首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two important prerequisites for successful axon regeneration are that appropriate extracellular molecules are available for outgrowing axons and that receptors for such molecules are found in the regenerating neuron. Laminins and their receptors in the integrin family are examples of such molecules, and laminin-associated integrin subunits alpha 3, alpha 6, alpha 7, and beta 1 mRNAs have all been detected in adult rat motoneurons. We have here, by use of in situ hybridization histochemistry, examined the normal postnatal development of the expression in motoneurons of these mRNAs and integrin beta 4 mRNA, all of which have been associated with laminin-2. We studied the regulation of these mRNAs, 1-42 days after two types of axotomy in the adult rat (sciatic nerve transection, SNT; ventral root avulsion, VRA) and 1-10 days after SNT in the neonatal animal. During postnatal development, there was a distinct shift in the integrin composition from a stronger expression of the alpha 6 subunit to a very clear dominance of alpha 7 in the adult. All types of axotomy in the adult rat induced initial (1-7 days) large up-regulations of alpha 6, alpha 7 and beta1 subunit mRNAs (250-500%). Only minor changes for alpha 3 mRNA were seen, and beta 4 mRNA could not be detected at all in motoneurons. After adult SNT, the alpha 7 and beta 1 subunits were up-regulated throughout the studied period, and the alpha 6 subunit mRNA was eventually normalized. After VRA, however, the alpha 7 and beta1 levels peaked earlier than after SNT and were normalized at 42 days, whereas alpha 6 mRNA was up-regulated longer than after SNT. Neonatal SNT had much smaller effects on the expression of the studied subunits. The results suggest that an important part of the response to axotomy of motoneurons is to up-regulate receptors for laminin. The developmental shift in integrin subunit composition and the various responses seen in the lesion models indicate that different isoforms of laminin play a role in the regenerative response.  相似文献   

2.
The expression of laminin alpha1, alpha2, beta1, beta2 and gamma1 subunits and proalpha1(I), proalpha1(III), alpha1(IV), alpha1(VI), alpha2(VI) and alpha3(VI) collagen chains was studied by Northern hybridizations, RNase protection assays and indirect immunofluorescence (IIF) labellings in cell cultures initiated from sciatic nerves of 14-27-wk-old human fetuses. The cultures represented mixed populations of Schwann cells, perineurial cells and fibroblasts, as estimated by morphology and S 100 protein immunolabellings. The mRNAs for certain basement membrane (BM) components, laminin beta1 and gamma1 chains and collagen alpha1(IV) chain, were readily detectable by Northern analyses in all cultures. In contrast, laminin alpha1, alpha2 and beta2 chain mRNAs were expressed at markedly lower levels. The expression of laminin alpha1 chain was detectable only by RNase protection assay. RNase protection analysis also demonstrated that the expression of laminin alpha2 chain increased with the developmental stage of the nerve used as the source for cell cultures. The expression of laminin beta2 chain was detected only at the protein level by IIF which demonstrated a faint immunosignal in a small subpopulation of cells. The mRNAs for type I, III and VI collagens were readily detectable in the cultures by Northern hybridizations. In summary, the extracellular matrix genes expressed in fetal human peripheral nerves and corresponding cell cultures display marked similarities. Cell cultures characterized here may prove useful in analyses elucidating potential roles of selected growth factors and cytokines in the induction of e.g. laminin alpha1 and beta2 chain expression by cells of developing peripheral nerves.  相似文献   

