首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mitochondrial aconitase gene (ACO2) encodes an enzyme that catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid cycle. Biallelic variants in ACO2 are purported to cause two distinct disorders: infantile cerebellar‐retinal degeneration (ICRD) which is characterized by CNS abnormalities, neurodevelopmental phenotypes, optic atrophy and retinal degeneration; and optic atrophy 9 (OPA9), characterized by isolated ophthalmologic phenotypes including optic atrophy and low vision. However, some doubt remains as to whether biallelic ACO2 variants can cause isolated ophthalmologic phenotypes. A review of the literature revealed five individuals from three families who carry biallelic ACO2 variants whose phenotypes are consistent with OPA9. Here, we describe a brother and sister with OPA9 who are compound heterozygous for novel missense variants in ACO2; c.[487G>T];[1894G>A], p.[(Val163Leu)];[(Val632Met)]. A review of pathogenic ACO2 variants revealed that those associated with OPA9 are distinct from those associated with ICRD. Missense variants associated with either OPA9 or ICRD do not cluster in distinct ACO2 domains, making it difficult to predict the severity of a variant based on position alone. We conclude that biallelic variants in ACO2 can cause the milder OPA9 phenotype, and that the OPA9‐related ACO2 variants identified to date are distinct from those that cause ICRD.  相似文献   

3.
Boucher–Neuhäuser syndrome (BNHS) is characterized by chorioretinal dystrophy, hypogonadotropic hypogonadism, and cerebellar dysfunction and atrophy. The disorder has been associated with biallelic pathogenic variants in the patatin-like phospholipase domain-containing protein 6 (PNPLA6) gene. We present an individual with a clinical diagnosis consistent with BNHS who lacked any PNPLA6 variants but on quartet family exome sequencing had a de novo variant in the hexokinase 1 (HK1) gene (NM_000188.2 [GRCh37/hg19]: g.71139826G>A, c.1240G>A, p.Gly414Arg), suggesting genetic heterogeneity for BNHS. Longitudinal follow-up indicated neurological deterioration, neuropsychiatric symptoms, and progressive cerebellar atrophy. The BNHS phenotype overlaps and expands the known HK1 genotypic and phenotypic spectrum. Individuals with variants in HK1 should undergo evaluation for hypogonadotropic hypogonadism, potentially amenable to treatment.  相似文献   

4.
Biallelic mutations in SLC25A46, encoding a modified solute transporter involved in mitochondrial dynamics, have been identified in a wide range of conditions such as hereditary motor and sensory neuropathy with optic atrophy type VIB (OMIM: *610826) and congenital lethal pontocerebellar hypoplasia (PCH). To date, 18 patients from 13 families have been reported, presenting with the key clinical features of optic atrophy, peripheral neuropathy, and cerebellar atrophy. The course of the disease was highly variable ranging from severe muscular hypotonia at birth and early death to first manifestations in late childhood and survival into the fifties. Here we report on 4 patients from 2 families diagnosed with PCH who died within the first month of life from respiratory insufficiency. Patients from 1 family had pathoanatomically proven spinal motor neuron degeneration (PCH1). Using exome sequencing, we identified biallelic disease‐segregating loss‐of‐function mutations in SLC25A46 in both families. Our study adds to the definition of the SLC25A46‐associated phenotypic spectrum that includes neonatal fatalities due to PCH as the severe extreme.  相似文献   

5.
Infantile hereditary lower motor neuron disorders beyond 5q–spinal muscular atrophy (5q‐SMA) are usually caused by mutations other than deletions or mutations in SMN1. In addition to motor neuron degeneration, further neurologic or multisystemic pathologies in non‐5q‐SMAs are not seldom. Some of the non‐5q‐SMA phenotypes, such as pontocerebellar hypoplasia (PCH1), have been classified later as a different disease group due to distinctive primary pathologies. Likewise, a novel phenotype, childhood‐onset neurodegeneration with cerebellar atrophy (CONDCA) has been described recently in individuals with lower motor neuron disorder and cerebellar atrophy due to biallelic loss‐of‐function variants in AGTPBP1 that encodes cytosolic carboxypeptidase 1 (CCP1). Here we present two individuals with CONDCA in whom a biallelic missense AGTPBP1 variant (NM_001330701.1:c.2396G>T, p.Arg799Leu) was identified by whole exome sequencing. Affected individuals in this report correspond to the severe infantile spectrum of the disease and underline the severe pathogenic effect of this missense variant. This report is the second in the literature that delineates the pathogenic effects of biallelic AGTPBP1 variants presenting the recently described CONDCA disease.  相似文献   

