane, N2O, and Xe on 5-HT-induced currents were studied using a two-electrode, voltage clamping technique.

Results: Halothane (1%) and isoflurane (1%) potentiated 1 [mu]m 5-HT-induced currents to 182 +/- 12 and 117 +/- 2%, respectively. In contrast, sevoflurane (1%), N2O (70%), and Xe (70%) inhibited 5-HT-induced currents to 76 +/- 1, 77 +/- 4, and 34 +/- 4%, respectively. The inhibitory effects were noncompetitive for sevoflurane and competitive for N2O and Xe. None of these inhibitory effects showed voltage dependency.  相似文献   


3.
BACKGROUND: General anesthetics can modulate the 5-hydroxytryptamine type 3 (5-HT3) receptor, which may be involved in processes mediating nausea and vomiting, and peripheral nociception. The effects of the new volatile anesthetic sevoflurane and the gaseous anesthetics nitrous oxide (N2O) and xenon (Xe) on the 5-HT3 receptor have not been well-characterized. METHODS: Homomeric human-cloned 5-HT3A receptors were expressed in Xenopus oocytes. The effects of halothane, isoflurane, sevoflurane, N2O, and Xe on 5-HT-induced currents were studied using a two-electrode, voltage clamping technique. RESULTS: Halothane (1%) and isoflurane (1%) potentiated 1 mum 5-HT-induced currents to 182 +/- 12 and 117 +/- 2%, respectively. In contrast, sevoflurane (1%), N2O (70%), and Xe (70%) inhibited 5-HT-induced currents to 76 +/- 1, 77 +/- 4, and 34 +/- 4%, respectively. The inhibitory effects were noncompetitive for sevoflurane and competitive for N2O and Xe. None of these inhibitory effects showed voltage dependency. CONCLUSION: Inhalational general anesthetics produce diverse effects on the 5-HT3 receptor. Both halothane and isoflurane enhanced 5-HT3 receptor function in a concentration-dependent manner, which is consistent with previous studies. Sevoflurane inhibited the 5-HT3 receptor noncompetitively, whereas N2O and Xe inhibited the 5-HT3 receptor competitively, suggesting the inhibitory mechanism of sevoflurane might be different from those of N2O and Xe.  相似文献   

4.
Ogata J  Minami K  Uezono Y  Okamoto T  Shiraishi M  Shigematsu A  Ueta Y 《Anesthesia and analgesia》2004,98(5):1401-6, table of contents
Although tramadol is widely available as an analgesic, its mechanism of antinociception remains unresolved. Serotonin (5-hydroxytryptamine, 5-HT) is a monoaminergic neurotransmitter that modulates numerous sensory, motor, and behavioral processes. The 5-HT type 2C receptor (5-HT(2C)R) is one of the major 5-HT receptor subtypes and is implicated in many important effects of 5-HT, including pain, feeding, and locomotion. In this study, we used a whole-cell voltage clamp to examine the effects of tramadol on 5-HT-induced Ca(2+)-activated Cl(-) currents mediated by 5-HT(2C)R expressed in Xenopus oocytes. Tramadol inhibited 5-HT-induced Cl(-) currents at pharmacologically relevant concentrations. The protein kinase C (PKC) inhibitor, bisindolylmaleimide I (GF109203x), did not abolish the inhibitory effects of tramadol on the 5-HT(2C)R-mediated events. We also studied the effects of tramadol on [(3)H]5-HT binding to 5-HT(2C)R expressed in Xenopus oocytes, and found that it inhibited the specific binding of [(3)H]5-HT to 5-HT(2C)R. Scatchard analysis of [(3)H]5-HT binding revealed that tramadol altered the apparent dissociation constant for binding without changing maximal binding, indicating competitive inhibition. The results suggest that tramadol inhibits 5-HT(2C)R function, and the mechanism of this inhibitory effect seems to involve competitive displacement of the 5-HT binding to the 5-HT(2C)R, rather than via activation of the PKC pathway. IMPLICATIONS: We examined the effects of tramadol on 5-hydroxytryptamine type 2C receptor (5-HT(2C)R) expressed in Xenopus oocytes. Tramadol inhibited 5-HT(2C)R function and the specific binding of [(3)H]5-HT to 5-HT(2C)R in a competitive manner. From these data, the mechanism of the inhibitory effect on 5-HT(2C)R might involve the competitive displacement of 5-HT binding to the 5-HT(2C)R.  相似文献   

