首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The combination of M100907, a putative antipsychotic drug (APD) and serotonin (5-HT)(2A) antagonist, and the typical APD haloperidol, can enhance dopamine (DA) release in rat medial prefrontal cortex (mPFC), an effect which has been postulated to be of value to improve cognition and negative symptoms. The present study demonstrated that another putative APD and 5-HT(2A/2C) antagonist, SR46349-B (10 mg/kg, but not 1-3 mg/kg) alone, but not M100907 (0.1 and 3 mg/kg) alone, increased mPFC DA release, whereas neither drug alone affected nucleus accumbens (NAC) DA release. Neither SR46349-B nor M100907 alone affected nucleus accumbens (NAC) DA release. Neither SR46349-B nor M100907 alone affected nucleus accumbens (NAC) DA release. SR46349-B (3 mg/kg) potentiated haloperidol-induced DA release in both regions, whereas M100907 (0.1 mg/kg) potentiated haloperidol (0.1 mg/kg)-induced mPFC DA release and inhibited it in the NAC. WAY100635 (0.2 mg/kg), a 5-HT(1A) antagonist, abolished the effects of haloperidol plus M100907 as well as SR46349-B on DA release in the mPFC, but did not do so in the NAC. Thus, 5-HT(2A) and 5-HT(2A/2C) antagonism together with haloperidol-induced D(2) antagonism may potentiate mPFC DA release via 5-HT(1A) agonism, whereas the combined effects of these agents on NAC DA release is not dependent upon 5-HT(1A) receptor stimulation. Interestingly, similar to the effect of SR46349-B, high dose M100907 (3 mg/kg), which might have antagonist activity at 5-HT(2C) receptors, potentiated 1 mg/kg haloperidol-induced DA release in the mPFC and NAC. These results suggest that 5-HT(2A/2C) antagonism may be more advantageous than selective 5-HT(2A) antagonism as an adjunct to D(2) antagonists to improve cognition and negative symptoms in schizophrenia.  相似文献   

2.
Rational Atypical antipsychotic drugs (APDs) such as clozapine, olanzapine, quetiapine, risperidone, and ziprasidone are serotonin (5-HT)2A antagonists and relatively weaker dopamine (DA) D2 antagonists, with variable 5-HT2C antagonist properties. The ability of atypical APDs to preferentially increase DA release in the cortex compared to the limbic system is believed to be due in part to their antagonism of 5-HT2A and D2 receptors and believed to contribute to their beneficial effects on cognition, negative, and psychotic symptoms. Previous studies from this laboratory using microdialysis have shown that pretreatment of the 5-HT2A antagonist M100907 with the typical APD and D2 antagonist haloperidol produced an increase in the medial prefrontal cortex (mPFC), but not in the nucleus accumbens (NAC), DA release. However, pretreatment with the 5-HT2A/2C receptor antagonist SR46349-B with haloperidol increased both mPFC and NAC DA release, suggesting that both 5-HT2A and 5-HT2C properties may be important for atypical APD effects.Objective The purpose of this study was to examine the effects of a novel putative atypical APD ACP-103 on mPFC and NAC DA release using in vivo microdialysis in freely moving rats that are awake. ACP-103 is an inverse agonist at both 5-HT2A and 5-HT2C receptors and has intermediate affinities for 5-HT2C receptors relative to their affinities for 5-HT2A receptors compared to M100907 and SR46349-B. In addition, the effects of ACP-103 were compared to M100907 and SR46349-B, and ACP-103 was also coadministered with haloperidol.Results ACP-103 10.0 mg/kg, but not 3.0 mg/kg, increased DA release in the mPFC, while neither dose increased DA release in the NAC. Like M100907, ACP-103 (3.0 mg/kg) potentiated 0.1 mg/kg haloperidol-induced DA release in the mPFC while inhibiting that in the NAC. However, ACP-103 (3.0 mg/kg), similar to SR46349-B, potentiated a high dose of haloperidol (1.0 mg/kg)-induced DA release in both regions. The potent 5-HT2C antagonist SB242084 1.0 mg/kg significantly potentiated 0.1 mg/kg haloperidol-induced DA release in both the mPFC and NAC. However, SB242084, at 0.2 mg/kg, significantly potentiated DA release only in the NAC. Moreover, SB242084 0.2 mg/kg potentiated DA release in the NAC produced by the combination treatment of 3 mg/kg ACP-103 and 0.1 mg/kg haloperidol.Conclusion These data suggest that the relative extent of 5-HT2A and 5-HT2C antagonism, as well as the extent of D2 receptor blockade, has a critical influence on DA release in the mPFC and NAC and may be a determining factor in the action of this class of atypical APDs on these two potentially clinically relevant parameters.  相似文献   

