首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several different mutations in the KCNQ4 K+ channel gene are responsible for autosomal dominant nonsyndromic hearing impairment (DFNA2). Here we describe two additional families originating from Europe and Japan with a KCNQ4 missense mutation (W276S) that was previously found in one European family. We compared the disease-associated haplotype of the three W276S-bearing families using closely linked microsatellite markers and intragenic single nucleotide polymorphisms. Differences between the haplotypes were found, excluding a single founder mutation for the families. Therefore, the W276S mutation has occurred three times independently, and most likely represents a hot spot for mutation in the KCNQ4 gene.  相似文献   

2.
The DFNA2 locus for autosomal dominant nonsyndromic hearing impairment on chromosome 1p34 contains at least 2 genes responsible for hearing loss, GJB3 and KCNQ4. GJB3 is a member of the connexin gene family and KCNQ4 is a voltage-gated potassium channel. KCNQ4 mutations were first found in a French family, and later also in a Belgian, an American and two Dutch families. Here we present the analysis of the GJB3 and KCNQ4 genes in a third Dutch family linked to DFNA2. No mutation was found in GJB3, but a missense mutation changing a conserved Leu residue into His (L274H) was found in the coding region of the KCNQ4 gene in all patients of this DFNA2 family. Examination of the position of all known KCNQ4 mutations showed a clustering of mutations in the pore region of the KCNQ4 gene, responsible for the ion selectivity of the channel. The clustering of mutations in this domain confirms its importance.  相似文献   

3.
Sixteen Japanese nonsyndromic autosomal dominant sensorineural hearing loss (ADSNHL) families were investigated clinically as well as genetically. Most families showed postlingual hearing loss. Although the severity of their hearing loss varied, most patients showed mild-moderate sensorineural hearing loss of a progressive nature. Mutation analysis was performed for the MYO7A, KCNQ4, and GJB3 genes, which are known to be responsible for autosomal dominant sensorineural hearing loss. The present study reports that a mutation in KCNQ4, a member of a large family of potassium channel genes, was responsible for ADSNHL in one Japanese family. Received: January 16, 2001 / Accepted: March 15, 2001  相似文献   

4.
5.
Mutations in the RP1 gene causing autosomal dominant retinitis pigmentosa.   总被引:7,自引:0,他引:7  
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration that affects approximately 1 in 3500 people worldwide. Recently we identified the gene responsible for the RP1 form of autosomal dominant retinitis pigmentosa (adRP) at 8q11-12 and found two different nonsense mutations in three families previously mapped to 8q. The RP1 gene is an unusually large protein, 2156 amino acids in length, but is comprised of four exons only. To determine the frequency and range of mutations in RP1 we screened probands from 56 large adRP families for mutations in the entire gene. After preliminary results indicated that mutations seem to cluster in a 442 nucleotide segment of exon 4, an additional 194 probands with adRP and 409 probands with other degenerative retinal diseases were tested for mutations in this region alone. We identified eight different disease-causing mutations in 17 of the 250 adRP probands tested. All of these mutations are either nonsense or frameshift mutations and lead to a severely truncated protein. Two of the eight different mutations, Arg677X and a 5 bp deletion of nucleotides 2280-2284, were reported previously, while the remaining six mutations are novel. We also identified two rare missense changes in two other families, one new polymorphic amino acid substitution, one silent substitution and a rare variant in the 5'-untranslated region that is not associated with disease. Based on this study, mutations in RP1 appear to cause at least 7% (17/250) of adRP. The 5 bp deletion of nucleotides 2280-2284 and the Arg677X nonsense mutation account for 59% (10/17) of these mutations. Further studies will determine whether missense changes in the RP1 gene are associated with disease, whether mutations in other regions of RP1 can cause forms of retinal disease other than adRP and whether the background variation in either the mutated or wild-type RP1 allele plays a role in the disease phenotype.  相似文献   