5.
BACKGROUND AND OBJECTIVES: In addition to their blockade of voltage-dependent sodium channels, the action of local anesthetics at 5-hydroxytryptamine-3 (5-HT3) receptors may be clinically relevant. Because local anesthetics have different clinical properties, we have tested the hypothesis that differences in interactions at the 5-HT3 receptor may be clinically relevant by investigating the effects of 4 local anesthetics on recombinant wild-type and 4 mutant 5-HT3A receptors. METHODS: The cRNAs from human wild-type and 4 mutant 5-HT3A subunit clones were synthesized in vitro and expressed in Xenopus oocytes. Four mutant receptors were obtained by site-directed mutagenesis in the N-terminal extracellular region, which contains the agonist binding domain. Tryptophan (W) at positions 62 and 155 were replaced by tyrosine (Y) and glutamate (E) at position 101 by aspartate (D) or asparagine (N). The 2-electrode voltage clamp technique was used to measure peak currents induced by 5-HT in these receptors in the presence and absence of local anesthetics. RESULTS: All local anesthetics inhibited 5-HT-induced currents in a dose-dependent manner in the wild-type receptor. Inhibition by procaine and tetracaine were competitive whereas those of bupivacaine and lidocaine were both noncompetitive and competitive. The 4 mutants (W62Y, W155Y, E101D, E101N) could all form functional receptors. All mutant receptors exhibited a major increase (> 10-fold) in the half-maximum inhibitory concentration for procaine. The half-maximum inhibitory concentrations of tetracaine, bupivacaine, and lidocaine in mutant receptors were increased 2- to 3-fold except that of tetracaine in W62Y receptor (6-fold). CONCLUSIONS: The ester type local anesthetics, procaine and tetracaine, may act at a different site on the 5-HT(3A) receptor and with a different mechanism than the amide-type local anesthetics. Clinical differences between local anesthetics may be at least partially due to differences in interactions at the 5-HT3A receptor.  相似文献   

6.
5-HT3 receptors are ligand-gated ion channels that are involved in the modulation of emesis and pain. In this study, we investigated whether the opioid analgesic, morphine, exerts specific effects on human 5-HT3 receptors. Whole-cell patches from HEK-293 cells stably transfected with the human 5-HT3A receptor cDNA were used to determine the effects of morphine on the 5-HT-induced currents using the patch clamp technique. At negative membrane potentials, 5-HT induced inward currents in a concentration-dependent manner. The 5-HT3 receptor antagonist, ondansetron, (0.3 nM) reversibly inhibited the 5-HT-induced signals. Morphine reversibly suppressed 5-HT-induced peak currents as a function of concentration (IC50 = 1.1 microM, Hill coefficient = 1.2). The block by morphine decreased with increasing 5-HT concentrations, suggesting a competitive effect. In addition, the activation, as well as the inactivation, kinetics of the currents were significantly slowed in the presence of morphine. The morphine antagonist, naloxone, also inhibited 5-HT-induced currents (e.g., at 3 microM by 17%). The effects of morphine and naloxone were not additive. The potency of morphine and the competitivity of the blocking effect points to a specific mechanism at a receptor site rather than an unspecific membrane effect.  相似文献   

7.
Molecular cloning and sequence comparison indicates a high degree of structural homology between muscle nicotinic acetylcholine (nACh) and serotonin-type 3 (5-HT(3A)) receptors, both members of the direct ligand-gated family of ion channels. Because of the structural similarities and common evolutionary origin of these receptors, neuromuscular blockers (competitive nACh antagonists) may demonstrate pharmacologic cross talk and exhibit attributes of 5-HT(3A) receptor antagonists. We examined six clinically-used neuromuscular blockers for their ability to antagonize currents flowing through the 5-HT(3A) receptors in voltage clamped Xenopus oocytes. The neuromuscular blockers reversibly inhibited the 5-HT(3A) receptor-gated current in the rank order potency of (IC50 mean +/- SEM): d-tubocurarine (0.046 +/- 0.003 microM), atracurium (0.40 +/- 0.03 microM), mivacurium (15.1 +/- 2.93 microM), vecuronium (16.3 +/- 2.24 microM), and rocuronium (19.5 +/- 2.31 microM). Gallamine was essentially inactive as a 5-HT(3A) receptor antagonist with an extrapolated IC50 of 1170 microM. We demonstrate that drugs classically known as competitive nACh receptor antagonists also block 5-HT(3A) receptors. It is likely that certain neuromuscular blockers share pharmacological properties with 5-HT(3A) receptor antagonists, such as a reduction in postoperative nausea and vomiting. With careful drug selection, pharmacological cross talk could potentially be used to minimize polypharmacy and optimize patient management. IMPLICATIONS: Muscle nicotinic acetylcholine and serotonin-type 3A (5-HT(3A)) receptors are similar. Therefore neuromuscular relaxants may block 5-HT(3A) receptors. Our pharmacological study demonstrates that neuromuscular relaxants, as with ondansetron, are 5-HT(3A) receptor antagonists. It is likely that certain neuromuscular relaxants exhibit ondansetron-like clinical properties, such as reduction in postoperative nausea and vomiting.  相似文献   