3.
Isolated acellular nerve segments protected from migration of Schwann cells and the acellular nerve segments joined with the distal nerve stumps were prepared by a repeated freeze-thaw procedure in the rat sciatic nerves. The presence of laminin-1 and -2, as well as alpha6 and beta1 integrin chains, was detected by indirect immunohistochemistry in the sections through acellular nerve segments at 7 and 14 days after cryotreatment. The position of basal laminae and Schwann cells was identified by immunostaining for collagen IV and S-100 protein, respectively. The isolated cryo-treated segment without living Schwann cells (S-100-) did not display immunoreactivity for laminins and integrin chains, while the basal lamina position was verified through the whole segment by immunostaining for collagen IV. The absence of immunostaining for laminin-1 and -2 in cryo-treated nerve segment was verified by Western blot analysis. A crucial diminution of laminin-1 and -2 in the cryo-treated nerve segment of 10-mm length did not abolish the growth and maturation of axons. The greater part of nerve segment connected with the nerve stump displayed no immunohistochemical staining for S-100, corresponding with absence of Schwann cells. The border region of the nerve segment contained Schwann cells (S-100+) migrating from the near-freeze undamaged part of the distal nerve stump. In addition to immunostaining for S-100 protein, the migrating Schwann cells displayed immunostaining for laminins (-1, and -2) and integrin chains (alpha6 and beta1). The results indicate that the presence of laminin molecules in the acellular nerve segments prepared by the repeated freeze-thaw procedure is related with the migrating Schwann cells. The immunostaining for laminins and integrin chains, which constitute one of integrin receptor, suggests an autocrine and/or paracrine utilization of laminin molecules in the promotion of Schwann cell migration.  相似文献   

4.
SynCAM1 and neuroligins (NLGs) are adhesion molecules that govern synapse formation in vitro. In vivo, the molecules are expressed during synaptogenesis, and altered NLG function is linked to synapse dysfunction in autism. Less is known about SynCAM1 and NLGs in adult synapse remodeling. CNS synapse elimination occurs after peripheral nerve injury, which causes a transient decrease in synapse number on spinal motoneurons. Here we have studied the expression of SynCAM1 and NLGs in relation to changes in synaptic covering on spinal motoneurons. We performed sciatic nerve transection (SNT) or crush (SNC), axotomy models that result in poor or good conditions for axon regeneration, respectively. The two lesions resulted in similar synapse elimination and in poor (SNT) and good (SNC) return of synapses after 70 days. Functional recovery was good after SNC but absent after SNT. SynCAM1 mRNA decreased after 14 days in both models and was restored 70 days after SNC, but not after SNT. NLG2 and ‐3 mRNAs decreased to a smaller degree after SNC than after SNT. Synaptophysin immunoreactivity correlated with SynCAM1 mRNA 70 days after SNT and NLG2 mRNA 70 days after SNC. Surprisingly, an inverse correlation was seen between NLG3 mRNA and Vglut2, a marker for excitatory synapses, 70 days after SNT. We conclude that 1) SynCAM1 mRNA levels seem to reflect the loss and restoration of synapses on motoneurons, 2) down‐regulation of NLGs is not a prerequisite for synapse elimination, and 3) expression of SynCAM1 and NLGs is regulated by different mechanisms during regeneration. J. Comp. Neurol. 517:670–682, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The laminin alpha2 chain is a major component of basal lamina in both skeletal muscle and the peripheral nervous system. Laminin alpha2 chain deficiency causes merosin-deficient congenital muscular dystrophy, which affects not only skeletal muscles, but also the peripheral and central nervous systems. It has been reported that the formation of basal lamina is required for myelination in the peripheral nervous system. In fact, the spinal root of dystrophic mice (dy/dy mice), whose laminin alpha2 chain expression is greatly reduced, shows lack of basal lamina and clusters of naked axons. To investigate the role of laminin alpha2 chain and basal lamina in vivo, we examined the peripheral nervous system of dy3K/dy3K mice, which are null mutants of laminin alpha2 chain. The results indicate the presence of myelination although Schwann cells lacked basal lamina in the spinal roots of dy3K/dy3K mice, suggesting that basal lamina is not an absolute requirement for myelination in vivo. Immunohistochemically, the expression of laminin alpha4 chain was increased and laminin alpha5 chain was preserved in the endoneurium of the spinal root. Laminin alpha4 and alpha5 chains may play the critical role in myelination instead of laminin alpha2 chain in dy3K/dy3K mice. In addition, the motor conduction velocity of the sciatic nerve was significantly reduced compared with that of wild-type littermate. This reduction in conduction velocity may be due to small axon diameter, thin myelin sheath and the patchy disruption of the basal lamina of the nodes of Ranvier in dy3K/dy3K mice.  相似文献   