6.
7.
Inherited optic neuropathies (IONs) are neurodegenerative disorders characterized by optic atrophy with or without extraocular manifestations. Optic atrophy‐10 (OPA10) is an autosomal recessive ION recently reported to be caused by mutations in RTN4IP1, which encodes reticulon 4 interacting protein 1 (RTN4IP1), a mitochondrial ubiquinol oxydo‐reductase. Here we report novel compound heterozygous mutations in RTN4IP1 in a male proband with developmental delay, epilepsy, optic atrophy, ataxia, and choreoathetosis. Workup was notable for transiently elevated lactate and lactate‐to‐pyruvate ratio, brain magnetic resonance imaging with optic atrophy and T2 signal abnormalities, and a nondiagnostic initial genetic workup, including chromosomal microarray and mitochondrial panel testing. Exome sequencing identified a paternally inherited missense variant (c.263T>G, p.Val88Gly) predicted to be deleterious and a maternally inherited deletion encompassing RTN4IP1. To our knowledge, this is the first report of a non‐single nucleotide pathogenic variant associated with OPA10. This case highlights the expanding phenotypic spectrum of OPA10, the association between “syndromic” cases and severe RTN4IP1 mutations, and the importance of nonbiased genetic testing, such as ES, to analyze multiple genes and variants types, in patients suspected of having genetic disease.  相似文献   

8.
We report the results of molecular screening in 980 patients carried out as part of their work‐up for suspected hereditary optic neuropathies. All the patients were investigated for Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten primary LHON‐causing mtDNA mutations and examining the entire coding sequences of the OPA1 and OPA3 genes, the two genes currently identified in ADOA. Molecular defects were identified in 440 patients (45% of screened patients). Among these, 295 patients (67%) had an OPA1 mutation, 131 patients (30%) had an mtDNA mutation, and 14 patients (3%), belonging to three unrelated families, had an OPA3 mutation. Interestingly, OPA1 mutations were found in 157 (40%) of the 392 apparently sporadic cases of optic atrophy. The eOPA1 locus‐specific database now contains a total of 204 OPA1 mutations, including 77 novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work‐up of optic neuropathies. Our results highlight the importance of investigating LHON‐causing mtDNA mutations as well as OPA1 and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Purpose: Martsolf (MS) and Warburg micro syndromes (WARBM) are rare autosomal recessive inherited allelic disorders, which share similar clinical features including microcephaly, intellectual disability, brain malformations, ocular abnormalities, and spasticity. Here, we revealed the functions of novel mutations in RAB3GAP1 in a Turkish female patient with MS and two siblings with WARBM. We also present a review of MS patients as well as all reported RAB3GAP1 pathogenic mutations in the literature. Methods: We present a female with MS phenotype and two siblings with WARBM having more severe phenotypes. We utilized whole‐exome sequencing to identify the molecular basis of these syndromes and confirmed suspected variants by Sanger sequencing. Quantitative (q) RT‐PCR analysis was carried out to reveal the functions of novel splice site mutation detected in MS patient. Results: We found a novel homozygous c.2607‐1G>C splice site mutation in intron 22 of RAB3GAP1 in MS patient and a novel homozygous c.2187_2188delinsCT, p.(Met729_Lys730delinsIleTer) mutation in exon 19 of RAB3GAP1 in the WARBM patients. We showed exon skipping in MS patient by Sanger sequencing and gel electrophoresis. qRT‐PCR analysis demonstrated the reduced expression of RAB3GAP1 in the patient with the c.2607‐1G>C splice site mutation compared to a healthy control individual. Conclusion: Here, we have studied two novel RAB3GAP1 mutations in two different phenotypes; a MS associated novel splice site mutation, and a WARBM1 associated novel deletion–insertion mutation. Our findings suggest that this splice site mutation is responsible for milder phenotype and the deletion–insertion mutation presented here is associated with severe phenotype.  相似文献   

10.
Aicardi–Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full‐length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families.  相似文献   

11.
12.
Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndrome (OMIM# 601338) is a rare autosomal dominant disorder characterized by episodic, fever‐induced ataxic encephalopathy in childhood with residual symptoms. All identified patients have the same heterozygous missense variant c.2452G>A (p.Glu818Lys) in the ATP1A3 gene, encoding Na+/K+ ATPase α3. We describe a large CAPOS pedigree with three generations of affected members, the first ascertained in the United States. Deafness, optic atrophy, and pes cavus were present in all three members of the family evaluated. In addition, one of the affected individuals experienced markedly worsening features during her three pregnancies and in the immediate postpartum period, a potential element of the natural history of CAPOS previously unreported. We conclude that the triggering factors and clinical spectrum of pathogenic ATP1A3 variants may be broader than previously described. Targeted sequencing of ATP1A3 should be considered in any patient presenting with cerebellar ataxia triggered by febrile illness, or pregnancy and delivery, especially in the presence of sensorineural hearing loss, optic atrophy, pes cavus, or early childhood history of acute encephalopathic ataxia. Prophylactic administration of acetazolamide or flunarizine may prevent acute episodes of ataxia or mitigate neurologic symptoms, although their efficacies have not been well studied.  相似文献   