8.
Corticosteroid compounds are used broadly in surgical practice, although mechanisms remain unclarified and efficacy in some situations remains unproved. A recognized adverse effect of steroids in all doses is the potentiation of infection. Specific derivatives of the glucocorticoids appear to have varying degrees of effectiveness in the enhancement of bacterial infection. To evaluate such effects objectively, a series of experiments was undertaken to measure the phagocytic-bactericidal activity of polymorphonuclear leukocytes. This study examines the differential effects of clinical dose equivalents of four glucocorticoid derivatives in depressing in vitro neutrophil phagocytic-bactericidal function. Neutrophils separated from normal human plasma were incubated in vitro in the presence of hydrocortisone sodium phosphate, hydrocortisone sodium succinate, dexamethasone sodium phosphate, and methylprednisolone sodium succinate. Hydrocortisone sodium phosphate, hydrocortisone sodium succinate, and dexamethasone sodium phosphate produce variable, short-term inhibitory effects upon the systems within the neutrophil which are responsible for its bactericidal competency. Methylprednisolone sodium succinate appears to be free of these adverse effects. These in vitro experiments indicate that diminished risk of infection should attend the use of methylprednisolone sodium succinate, although the precise mechanism have not been defined.  相似文献   

9.
Paul M  Callahan R  Au J  Kindler CH  Yost CS 《Anesthesia and analgesia》2005,101(3):715-21, table of contents
Antagonists of the serotonergic 5-hydroxytryptamine 3A receptor (5-HT(3A)R) and muscle nicotinic acetylcholine receptors (nAChR) are widely used in anesthesia practice. Both 5-HT(3A)R and nAChR are ligand-gated ion channels with known pharmacological overlap between some of their agonists and antagonists. We studied the actions of clinically used 5-HT(3A)R antagonist antiemetics and nondepolarizing muscle blockers on ionic currents elicited by the activation of mammalian 5-HT(3A)R and muscle nAChR, expressed in Xenopus laevis oocytes. Currents were recorded using a whole-cell two-electrode voltage clamp technique. Dolasetron, ondansetron, and granisetron reversibly inhibited 5-HT(3A)R function at nanomolar concentrations with 50% inhibitory concentrations (IC(50)) of 11.8, 6.4, and 0.2 nM; the rank order of inhibition correlated well with their clinical antiemetic potencies. The principal metabolite of dolasetron, hydrodolasetron, was 40 times more potent than the parent compound on 5-HT(3A)R (IC(50) = 0.29 nM). The potency of the nondepolarizing muscle blocker d-tubocurarine in blocking 5-HT(3A)R was similar to that of the antiemetics and significantly more than vecuronium and rapacuronium (IC(50) = 11.4 nM, 18.9 microM, 60.5 microM). Conversely, ondansetron, dolasetron, and granisetron also reversibly inhibited nAChR currents in a dose-dependent manner with IC(50)s of 14.2, 7.8, and 4.4 microM for the adult nAChR and 16.0, 18.6, and 13.9 microM for the embryonic nAChR. Again, hydrodolasetron showed significantly (10 times) more inhibitory potency on the adult nAChR than the parent compound dolasetron. These results indicate that drugs that target specific ligand-gated ion channels may also affect other ion channel types.  相似文献   