6.
Influence of laminin-2 on Schwann cell-axon interactions   总被引:1,自引:0,他引:1  
Uziyel Y  Hall S  Cohen J 《Glia》2000,32(2):109-121
The dy/dy mouse suffers from a form of muscular dystrophy caused by a substantial reduction in laminin alpha2-chain protein, a major component of both muscle and Schwann cell basal laminae. This article examines the effect of laminin alpha2 deficiency on Schwann cell-axon interactions both in vivo at varying intervals after nerve crush, and in vitro, in cocultures of neurons and Schwann cells. The morphological spectrum of aberrant Schwann cell-axon associations seen in uncrushed dy/dy sciatic nerves was recapitulated during regeneration: myelination of regenerating axons was delayed compared with the process in unaffected mice and the relatively few myelin sheaths which were formed in dy/dy distal nerve stumps were often uncompacted. In vitro, Schwann cells dissociated from adult dy/dy sciatic nerves predictably failed to express detectable laminin alpha2-chain and displayed an unusual multipolar morphology. Branching of neurites, in terms both of numbers of terminal branches and of complexity of branching, from dorsal root ganglia neurons grown on dy/dy Schwann cells, was significantly less extensive than that seen when neurons were cocultured with Schwann cells from unaffected littermates, but this effect was reversed by exogenous laminin-2. Our results lend strong support to the view that laminin-2 is essential for establishing and/or maintaining Schwann cell-axon interactions, in normal and in regenerating nerves.  相似文献   

7.
Using immunohistochemical methods, we assessed the distribution of all 10 known laminin chains (alpha1-5, beta1-3, gamma1 and gamma2) in skeletal muscles from patients with Duchenne, congenital, limb girdle, or Emery-Dreifuss muscular dystrophies. The alpha2, beta1 and gamma1 chains were abundant in the basal lamina surrounding muscle fibers in normal controls; alpha1, alpha3-alpha5, beta3, and gamma2 were undetectable; and beta2 was present at a low level. Compared to controls, levels of the alpha5 chain were increased in muscles from many dystrophic patients; levels of beta1 were reduced and/or levels of beta2 were increased in a minority. However, these changes were neither specific for, nor consistent within, diagnostic categories. In contrast, levels of alpha4 were increased in muscles from all patients with alpha2 laminin (merosin)-deficient congenital muscular dystrophy. Loss of alpha2 laminin in congenital dystrophy is disease-specific but some other changes in laminin isoform expression in dystrophic muscles could be secondary consequences of myopathy, denervation, regeneration or immaturity. To distinguish among these possibilities, we compared the laminins of embryonic, denervated, regenerating, and mutant mouse muscles with those in normal adult muscle. Embryonic muscle basal lamina contained alpha4 and alpha5 along with alpha2, and regenerating muscle re-expressed alpha5 but not alpha4. Levels of alpha5 but not alpha4 were increased in dystrophin (mdx) mutants and in dystrophin/utrophin double mutants (mdx:utrn -/-), models for Duchenne dystrophy. In contrast, laminin alpha4 was upregulated more than alpha5 in muscles of laminin alpha2 mutant mice (dy/dy; a model for alpha2-deficient congenital dystrophy). Based on these results, we hypothesize that the expression of alpha5 in many dystrophies reflects the regenerative process, whereas the selective expression of alpha4 in alpha2-deficient muscle is a specific compensatory response to loss of alpha2.  相似文献   