6.
Two genes for components of the mitochondrial translational apparatus, mitochondrial seryl-tRNA synthetase (SARSM) and mitoribosomal protein S12 (RPMS12) lie adjacent to one another on human chromosome 19, within the critical interval for the autosomal dominant deafness locus DFNA4. Both genes are plausible candidates for DFNA4, based on the fact that deafness mutations in mtDNA have been mapped both to tRNA-ser(UCN) and to the accuracy domain of the small subunit rRNA. We have sequenced the coding regions, proximal promoters, 5' and 3' UTR and splice junctional regions of both genes in two families with DFNA4-linked deafness and in controls. Novel polymorphisms 84425C>T, 83907A>G, 79485T>G, 79406C>T, 71755A>C and 68686C>G (numbered as in GenBank AC011455) were found in one or both families, but none is a plausible disease-causing mutation. Although regulatory mutations affecting either gene could still be involved in the phenotype, structural gene mutations affecting SARSM or RPMS12 can be excluded from consideration as the cause of DFNA4-linked deafness, at least in the families identified thus far.  相似文献   

7.
Four families were selected randomly on the basis of the occurrence of spina bifida cystica and/or spina bifida occulta in one or more family members. Sixty-three relatives were studied clinically and roentgenologically; their roentgenograms were evaluated blindly. Twenty-eight were clinically and roentgenologically normal; 35 were diagnosed as having spina bifida occulta (SBO), spina bifida cystica (SBC), vertebral anomalies, and/or external defects usually interpreted as evidence for SBO. Excluding one proband we found the frequency of SBO to be 19/51 (37%) and the frequency of all types of spinal/vertebral defects (excluding five probands) to be 30/58 (52%). The distribution of these defects in the four families was analyzed using likelihood methods corrected for random ascertainment. The log likelihood values for sporadic, recessive, and dominant models were ?26.69, ?20.95, and ?18.90, respectively, indicating a higher likelihood of autosomal dominant inheritance than sporadic occurrence or recessive inheritance. The penetrance probability in this dominant model, estimated by maximum likelihood, is 0.749 ± 0.100. Further examination of these data suggests that SBO and SBC represent different expressions of the same dominant gene in these kindreds.  相似文献   

8.
9.
Hereditary hearing loss is divided into two groups, syndromic and non- syndromic, the latter being more common and highly heterogeneous. Linkage analyses were performed on a Japanese family showing a dominant form of non-syndromic progressive sensorineural hearing loss. This gene (DFNA11) was localized within the region of chromosome 11q which contains the second gene for a recessive form of non-syndromic sensorineural hearing loss (DFNB2). Since it has been reported that another gene for dominant non-syndromic hearing loss (DFNA3) has been mapped to the same region as the first gene for recessive hearing loss (DFNB1), it is possible that different mutations in the DFNB2 gene may result in either dominant or recessive hearing loss.   相似文献   

10.
11.
DFNA2 is a complex locus. Two hearing loss genes have been identified at this site: GJB3, the gene that encodes the gap junction protein connexin 31, and KCNQ4, a voltage-gated potassium channel gene. A third gene has previously been postulated to explain the hearing loss in an Indonesian family linked to the region but devoid of mutation in either known gene (Van Hauwe et al. [1999: Nat Genet 21:263]). We have identified a large five-generation family with nonsyndromic, autosomal dominant progressive high-frequency hearing loss. The hearing impairment maps to 1p34, the site of the DFNA2 locus. Two-point linkage analysis of microsatellite markers spanning the locus resulted in a lod score of 6.6 at D1S391 at theta = 0. We have investigated both identified deafness genes in affected and unaffected family members and have not found any disease-causing mutations, suggesting that another hearing impairment gene resides at the DFNA2 locus.  相似文献   