10.
OBJECTIVE: To investigate the in vitro and in vivo effects of 5-hydroxytryptamine (5-HT) on the rat urinary bladder and to characterize the receptors involved in mediating these pharmacological effects by using selective antagonists. MATERIALS AND METHODS: Female Wistar rats (250-350 g) were used for all studies. In vitro, detrusor muscle strips were mounted between two platinum electrodes in organ baths filled with a modified Krebs' solution bubbled with 95% O(2) and 5% CO(2) at 37 degrees C. After equilibration and a contraction to 80 mmol/L KCl, strips were exposed to electrical field stimulation for 30 min and incubated with the antagonist or vehicle for a further 30 min, then a 5-HT concentration-response curve (CRC) was obtained. In vivo, rats were anaesthetized with pentobarbital, and the ureters and urethra ligated, the bladder catheterized and infused with saline. 5-HT (3-100 microg/kg intravenous) dose-dependently increased intravesical pressure (IVP). After administering 5-HT at 30 microg/kg three times at 10 min intervals (controls), one dose of antagonist was perfused for 5 min and, after a further 5 min, 30 microg/kg 5-HT was tested again. This cycle was repeated four times using increasing doses of the antagonist to be tested. RESULTS: In vitro, 5-HT (0.01-100 micromol/L) induced a concentration-dependent enhancement of the neurogenic response, with a mean (sd) pEC(50) of 6.36 (0.15) and E(max) of 41.1 (4.6)% KCl (eight rats). In unstimulated tissues, 5-HT induced no contractile effect. Selective 5-HT(4), 5-HT(3) and 5-HT(1A) receptor antagonists had no effect on the 5-HT potentiating effects. The potentiating effect of 5-HT was antagonized by mesulergine at 0.3 micromol/L, R(+)lisuride at 0.3 micromol/L and the selective 5-HT(7) receptor antagonist SB-258741 at 0.3 micromol/L. In vivo, in anaesthetized rats, IVP increases induced by repeated doses of 30 microg/kg 5-HT were reproducible. R(+)lisuride (3-100 microg/kg) dose-dependently inhibited the 5-HT-induced increase of IVP. At the maximum dose tested, R(+)lisuride almost totally inhibited the 5-HT effect. CONCLUSIONS: In rat isolated detrusor muscle the 5-HT(7) receptor antagonists SB-258741, R(+)lisuride and mesulergine blocked the 5-HT potentiating effect with the expected potency. Moreover, in anaesthetized rats, R(+)lisuride abolished 5-HT effects on IVP at doses that antagonize physiological effects known to be mediated by 5-HT(7) receptor activation in several animal species. These results suggest the involvement of 5-HT(7) receptors in the modulation of rat bladder contraction both in vitro and in vivo.  相似文献   

11.
Koshizaki M  Kawamata M  Shimada SG  Saito Y  Collins JG 《Anesthesia and analgesia》2003,96(4):1027-31, table of contents
We recently reported that gamma-aminobutyric acid type A- and strychnine-sensitive glycine receptor systems partially mediate halothane depression of spinal dorsal horn low-threshold neurons. Serotonin subtype 3 (5-HT(3)) receptors belong to the same ligand-activated ion-channel family as gamma-aminobutyric acid type A- and strychnine-sensitive glycine receptors, so we examined the possible involvement of 5-HT receptor systems in halothane depression of spinal sensory neurons. Extracellular recordings of spinal low-threshold neurons were obtained in decerebrate, spinally transected rats. Receptive field size and brush-induced activity were recorded in the presence or absence of 5-HT antagonists and in the presence or absence of 1.1% (1 minimum alveolar anesthetic concentration) halothane. In the absence of halothane, antagonists had no effect on receptive field size or brush-induced activity. In the presence of halothane, methysergide, a nonselective 5-HT antagonist, and tropisetron, a selective 5-HT(3) antagonist, significantly reversed the halothane-induced reduction in receptive field size but did not alter halothane depression of brush-induced activity. Methiothepin, a 5-HT(1) antagonist, and ketanserin, a 5-HT(2) antagonist, did not reverse halothane depression. These results support the hypothesis that 5-HT(3) receptors partially mediate some inhibitory effects of halothane on spinal dorsal horn neurons. IMPLICATIONS: The results of this study support the hypothesis that halothane depression of spinal sensory neuronal responses to low-intensity stimuli is mediated, to a minor extent, by serotonin subtype 3 neurotransmitter systems.  相似文献   