8.
In Schwann cells, the transmembrane glycoprotein beta-dystroglycan comprises the dystroglycan complex, together with the extracellular glycoprotein alpha-dystroglycan, which binds laminin-2 (alpha 2/beta 1/gamma 1), a major component of the Schwann cell basal lamina. To provide clues to the biological functions of the interaction of the dystroglycan complex with laminin-2 in peripheral nerves, we investigated the expression of beta-dystroglycan and the laminin-alpha 2 chain in rat sciatic nerve during development by immunoblot, immunofluorescence, and immunoelectron microscopic studies. The expression of beta-dystroglycan and the laminin-alpha 2 chain in the rat sciatic nerve was low and not confined to the Schwann cell outer membrane from embryonic day 18 to birth, when there was only an immature basal lamina assembly and no compact myelin formation by Schwann cells. However, the expression of these proteins increased markedly and became clearly localized to the Schwann cell outer membrane between birth and postnatal day 7, when both basal lamina assembly and compact myelin formation by Schwann cells progressed rapidly. From postnatal day 7 to adult, there was no remarkable change in the expression of these proteins. Our results support the hypothesis that the dystroglycan complex functions as an adhesion apparatus, binding the Schwann cell outer membrane with the basal lamina, and suggest that the dystroglycan complex plays a role in Schwann cell myelination through its interaction with laminin-2.  相似文献   

9.
The periorbital sheath serves as a major pathway for sympathetic nerves traveling to distal orbital targets in the rat. This tissue accommodates sympathetic fiber sprouting in the neonate but becomes impassable by postnatal day 30 (PND 30). In contrast, smooth muscle target remains receptive to sympathetic ingrowth. To determine the attributes of receptive and nonreceptive tissues, we compared periorbital pathway and target tissue phenotypes prior to (PND 5 and PND 15) and after (PND 30 and PND 60) the period when pathway receptivity is lost. Both pathway cells and superior tarsal smooth muscle cells expressed alpha-smooth muscle actin and smooth muscle myosin heavy chain throughout development. At PND 5-15, both tissues also expressed vimentin, collagen IV, laminin 1 and laminin beta2, whereas fibronectin was detected only in pathway tissue. At PND 30, vimentin, collagen IV, and fibronectin were absent in tarsal muscle but were robust in pathway tissue. Laminin 1 and laminin beta2 expression was maintained in muscle; however, in pathway cells, laminin 1 declined modestly, and laminin beta2 decreased precipitously to barely detectable levels. Quantitative competitive polymerase chain reaction showed that nerve growth factor mRNA was present in the pathway throughout development at levels that were greater than both surrounding connective tissue and tarsal muscle. We conclude that the loss of pathway receptivity to sympathetic nerve ingrowth is associated with a transition from a phenotype similar to fetal smooth muscle cells to one that is more consistent with myofibroblast-like cells.  相似文献   

10.
We investigated the spatial and temporal expression of basement-membrane-forming and neurite-outgrowth-supporting matrix proteins after a unilateral dorsal root injury combined with a collagen I/laminin-1 graft and a stab wound lesion to the dorsal horn of the adult rat spinal cord. Ten days after injury, the gamma1 laminin was induced in the reactive glia. At this early stage, the glial cells failed to express type IV collagen and the alpha1 laminin. One month after injury, reactive astrocytes in the dorsal horn of the lesioned side expressed gamma1 laminin, type IV collagen, and the alpha1 laminin whereas astrocytes of the normal spinal cord or the uninjured contralateral dorsal horn were negative. Both astrocytes and neurons of the ipsilateral ventral horn were induced to express laminin-1 and gamma1 laminin. Astrocytes of the ipsilateral ventral horn also expressed type IV collagen. Simultaneously with the changes in expression of the extracellular matrix proteins, the expression pattern of basic fibroblast growth factor (FGF-2) was markedly altered after spinal cord injury. In normal and contralateral spinal cord, FGF-2 was expressed in nerve fibers, but its expression changed from neuronal into glial in the ipsilateral spinal cord within 1 month after injury. Four months after injury, expression of both type IV collagen and the alpha1 laminin had declined, but the astrocytes at the injury site continued expressing the gamma1 laminin. Cultured astrocytes were negative for type IV collagen, but several cytokines, including IL-1beta and TGFbeta1, induced expression of type IV collagen in the astrocytes. These factors also increased deposition of type IV collagen matrix in the glial cultures. These results indicate that type IV collagen and the alpha1 laminin are induced in reactive astrocytes after spinal cord injury in vivo. Induction of type IV collagen in astrocytes in vitro by cytokines indicates that blood-borne or local factors at the injury site may induce the spinal cord glial expression of type IV collagen in vivo. Simultaneous expression of laminin-1 and alpha1 laminin with type IV collagen is known to lead to production of basement membranes. This may hamper the neurite-outgrowth-promoting potential of the gamma1 laminin by initiating formation of the glial scar.  相似文献   