3.
The hyperlocomotion induced by the noncompetitive NMDA antagonist MK-801 (0.3 mg/kg SC) in mice was attenuated by the nonselective 5-HT2 antagonist ritanserin (0.12 and 0.25 mg/kg SC) and by the 5-HT2A selective antagonist MDL100907 (0.05 and 0.1 mg/kg SC). SB242084 (0.25-1.0 mg/kg), a selective 5-HT(2C) antagonist, had no effect on MK-801-induced hyperactivity. These same doses of ritanserin and MDL100907 reduced the hyperactivity induced by cocaine (10 mg/ kg). Amphetamine (2.5 mg/kg SC) induced hyperlocomotion that was also attenuated by ritanserin (0.064).25 mg/kg SC). The hyperlocomotion induced by the D1 agonist C-APB (1.0 mg/kg) is not altered by pretreatment with ritanserin or MDL100907. This suggests that compounds that increase locomotor activity via indirectly increasing dopaminergic activity (either by increased release or blockade of reuptake) require the activation of a 5-HT2A receptor. Activity of compounds that act directly at the postsynaptic dopamine receptors such as C-APB is not dependent on such a mechanism. This suggests a selective involvement of 5-HT2A receptors but not 5-HT2c receptors in the mediation of the behavioral effects of compounds that increase synaptic concentration of dopamine but not directly acting agonists. This implies that the 5-HT2A receptors modulate elevation of extracellular dopamine, not the postsynaptic sensitivity of dopamine neurons.  相似文献   

4.
The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.  相似文献   

5.
A previous study indicated that pretreatment with repeated daily injections of serotonin-3 (5-HT3) receptor antagonists subsequently reduced the effectiveness of the 5-HT3 antagonists to attenuate ethanol intake under 24-h free-choice conditions; one possibility to account for this is that the functional activity of the 5-HT3 receptor may have been altered by prior treatment with the antagonists. The present experiments were conducted to examine the effects of local perfusion of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (CPBG) on the extracellular levels of dopamine (DA) in the nucleus accumbens (ACB) and ventral tegmental area (VTA) of adult male Wistar rats that had received repeated daily injections of the 5-HT3 antagonist, MDL 72222 (MDL). In vivo microdialysis was used to test the hypothesis that alterations in 5-HT3 receptor function have occurred with repeated antagonist injections. One group was given daily injections of MDL (1 mg/kg, s.c.) for 10 consecutive days (MDL group), and the other group was administered saline for 10 days (saline group). On the day after the last treatment, rats were implanted with a unilateral guide cannula aimed at either the ACB or VTA. Two days later, the microdialysis probe was inserted into the guide cannula; on the next day, microdialysis experiments were conducted to determine the extracellular levels of DA in the ACB or VTA. Local perfusion of CPBG (17.5, 35, 70 microM) in the ACB significantly stimulated DA release in the saline- and MDL-treated animals. In terms of percent baseline, the CPBG-stimulated DA release was higher in the MDL-treated group than in the saline-treated group in both the ACB and VTA; however, on the basis of the extracellular concentration, there were no significant differences in the ACB between the two groups. Using the no-net-flux microdialysis, it was determine that the basal extracellular concentration of DA in the ACB was approximately 60% lower in the MDL group than saline group; there was no difference between the groups in the extraction fraction (clearance). Overall, the results suggest that repeated daily treatments with MDL decreased basal DA neurotransmission in the ACB and did not have a clear effect on functional activity of 5-HT3 receptors in the ACB.  相似文献   