12.
目的探讨异戊酸对甘氨酸受体氯离子通道的影响。方法采用微注射法在非洲爪蟾卵母细胞核中注射α1甘氨酸受体cDNA,在细胞膜上过度表达甘氨酸受体后,采用双电极全细胞膜片钳技术测定异戊酸对该受体氯离子通道电流变化的影响。结果5.0~20 mmol/L异戊酸可增强卵母细胞膜上甘氨酸受体氯离子通道内流电流(19%~187%,P<0.01),且呈浓度依赖性。结论异戊酸对α1甘氨酸受体氯离子通道电流有增强作用,其镇静催眠作用的机制可能与此有关。  相似文献   

13.
Breast cancer surgery performed under general anesthesia is associated with a high incidence of postoperative nausea and vomiting (PONV). A number of approaches are available for the management of PONV after breast cancer surgery. First, the risk factors related to patient characteristics, surgical procedure, anesthetic technique, and postoperative care can be reduced. More specifically, the use of propofol-based anesthesia can reduce the incidence of PONV. Secondly, a wide range of prophylactic antiemetics, including butyrophenones (droperidol), benzamides (metoclopramide), glucocorticoids (dexamethasone), clonidine, a small dose of propofol, and serotonin receptor (SR) antagonists (ondansetron, granisetron, tropisetron, dolasetron, ramosetron, and palonosetron), are available for preventing PONV. Thirdly, antiemetic therapy combined with granisetron and droperidol or dexamethasone, and a multimodal management strategy which includes a package consisting of dexamethasone, total intravenous anesthesia with propofol, and ondansetron are highly effective in preventing PONV. Unfortunately, the use of glucocorticoids and SR antagonists for preventing PONV is not permitted in Japan according to national health insurance guidelines. Fourth, electro-acupoint stimulation at the P6 point (Nei-Guwan) as a non-pharmacologic therapy is as effective as ondansetron for preventing PONV. Knowledge of the risk factors for PONV, antiemetics, and a non-pharmacologic approach are needed for the management of PONV in women undergoing breast cancer surgery.  相似文献   

14.
Background: Neuromuscular disorders associated with muscular weakness and prolonged paralysis are common in critically ill patients. Acute myopathy has been described in patients receiving a combination therapy of corticosteroids and nondepolarizing neuromuscular blocking drugs for treatment of acute bronchospasm. The cause of this myopathy is not fully established and may involve drug interactions that perturb neuromuscular transmission. To investigate the interaction of corticosteroids with neuromuscular blocking drugs, the authors determined the effects of methylprednisolone and hydrocortisone alone and in combination with vecuronium on fetal ([gamma]-subunit containing) and adult ([epsilon]-subunit containing) subtypes of the muscle-type nicotinic acetylcholine receptor.

Methods: Functional channels were expressed in Xenopus laevis oocytes and activated with 1 [mu]M acetylcholine. The resulting currents were recorded using a whole cell two-electrode voltage clamp technique.

Results: Both forms of the muscle-type acetylcholine receptor were potently inhibited by methylprednisolone and hydrocortisone, with concentrations producing 50% inhibition in the range of 400-600 [mu]M and 1-2 mM, respectively. The corticosteroids produced noncompetitive antagonism of the muscle-type nicotinic acetylcholine receptor at clinical concentrations. Both receptor forms were also inhibited, even more potently, by vecuronium, with a concentration producing 50% inhibition in the range of 1-2 nM. Combined application of vecuronium and methylprednisolone showed additive effects on both receptor forms, which were best described by a two-site model, with each site independent.  相似文献   


15.
Postoperative nausea and vomiting (PONV) continues to be a "big little problem" despite recent advances in anesthesia. Because of an increased interest in, and the abundant publications on this topic, guidelines for the management of PONV were published in 2003. Several key but controversial issues regarding PONV prophylaxis were left unaddressed, however. These included whether clinical differences exist between the 5-hydroxytryptamine subtype 3 (5-HT3) receptor antagonists, concern over optimal dosage and timing of administration, optimal 5-HT3 receptor antagonist combination therapy, and whether rescue therapy is effective after prior administration of the same or a different 5-HT3 receptor antagonist. The application of these antiemetics in clinical practice has raised questions regarding the role of the 5-HT3 receptor antagonists in the treatment of postdischarge nausea and vomiting and opioid-induced nausea and vomiting. A brief overview of the incidence, risk factors and current management recommendations for PONV and current controversies with special emphasis on the 5-HT3 receptor antagonists, is discussed.  相似文献   