12.
We have studied 36 subjects in a large multigenerational Chinese family that is segregating for an autosomal dominant adult onset form of progressive non-syndromic hearing loss. All affected subjects had bilateral sensorineural hearing loss involving all frequencies with some significant gender differences in initial presentation. After excluding linkage to known loci for non-syndromic deafness, we used the Center for Inherited Disease Research (CIDR) to test for 351 polymorphic markers distributed at approximately 10 cM intervals throughout the genome. Analysis of the resulting data provided evidence that the locus designated DFNA41 maps to a 15 cM region on chromosome 12q24.32-qter, proximal to the marker D12S1609. A maximum two point lod score of 6.56 at theta=0.0 was obtained for D12S343. This gene is distal to DFNA25, a previously identified locus for dominant adult onset hearing loss that maps to 12q21-24. Positional/functional candidate genes in this region include frizzled 10, epimorphin, RAN, and ZFOC1.  相似文献   

13.
Congenital cataracts (CCs) are clinically and genetically heterogeneous. Mutations in the same gene may lead to CCs differing in inheritance, morphology and severity. Loci for autosomal dominant posterior polar CC and total CC have both been mapped to the chromosomal 1p36 region harboring the EPHA2 receptor tyrosine kinase gene. Here, we report mutations of EPHA2 in three CC families from different ancestral groups. In a Chinese family with posterior polar CC, we identified a missense mutation, c.2819C>T (p.T940I), replacing a critical amino acid that functions at the receptor oligomerization interface. In a British family with posterior polar CC and an Australian family with total CC, we found a frameshift mutation (c.2915_2916delTG) and a splicing mutation (c.2826‐9G>A), respectively. These two mutations are predicted to produce novel C‐terminal polypeptides with 39 identical amino acids. Yeast two‐hybrid analysis showed stronger interaction between the total CC‐associated mutant EPHA2 and low molecular weight protein‐tyrosine phosphatase, a negative regulator of EPHA2 signaling. Our results implicate the Eph‐ephrin signaling system in development of human cataract and provide a novel insight into the molecular mechanism underlying the pathogenesis of human CCs. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
BACKGROUND. Night blindness is an early symptom of retinitis pigmentosa. The rod photoreceptors are responsible for night vision and use rhodopsin as the photosensitive pigment. METHODS AND RESULTS. We found three mutations in the human rhodopsin gene; each occurred exclusively in the affected members of some families with autosomal dominant retinitis pigmentosa. Two mutations were C-to-T transitions involving separate nucleotides of codon 347; the third was a C-to-G transversion in codon 58. Each mutation corresponded to a change in one amino acid residue in the rhodopsin molecule. None of these mutations were found in 106 unrelated normal subjects who served as controls. When the incidence of these three mutations was added to that of a previously reported mutation involving codon 23, 27 of 150 unrelated patients with autosomal dominant retinitis pigmentosa (18 percent) were found to carry one of these four defects in the rhodopsin gene. All 27 patients had abnormal rod function on monitoring of their electroretinograms. It appears that patients with the mutation involving codon 23 probably descend from a single ancestor. CONCLUSIONS. In some patients with autosomal dominant retinitis pigmentosa, the disease is caused by one of a variety of mutations of the rhodopsin gene.  相似文献   

15.
16.

Background

Non‐syndromic hearing loss is among the most genetically heterogeneous traits known in humans. To date, at least 50 loci for autosomal dominant non‐syndromic sensorineural hearing loss (ADNSSHL) have been identified by linkage analysis.

Objective

To report the mapping of a novel autosomal dominant deafness locus on the long arm of chromosome 14 at 14q11.2‐q12, DFNA53, in a large multigenerational Chinese family with post‐lingual, high frequency hearing loss that progresses to involve all frequencies.