6.
1. The pharmacology of the acute hyperthermia that follows 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') administration to rats has been investigated. 2. MDMA (12.5 mg kg(-1) i.p.) produced acute hyperthermia (measured rectally). The tail skin temperature did not increase, suggesting that MDMA may impair heat dissipation. 3. Pretreatment with the 5-HT(1/2) antagonist methysergide (10 mg kg(-1)), the 5-HT(2A) antagonist MDL 100,907 (0.1 mg kg(-1)) or the 5-HT(2C) antagonist SB 242084 (3 mg kg(-1)) failed to alter the hyperthermia. The 5-HT(2) antagonist ritanserin (1 mg kg(-1)) was without effect, but MDL 11,939 (5 mg kg(-1)) blocked the hyperthermia, possibly because of activity at non-serotonergic receptors. 4. The 5-HT uptake inhibitor zimeldine (10 mg kg(-1)) had no effect on MDMA-induced hyperthermia. The uptake inhibitor fluoxetine (10 mg kg(-1)) markedly attenuated the MDMA-induced increase in hippocampal extracellular 5-HT, also without altering hyperthermia. 5. The dopamine D(2) antagonist remoxipride (10 mg kg(-1)) did not alter MDMA-induced hyperthermia, but the D(1) antagonist SCH 23390 (0.3 - 2.0 mg kg(-1)) dose-dependently antagonized it. 6. The dopamine uptake inhibitor GBR 12909 (10 mg kg(-1)) did not alter the hyperthermic response and microdialysis demonstrated that it did not inhibit MDMA-induced striatal dopamine release. 7. These results demonstrate that in vivo MDMA-induced 5-HT release is inhibited by 5-HT uptake inhibitors, but MDMA-induced dopamine release may not be altered by a dopamine uptake inhibitor. 8. It is suggested that MDMA-induced hyperthermia results not from MDMA-induced 5-HT release, but rather from the increased release of dopamine that acts at D(1) receptors. This has implications for the clinical treatment of MDMA-induced hyperthermia.  相似文献   

7.
Activity at the 5-HT2A receptor versus that of the 5-HT2C receptor was studied in three behavioural paradigms. In pigeons trained to discriminate 0.32 mg/kg of 1-(2,5-diemethoxy-4-iodophenyl)-2-aminopropane (DOI) (a mixed 5-HT2A/C receptor agonist) from vehicle, quipazine (0.1-1 mg/kg) and m-chlorophenylpiperazine (mCPP) (1-3 mg/kg) substituted for DOI in a dose-related manner, and this generalization was blocked by MDL100907 (0.0001-0.01 mg/kg), a selective 5-HT2A receptor antagonist. RO60-0175 (a relatively selective 5-HT2C agonist) induced partial substitution at 3 mg/kg that was antagonized by both MDL100907 and by 3 mg/kg of SB242084, a relatively selective 5-HT2C antagonist. MK212 (a mixed 5-HT2C/A agonist) induced partial substitution that was antagonized by SB242084, but not by MDL100907. On a progressive ratio 5 operant schedule (PR5) for food reinforcement, DOI, quipazine, mCPP, MK212 and R060-0175 decreased the break point; mCPP, DOI, MK212 and quipazine also induced vomiting. Although MDL100907 antagonized both the reductions of break point and vomiting, SB242084 only partially attenuated the decrease in break point observed with MK212 and DOI, and was unable to eliminate vomiting. Thus pharmacological activity at the 5-HT2A receptor can be behaviourally distinguished from pharmacological activity at the 5-HT2C receptor in the pigeon. Furthermore, the decrease in the break point of a PR5 schedule induced by 5-HT2C receptor agonists may be related to decreased appetite, whereas that induced by 5-HT2A receptor agonists may be due to unrelated factors, such as emesis.  相似文献   

8.
In vivo microdialysis and single-cell extracellular recordings were used to assess the involvement of serotonin(2A) (5-HT(2A)) and serotonin(2C/2B) (5-HT(2C/2B)) receptors in the effects induced by amphetamine and morphine on dopaminergic (DA) activity within the mesoaccumbal and nigrostriatal pathways. The increase in DA release induced by amphetamine (2 mg/kg i.p.) in the nucleus accumbens and striatum was significantly reduced by the selective 5-HT(2A) antagonist SR 46349B (0.5 mg/kg s.c.), but not affected by the 5-HT(2C/2B) antagonist SB 206553 (5 mg/kg i.p.). In contrast, the enhancement of accumbal and striatal DA output induced by morphine (2.5 mg/kg s.c.), while insensitive to SR 46349B, was significantly increased by SB 206553. Furthermore, morphine (0.1-10 mg/kg i.v.)-induced increase in DA neuron firing rate in both the ventral tegmental area and the substantia nigra pars compacta was unaffected by SR 46349B (0.1 mg/kg i.v.) but significantly potentiated by SB 206553 (0.1 mg/kg i.v.). These results show that 5-HT(2A) and 5-HT(2C) receptors regulate specifically the activation of midbrain DA neurons induced by amphetamine and morphine, respectively. This differential contribution may be related to the specific mechanism of action of the drug considered and to the neuronal circuitry involved in their effect on DA neurons. Furthermore, these results suggest that 5-HT(2C) receptors selectively modulate the impulse flow-dependent release of DA.  相似文献   