16.
BACKGROUND: Neuromuscular disorders associated with muscular weakness and prolonged paralysis are common in critically ill patients. Acute myopathy has been described in patients receiving a combination therapy of corticosteroids and nondepolarizing neuromuscular blocking drugs for treatment of acute bronchospasm. The cause of this myopathy is not fully established and may involve drug interactions that perturb neuromuscular transmission. To investigate the interaction of corticosteroids with neuromuscular blocking drugs, the authors determined the effects of methylprednisolone and hydrocortisone alone and in combination with vecuronium on fetal (gamma-subunit containing) and adult (epsilon-subunit containing) subtypes of the muscle-type nicotinic acetylcholine receptor. METHODS: Functional channels were expressed in Xenopus laevis oocytes and activated with 1 microM acetylcholine. The resulting currents were recorded using a whole cell two-electrode voltage clamp technique. RESULTS: Both forms of the muscle-type acetylcholine receptor were potently inhibited by methylprednisolone and hydrocortisone, with concentrations producing 50% inhibition in the range of 400-600 microM and 1-2 mM, respectively. The corticosteroids produced noncompetitive antagonism of the muscle-type nicotinic acetylcholine receptor at clinical concentrations. Both receptor forms were also inhibited, even more potently, by vecuronium, with a concentration producing 50% inhibition in the range of 1-2 nM. Combined application of vecuronium and methylprednisolone showed additive effects on both receptor forms, which were best described by a two-site model, with each site independent. CONCLUSIONS: The enhanced neuromuscular blockade produced when corticosteroids are combined with vecuronium may augment pharmacologic denervation and contribute to the pathophysiology of prolonged weakness observed in some critically ill patients.  相似文献   

17.
The selective 5-HT2 receptor blocker ketanserin was found to reduce maximal urethral pressures in healthy females by about 40% without reducing blood pressure. In vitro, ketanserin completely or almost completely reduced contractions of the isolated female rabbit urethra induced by phenylephrine, noradrenaline (NA) and electrical field stimulation. The drug was less effective against responses evoked by clonidine and 5-hydroxytryptamine (5-HT). 5-HT-induced contractions were effectively reduced by methysergide, but little affected by prazosin and rauwolscine. In concentrations exceeding 10(-7) M ketanserin significantly increased efflux of 3H in 3H-NA preloaded preparations of rabbit urethral muscle. Low concentrations of 5-HT, less than 10(-6) M, had slight inhibitory effects of 3H release, whereas 5-HT 10(-5) M caused a significant increase. It is concluded that ketanserin counteracts the effects of postjunctional alpha 1-adrenoceptor stimulation in isolated rabbit urethra. Such an effect might also explain its urethral pressure lowering action in man.  相似文献   

18.
Intravenous anesthetics differentially modulate ligand-gated ion channels   总被引:9,自引:0,他引:9  
Flood P  Krasowski MD 《Anesthesiology》2000,92(5):1418-1425
BACKGROUND: Heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) are potently inhibited by volatile anesthetics, but it is not known whether they are affected by intravenous anesthetics. Ketamine potentiates gamma-aminobutyric acid type A (GABAA) receptors at high concentrations, but it is unknown whether there is potentiation at clinically relevant concentrations. Information about the effects of intravenous anesthetics with different behavioral profiles on specific ligand-gated ion channels may lead to hypotheses as to which ion channel effect produces a specific anesthetic behavior. METHODS: A heteromeric nAChR composed of alpha4 and beta4 subunits was expressed heterologously in Xenopus laevis oocytes. Using the two-electrode voltage clamp technique, peak ACh-gated current was measured before and during application of ketamine, etomidate, or thiopental. The response to GABA of alpha1beta2gamma2s GABAA receptors expressed in human embryonic kidney cells and Xenopus oocytes was compared with and without coapplication of ketamine from 1 microm to 10 mm. RESULTS: Ketamine caused potent, concentration-dependent inhibition of the alpha4beta4 nAChR current with an IC50 of 0.24 microm. The inhibition by ketamine was use-dependent; the antagonist was more effective when the channel had been opened by agonist. Ketamine did not modulate the alpha1beta2gamma2s GABAA receptor response in the clinically relevant concentration range. Thiopental caused 27% inhibition of ACh response at its clinical EC50. Etomidate did not modulate the alpha4beta4 nAChR response in the clinically relevant concentration range, although there was inhibition at very high concentrations. CONCLUSIONS: The alpha4beta4 nAChR, which is predominantly found in the central nervous system (CNS), is differentially affected by clinically relevant concentrations of intravenous anesthetics. Ketamine, commonly known to be an inhibitor at the N-methyl-D-aspartate receptor, is also a potent inhibitor at a central nAChR. It has little effect on a common CNS GABAA receptor in a clinically relevant concentration range. Interaction between ketamine and specific subtypes of nAChRs in the CNS may result in anesthetic behaviors such as inattention to surgical stimulus and in analgesia. Thiopental causes minor inhibition at the alpha4beta4 nAChR. Modulation of the alpha4beta4 nAChR by etomidate is unlikely to be important in anesthesia practice based on the insensitivity of this receptor to clinically used concentrations.  相似文献   