Results

A maximum multipoint LOD score of 5.4 was obtained for marker D14S1280. The analysis of recombinant haplotypes mapped DFNA53 to a 9.6 cM region interval between markers D14S581 and D14S1021. Four deafness loci (DFNA9, DFNA23, DFNB5, and DFNB35) have previously been mapped to the long arm of chromosome 14. The critical region for DFNA53 contains the gene for DFNA9 but does not overlap with the regions for DFNB5, DFNA23, or DFNB35. Screening of the COCH gene (DFNA9), BOCT, EFS, and HSPC156 within the DFNA53 interval did not identify the cause for deafness in this family.

Conclusions

Identifying the DFNA53 locus is the first step in isolating the gene responsible for hearing loss in this large multigeneration Chinese family.  相似文献   

17.
The first localization of a gene responsible for autosomal,neurosensory, recessive deafness recently assigned NSRD1 tothe centromeric region of human chromosome 13. We now reporton a dominant form of neurosensory deafness found In a familyof French origin. The deafness is moderate to severe, has aprellngual onset and affects predominantly the high frequencies.The gene responsible for this form of deafness was found bylinkage analysis to map to the same region of chromosome 13as NSRD1. A multipoint analysis gave a maximum lod score of4.66 with a most likely location close to locus D13S175. Thissuggests that different mutations in NSRD1 may cause both dominantand recessive neurosensory deafness.  相似文献   

18.
The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD may lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been postulated that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 'hawkinsin,' may also be a result of HPD deficiency. Hawkinsin is a sulfur amino acid identified as (2-l-cystein-S-yl, 4-dihydroxycyclohex-5-en-1-yl)acetic acid. Patients with hawkinsinuria excrete this metabolite in their urine throughout their life, although symptoms of metabolic acidosis and tyrosinemia improve in the first year of life. We performed analyses of the HPD gene in a patient with tyrosinemia type III and two unrelated patients with hawkinsinuria. A homozygous missense mutation predicting an Ala to Val change at codon 268 (A268V) in the HPD gene was found in the patient with tyrosinemia type III. A heterozygous missense mutation predicting an Ala to Thr change at codon 33 (A33T) was found in the same HPD gene in the two patients with hawkinsinuria. These findings support the hypothesis that alterations in the structure and activity of HPD are causally related to two different metabolic disorders, tyrosinemia type III and hawkinsinuria.  相似文献   

19.
Leren TP 《Clinical genetics》2004,65(5):419-422
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is at a locus for autosomal dominant hypercholesterolemia, and recent data indicate that the PCSK9 gene is involved in cholesterol biosynthesis. Mutations within this gene have previously been found to segregate with hypercholesterolemia. In this study, DNA sequencing of the 12 exons of the PCSK9 gene has been performed in 51 Norwegian subjects with a clinical diagnosis of familial hypercholesterolemia where mutations in the low-density lipoprotein receptor gene and mutation R3500Q in the apolipoprotein B-100 gene had been excluded. Two novel missense mutations were detected in the catalytic subdomain of the PCSK9 gene. Two patients were heterozygotes for D374Y, and one patient was a double heterozygote for D374Y and N157K. D374Y segregated with hypercholesterolemia in the two former families where family members were available for study. Our findings support the notion that mutations in the PCSK9 gene cause autosomal dominant hypercholesterolemia.  相似文献   

20.
Non-syndromic hearing impairment is one of the most heterogeneous hereditary conditions, with more than 40 reported gene localisations. We have identified a large Dutch family with autosomal dominant non-syndromic sensorineural hearing impairment. In most patients, the onset of hearing impairment is in the first or second decade of life, with a slow decline in the following decades, which stops short of profound deafness. The hearing loss is bilateral, symmetrical, and only affects low and mid frequencies up to 2000 Hz. In view of the phenotypic similarities of this family with an American family that has been linked to chromosome 4p16.3 (DFNA6), we investigated linkage to the DFNA6 region. Lod score calculations confirmed linkage to this region with two point lod scores above 6. However, as haplotype analysis indicated that the genetic defect in this family is located in a 5.6 cM candidate region that does not overlap the DFNA6 region, the new locus has been named DFNA14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号