9.
The highly selective 5-HT2 receptor antagonist, MDL 100,907, was used to explore the role of serotonin in the stimulation of dopaminergic function produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA). MDL 100,907 blocked MDMA-stimulated dopamine synthesis in vivo without affecting basal synthesis. The long-term deficits in 5-HT concentrations believed to be a consequence of MDMA-induced dopamine release were also blocked by MDL 100,907 over the same dose range. In vivo microdialysis confirmed that 5-HT2 receptor blockade with MDL 100,907 attenuated MDMA-induced increases in extracellular concentrations of striatal dopamine. In contrast to its effect on MDMA-induced synthesis, MDL 100,907 did not alter dopamine synthesis stimulated by haloperidol or reserpine. In vivo dopamine release produced by haloperidol was also unaffected by MDL 100,907. The results suggest a permissive role for 5-HT2 receptors in the activation of the dopamine system which occurs during states of high serotonergic activity or during conditions of elevated dopamine efflux with high D2 receptor occupancy.  相似文献   

10.
Dose-effect curves were established for the effects of the antipsychotic drugs haloperidol, clozapine, olanzapine, risperidone and ziprasidone on extracellular levels of dopamine and noradrenaline in the medial prefrontal cortex, and of dopamine in the striatum. Haloperidol was more effective in stimulating the release of dopamine in the striatum, whereas clozapine was much more effective in the medial prefrontal cortex. The efficacy of risperidone, olanzapine and ziprasidone did not differ for the two brain areas. The benzamides sulpiride and raclopride increased dopamine release in the striatum but did not affect the release of dopamine and noradrenaline in the medial prefrontal cortex. In the presence of dopamine/noradrenaline reuptake inhibitors, the benzamides strongly increased the release of dopamine-but not of noradrenaline-in the medial prefrontal cortex. The 5-HT(2) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (MDL100,907) (800 nmol/kg) and the dopamine D(2) receptor antagonist raclopride (2 micromol/kg) displayed a clear synergism in increasing the release of dopamine in the medial prefrontal cortex. No such synergism was seen in the case of noradrenaline. Co-administration of the 5-HT(2) receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine HCl (DOI) (850 nmol/kg) with clozapine (10 micromol/kg) or haloperidol (800 nmol/kg) blocked the increase in dopamine as well as noradrenaline in the medial prefrontal cortex. It is concluded that typical and non-benzamide atypical antipsychotics increase extracellular dopamine in the medial prefrontal cortex via a synergistic interaction by blocking 5-HT(2) as well as dopamine D(2) receptors. The increase in extracellular noradrenaline in the medial prefrontal cortex that was observed after administration of antipsychotics is explained by inhibition of 5-HT(2) receptors and not dopamine D(2) receptors. Finally, the significance of the classification of antipsychotic drugs based on their selective action on the release of dopamine and noradrenaline in the medial prefrontal cortex is discussed. In particular, the position of the benzamides is discussed.  相似文献   

11.

Rationale

Atypical antipsychotic efficacy is often attributed to actions at serotonin-2 (5-HT2) and dopamine receptors, indicating a potential benefit of understanding the interplay between these systems. Currently, it is known that 5-HT2 receptors modulate dopamine release, although the role of specific dopamine receptors in 5-HT2-mediated behavior is not well understood.

Objectives

We examined the role of 5-HT2A, 5-HT2C, and dopamine (D1 and D2) receptors in the behavioral response to a 5-HT2A/2C agonist (DOI) and 5-HT2A/2C antagonist (SR46349B).

Materials and methods

Effects were assessed by measuring rabbit head bobs (previously characterized as 5-HT2A receptor-mediated) and body shakes (5-HT2C-mediated).

Results

As expected, DOI produced head bobs and body shakes, and these DOI-elicited behaviors were attenuated by the SR46349B pretreatment. Unexpectedly, SR46349B also induced head bobs when administered alone. However, SR46349B-elicited head bobs are distinguishable from those produced by DOI since the 5-HT2A antagonist, ketanserin, only attenuated DOI-elicited head bobs. Conversely, 5-HT2C ligands (SB242084 and SB206553) inhibited SR46349B but not DOI-induced head bobs. Furthermore, when administered alone, SB206553 (a 5-HT2C inverse agonist) produced head bobs, indicating the behavior can be either 5-HT2A or 5-HT2C mediated. Next, it was revealed that D1 and D2 receptors play a role in DOI-elicited head bobs, but only D1 receptors are required for SR46349B-elicited head bobs.