11.
To examine the role of platelet-derived growth factor (PDGF) in the in vivo regulation of Schwann cell proliferation, steady-state levels of mRNAs encoding PDGF A and B chains, and PDGF alpha and beta receptors were measured in immature and adult rat sciatic nerves and in cultured rat Schwann cells. PDGF B chain and PDGF beta receptor mRNAs are present in immature rat sciatic nerves and to a lesser extent in adult rat nerves. Short-term cultures of neonatal rat Schwann cells express PDGF beta receptor mRNA, but not PDGF B chain mRNA, and are stimulated to synthesize DNA by addition of PDGF BB to the medium. These data indicate that PDGF BB is a developmentally regulated paracrine growth factor for rat Schwann cells. Very long-term cultures of rat Schwann cells, which have lost normal dependence on exogenous growth factors, express PDGF B chain mRNA as well as mRNAs encoding the PDGF alpha and beta receptors, suggesting that, under these circumstances, PDGF BB also act as an autocrine growth factor. PDGF A chain mRNA is present in both immature and adult rat sciatic nerves and is expressed by primary and secondary cultures of rat Schwann cells as well. However, because the abundance of PDGF alpha receptor mRNA is very low in rat Schwann cells, PDGF AA is not likely to be a significant autocrine growth factor for rat Schwann cells.  相似文献   

12.
13.
Extracellular matrix changes are thought to be essential to the regeneration of peripheral nerves. The production of this matrix is believed to be regulated by interactions between axons and their supporting cells. In this study matrix production and cell proliferation were studied during rat sciatic nerve regeneration after a crush injury, and compared to that after rat sciatic nerve transection. Expression of proalpha1(I) and proalpha1(III) collagen and laminin beta1 mRNAs was followed in isolated endoneuria by Northern and in situ hybridization both proximally and distally to the site of either a crush injury or transection of rat sciatic nerve up to 18 weeks. Changes in the Schwann cell and fibroblast populations were monitored by morphometric analysis of endoneurial cross-sections immunostained for S-100 protein. The process of axonal regeneration was followed by Bielschowsky's silver staining. A crush injury initially resulted in increased expression of all mRNAs studied in the endoneurial cells. However, with progressing axonal regeneration the amount of collagen mRNAs returned to control levels, whereas the amount of laminin beta1 mRNA in the distal site of the crush remained elevated throughout the study period. The expression of type I collagen mRNA was enhanced after nerve transection injury compared to that after the crush injury. The epineurial fibroblasts actively expressed both type I and III collagen mRNAs after the injury. The proliferation of Schwann cells and the expression of collagen mRNAs are not, at least directly, related to the axonal regeneration. However, the long-lasting and strong expression of laminin beta1 mRNA after a nerve crush injury may be related to good axonal regeneration. The expression of type I collagen in the epineurium may lead to clinically well-recognized epineurial scarring and thus impede axonal regeneration.  相似文献   