19.
Stoner MC  Scherr AM  Lee JA  Wolfe LG  Kellum JM 《Surgery》2000,128(2):240-245
BACKGROUND: Serotonin (5-hydroxytryptamine [5-HT]) has been shown to induce chloride secretion through a nonadrenergic/noncholinergic neural pathway, mediated by a 5-HT(3) receptor. We hypothesized that 5-HT(3)-induced Cl(-) secretion is ultimately mediated by nitric oxide (NO). METHODS: Unstripped sheets of rat distal colon were mounted in Ussing chambers and short-circuited. The 5-HT(3) receptor agonist, 2-methyl-5-HT, was added in the absence and presence of the NO synthase inhibitor, L-NAME. Companion studies involved the addition of sodium nitroprusside to tissue that was incubated with or without tetrodotoxin. RESULTS: L-NAME caused a significant reduction in the 2-methyl-5-HT-induced change in circuit current, in a concentration-dependent manner. Sodium nitroprusside caused a change in circuit current over baseline in 5 minutes. The addition of tetrodotoxin did not significantly alter the change in circuit current; however, the apical Cl(-) channel blocker, anthracene-9-carboxylic acid, abolished this response. CONCLUSIONS: Neurally mediated Cl(-) secretion in response to 2-methyl-5-HT is inhibited by an NO synthase inhibitor. Exogenous NO mimics this response, which is unaffected by tetrodotoxin. These data suggest that neurally mediated serotoninergic Cl(-) secretion is, in part, mediated by NO. The ability of exogenous NO to induce a change in circuit current in the presence of tetrodotoxin suggests that NO is a final neurotransmitter in this neural-mucosal reflex and therefore acts directly on the enterocyte to induce secretion.  相似文献   

20.
BACKGROUND: Local anesthetics inhibit lipid mediator signaling (lysophosphatidate, thromboxane) by acting on intracellular domains of the receptor or on the G protein. On receptors for polar agonists, the ligand-binding pocket could form an additional site of interaction, possibly resulting in superadditive inhibition. The authors therefore investigated the effects of local anesthetics on m1 muscarinic receptor functioning. METHODS: The authors expressed receptors in isolation using Xenopus oocytes. Using a two-electrode voltage clamp, the authors measured the effects of lidocaine, QX314 (permanently charged), and benzocaine (permanently uncharged) on Ca2+-activated Cl- currents elicited by methylcholine. The authors also characterized the interaction of lidocaine with [3H] quinuclydinyl benzylate ([3H]QNB) binding to m1 receptors. RESULTS: Lidocaine inhibited muscarinic signaling with a half-maximal inhibitory concentration (IC50 18 nm) 140-fold less than that of extracellularly administered QX314 (IC50 2.4 microm). Intracellularly injected QX314 (IC50 0.96 mm) and extracellularly applied benzocaine (IC50 1.2 mm) inhibited at high concentrations only. Inhibition of muscarinic signaling by extracellularly applied QX314 and lidocaine was the result of noncompetitive antagonism. Intracellularly injected QX314 and benzocaine inhibited muscarinic and lysophosphatidate signaling at similar concentrations, suggesting an action on the common G-protein pathway. Combined administration of intracellularly injected (IC50 19 microm) and extracellularly applied QX314 (IC50 49 nm) exerted superadditive inhibition. Lidocaine did not displace specific [3H]QNB binding to m1 receptors. CONCLUSIONS: m1 Muscarinic signaling is inhibited by clinically relevant concentrations of lidocaine and by extracellularly administered QX314, suggesting that the major site of action is a extracellular domain of the muscarinic receptor. An additional less potent but superadditive inhibitory effect on the G-protein is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号