13.
14.
Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder characterized by reduced plasma levels of low density lipoprotein cholesterol (LDL-C) and its protein constituent apolipoprotein B (apoB), which may be due to mutations in APOB gene, mostly located in the coding region of this gene. We report two novel APOB gene mutations involving the acceptor splice site of intron 11 (c.1471-1G>A) and of intron 23 (c.3697-1G>C), respectively, which were identified in two patients with heterozygous FHBL associated with severe fatty liver disease. The effects of these mutations on APOB pre-mRNA splicing were assessed in COS-1 cells expressing the mutant APOB minigenes.The c.1471-1G>A APOB minigene generated two abnormal mRNAs. In one mRNA the entire intron 11 was retained; in the other mRNA exon 11 joined to exon 12, in which the first nucleotide was deleted due to the activation of a novel acceptor splice site. The predicted products of these mRNAs are truncated proteins of 546 and 474 amino acids, designated apoB-12.03 and apoB-10.45, respectively. The c.3697-1G>C APOB minigene generated a single abnormal mRNA in which exon 23 joined to exon 25, with the complete skipping of exon 24. This abnormal mRNA is predicted to encode a truncated protein of 1220 amino acids, designated apoB-26.89.These splice site mutations cause the formation of short truncated apoBs, which are not secreted into the plasma as lipoprotein constituents. This secretion defect is the major cause of severe fatty liver observed in carriers of these mutations.  相似文献   

15.
16.
Hermansky–Pudlak syndrome type 2 (HPS2) is a syndrome caused by mutations in the beta‐3A subunit of the adaptor protein (AP)‐3 complex (AP3B1 gene). We describe five unreported cases with four novel mutations, one of which caused aberrant pre‐mRNA splicing. A point mutation c.2702C>G in exon 23 of the AP3B1 gene caused deletion of 112 bp in the mRNA in two siblings. This mutation activates a cryptic donor splice site that overrules the wild‐type donor splice site of this exon. Three other novel mutations in AP3B1 were identified, that is, a nonsense mutation c.716G>A (p.Trp239Ter), a 1‐bp and a 4‐bp deletion c.177delA and c.1839_1842delTAGA, respectively, both causing frameshift and premature termination of translation. Mass spectrometry in four of these HPS2 patients demonstrated the (near) absence of all AP‐3 complex subunits. Immunoelectron microscopy on the neutrophils of two of these patients showed abnormal granule formation. We found clear mislocalization of myeloperoxidase in the neutrophils even though the content of this protein but not the activity seemed to be present at normal levels. In sum, HPS2 is the result of the absence of the entire AP‐3 complex, which results in severe neutropenia with a defect in granule formation as the major hematological finding.  相似文献   

17.
18.
19.
Alexander disease (AD) is a rare form of leukodystrophy caused by pathogenic variants in the GFAP gene. In young children the condition is fatal, while adults have variable neurological symptoms and prognosis. On magnetic resonance imaging, a pattern of atrophy of the medulla oblongata and cervical spinal cord with a ‘tadpole’ appearance is highly suggestive of adult-onset Alexander disease (AOAD). GFAP gene sequencing is used to confirm the diagnosis. Pre-mRNA of this gene undergoes alternative splicing resulting in formation of at least 8 different protein isoforms. Most patients with AD described to date have a pathogenic variant in the coding sequence of the main and the most abundant gene isoform, the GFAPα. Recently, two half-siblings with neurological symptoms and radiological signs of AOAD were reported and were not found to have any pathogenic variants in the GFAPα gene while further genetic testing by next generation sequencing revealed a c.1289G>A (p.Arg430His) variant in the alternative exon 7A of the GFAPε isoform.Here we present a case of another patient with symptoms and brain MRI pattern suggestive of AOAD. Similarly to the previously described patients, this patient did not have any pathogenic variants in the main gene isoform and had the same c.1289G>A (p.Arg430His) variant in the GFAPε. This report contributes to evidence of pathogenicity of the c.1289G>A (p.Arg430His) variant in the GFAPε.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号