14.
15.
The changes in the levels of S100 beta (a protein that stimulates neurite extension and neuronal survival) and 42A and 42C (S100-like proteins whose mRNAs are induced in PC12 cells by nerve growth factor) during development and after rat sciatic nerve lesions were analyzed. S100 beta, 42A, and 42C mRNAs showed differential regulation during development. S100 beta mRNA was present both in sciatic nerve and brain, and increased more than 11-fold during the first 3 wk of nerve postnatal development. 42A and 42C mRNAs were essentially restricted to sciatic nerve, with little found in either embryonic or adult brain. The levels of 42C and 42A mRNAs in sciatic nerve increased 4- and 14-fold, respectively, by postnatal day 23 compared to postnatal day 2. 42A, 42C, and S100 beta mRNAs also showed a differential regulation during sciatic nerve degeneration and regeneration. Axotomized and control sciatic nerves were examined by Northern blots at various times after a crush or cut injury. 42A and 42C mRNA levels increased rapidly in the distal segment of axotomized nerve, remained two- to five-fold higher than controls at day 14 after injury but returned to control levels by 40 days. In contrast, S100 beta mRNA showed a three-fold decrease in the axotomized nerve between days 1 and 3 after injury, and slowly returned towards control levels over the next few weeks. The decrease in S100 beta mRNA was reflected by a corresponding decrease in S100 beta protein levels. The induction of 42A and 42C mRNAs and repression of S100 beta mRNA remained if nerve regeneration was prevented.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Components of the extracellular matrix exert myriad effects on tissues throughout the body. In particular, the laminins, a family of heterotrimeric extracellular glycoproteins, have been shown to affect tissue development and integrity in such diverse organs as the kidney, lung, skin, and nervous system. Of these, we have focused on the roles that laminins play in the differentiation and maintenance of the nervous system. Here, we examine the expression of all known laminin chains within one component of the CNS, the retina. We find seven laminin chains-alpha3, alpha4, alpha5, beta2, beta3, gamma2, and gamma3-outside the retinal basement membranes. Anatomically, these chains are coexpressed in one or both of two locations: the matrix surrounding photoreceptors and the first synaptic layer where photoreceptors synapse with retinal interneurons. Biochemically, four of these chains are coisolated from retinal extracts in two independent complexes, confirming that two novel heterotrimers-alpha4beta2gamma3 and alpha5beta2gamma3-are present in the retinal matrix. During development, all four of these chains, along with components of laminin 5 (the alpha3, beta3, and gamma2 chains) are also expressed at sites at which they could exert important effects on photoreceptor development. Together, these data suggest the existence of two novel laminin heterotrimers in the CNS, which we term here laminin 14 (composed of the alpha4, beta2, and gamma3 chains) and laminin 15 (composed of the alpha5, beta2, and gamma3 chains), and lead us to hypothesize that these laminins, along with laminin 5, may play roles in photoreceptor production, stability, and synaptic organization.  相似文献   

17.
OBJECTIVES: Laminin alpha2 deficiency presents at birth with muscle weakness, hypotonia, and usually asymptomatic white matter signal on MRI. Few patients with laminin alpha2 deficiency have been described with seizures and structural brain abnormalities. The reason for the variation in the severity of the clinical phenotype in congenital muscular dystrophy (CMD) with laminin alpha2 deficiency is not known. METHODS: A patient with CMD with partial laminin alpha2 presenting with brain structural abnormalities and untreatable generalized and partial complex seizure was studied. Alternative laminin alpha2 splicing was studied by single-strand conformational polymorphism/sequencing analysis. RESULTS: A novel laminin alpha2 isoform was identified. Nonsense laminin alpha2 mutations (stop codons) were inherited from both parents; however, one of the nonsense mutations was in a region of exon 31, which is alternatively spliced. The alternatively spliced isoform excluded one of the stop codon mutations, and was thus able to produce normal laminin alpha2 corresponding to this isoform. Laminin alpha2 immunofluorescence showed that this isoform was not evenly distributed at the muscle fiber basal lamina, but preferentially localized in discrete areas. Laminin alpha5, beta1, gamma1, and nidogen showed decreased expression by immunofluorescence. CONCLUSIONS: The severity of this patient's phenotype may be due to overexpression of the exon 31-spliced laminin alpha2 isoform. Exon 31 lies in the IIIA domain of the laminin alpha2 protein, just proximal to the triple coil-coiled region. It is possible that chain assembly is impaired by this isoform, resulting in a loss of possible rescue mechanisms.  相似文献   

18.
The favorable prognosis of regeneration in the peripheral nervous system after axonal lesions is generally regarded as dependent on the Schwann cell basal lamina. Laminins, a heterotrimeric group of basal lamina molecules, have been suggested to be among the factors playing this supportive role. For neurons to utilize laminin as a substrate for growth, an expression of laminin binding receptors, integrins, is necessary. In this study, we have examined the expression of laminin binding integrin subunits in dorsal root ganglion (DRG) neurons after transection to either their peripherally projecting axons, as in the sciatic nerve, followed by regeneration, or the centrally projecting axons in dorsal roots, followed by no or weak regenerative activity. In uninjured DRG, immunohistochemical staining revealed a few neurons expressing integrin subunit alpha6, whereas integrin subunits alpha7 and foremost beta1 were expressed in a majority of neurons. After an injury to the sciatic nerve, mRNAs encoding all three integrins were up-regulated in DRG neurons. By anterograde tracing, immunoreactivity for all studied integrins was also found in association with growing axons after a sciatic nerve crush lesion in vivo. In contrast, mRNA levels remained constant in DRG neurons after a dorsal root injury. Together with previous findings, this suggests that integrin subunits alpha6, alpha7, and beta1 have an important role in the regenerative response following nerve injury and that the lack of regenerative capacity following dorsal root injury could in part be explained by the absence of response in integrin regulation.  相似文献   

19.
The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even in young boys (age <2 years). The expression of the beta1D integrin subunit was not altered in any of our patients with different types of muscular dystrophy. In contrast, sarcolemmal expression of beta1D integrin was significantly reduced in the alpha7 integrin knock-out mice, whereas the expression of the components of the DGC was not altered. The secondary loss of alpha7B in laminin alpha2 chain deficiency defines a biochemical change in the composition of the plasma membrane resulting from a primary protein deficiency in the basal lamina. These findings, in addition to the occurrence of a muscular dystrophy in alpha7 deficient mice, implies that the alpha7B integrin is an important laminin receptor within the plasma membrane which plays a significant role in skeletal muscle function and stability.  相似文献   

20.
Complement proteins C1q and C3 play a critical role in synaptic elimination during development. Axotomy of spinal motoneurons triggers removal of synaptic terminals from the cell surface of motoneurons by largely unknown mechanisms. We therefore hypothesized that the complement system is involved also in synaptic stripping of injured motoneurons. In the sciatic motor pool of wild type (WT) mice, the immunoreactivity (IR) for both C1q and C3 was increased after sciatic nerve transection (SNT). Mice deficient in C3 (C3(-/-)) showed a reduced loss of synaptic terminals from injured motoneurons at one week after SNT, as assessed by immunoreactivity for synaptic markers and electron microscopy. In particular, the removal of putative inhibitory terminals, immunopositive for vesicular inhibitory amino acid transporter (VIAAT) and ultrastructurally identified as type F synapses, was reduced in C3(-/-) mice. In contrast, lesion-induced removal of nerve terminals in C1q(-/-) mice appeared similar to WT mice. Growth associated protein (GAP)-43 mRNA expression in lesioned motoneurons increased much more in C3(-/-) compared to WT mice after SNT. After sciatic nerve crush (SNC), the C3(-/-) mice showed a faster functional recovery, assessed as grip strength, compared to WT mice. No differences were detected regarding nerve inflammation at the site of injury or pattern of muscle reinnervation. These data indicate that a non-classical pathway of complement activation is involved in axotomy-induced adult synapse removal, and that its inhibition promotes functional recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号