Conclusions

5-HT2A receptor agonism and 5-HT2C inverse agonism produce the same behavior, likely due to similar downstream actions at D1 receptors. Consequently, 5-HT2C agonism or D1 agonism may be effective therapies for disorders, such as schizophrenia, currently being treated with 5-HT2A antagonists.  相似文献   

12.
The present study used 5-HT2C receptor mutant mice and their wild-type littermates to characterize the 5-HT2 receptor using the 5-HT2 agonists (+/-)-2-dimethoxy-4-iodoamphetamine hydrochloride (DOI) and 1-(3-chlorophenyl)piperazine (mCPP) applied locally in the orbitofrontal cortex (OFC) and head of the caudate nucleus. Microiontophoretically-applied 5-HT, DOI and mCPP induced current-dependent inhibition of neuronal firing activity in both brain regions. There was no difference between 5-HT2C receptor mutants and wild-type mice in the ability of 5-HT or DOI to inhibit neuronal firing at any current used. In contrast, there was a reduced ability of mCPP to inhibit firing activity in the OFC when ejected at 10 nA. Unexpectedly, there was a small but significant increase in mCPP-induced inhibition in the caudate nucleus of mutant mice. In the OFC, the 5-HT2A antagonist MDL 100907 (2 mg/kg, i.p.) significantly antagonized the effect of both DOI and mCPP. In contrast, the non-selective 5-HT antagonist clozapine (10 mg/kg, i.p.) significantly antagonized only mCPP in the wild-type mice. However, neither MDL 100907 nor clozapine antagonized DOI or mCPP in the caudate nucleus. Finally, it required significantly less quisqualate to activate neurons in the 5-HT2C receptor mutants than in the wild-type mice, suggesting that 5-HT2C receptors serve a tonic inhibitory role in membrane excitability. The present results indicate that the inhibitory action of DOI is predominantly mediated by the 5-HT2A receptor in the OFC. mCPP, when applied locally, inhibits OFC firing activity by acting on both 5-HT2A and 5-HT2C receptors. However, DOI and mCPP might be acting in the caudate nucleus through an atypical 5-HT2 receptor yet to be characterized.  相似文献   

13.
Several studies have demonstrated that systemically administered N-methyl-d-aspartate (NMDA) receptor antagonists increase serotonin (5-HT) and glutamate release in the medial prefrontal cortex (mPFC). Previously we showed that the perfusion of clozapine in the mPFC prevented the MK-801-induced increase in extracellular glutamate and 5-HT whereas haloperidol blocked only the effect of MK-801 on glutamate. To study the contribution of different monoaminergic receptors (for which clozapine and haloperidol exhibit distinct affinities) to these effects, here we used in-vivo microdialysis to examine the role of local blockade of dopamine D2, 5-HT2A and alpha1-adrenergic receptors as well as agonism at dopamine D1 and 5-HT1A receptors in the mPFC on the increased efflux of glutamate and 5-HT elicited by MK-801. The results show that M100907 (5-HT2A antagonist), BAY x 3702 (5-HT1A agonist) and prazosin (alpha1-adrenergic antagonist) blocked the MK-801-induced increase of 5-HT and glutamate in the mPFC. However, raclopride, eticlopride (dopamine D2 antagonists) and SKF-38393 (dopamine D1 agonist) were able to prevent the increased efflux of glutamate (but not that of 5-HT) elicited by MK-801. We propose that D2 receptor antagonists and D1 agonists would act predominantly on a subpopulation of GABAergic interneurons of the mPFC, thus leading to an enhanced cortical inhibition that would prevent an excessive glutamatergic transmission. On the other hand, atypical antipsychotic drugs might further act upon 5-HT2A, 5-HT1A and alpha1-adrenoceptors present in pyramidal cells (including those projecting to the dorsal raphe nucleus), which would directly inhibit an excessive excitability of these cells.  相似文献   

14.
The 5-HT2 receptor agonist, DOI, dose-dependently (0.16-10.0 mg/kg, s.c.) increased dialysate levels of dopamine (DA) and noradrenaline (NA), but not 5-HT, in the frontal cortex (FCX) of freely-moving rats. This action was abolished by the selective 5-HT2A antagonist, MDL100,907 (0.04), which did not, itself, modify levels of DA and NA. In contrast, the selective 5-HT2B/2C antagonist, SB206,553 (0.63), increased levels of DA and NA additively with DOI. Thus, in contrast to a tonic, inhibitory influence of 5-HT2C receptors (see Millan, M.J., Dekeyne, A., Gobert, A., 1998. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NAD), but not 5-HT, release in the FCX in vivo. Neuropharmacology 37, 953-955), 5-HT2A receptors exert a phasic, facilitatory influence upon FCX levels of DA and NA.  相似文献   

15.
This study investigated, using microdialysis in freely-moving rats, the role of serotonin (5-HT) and 5-HT(2) receptor subtypes in the enhancement of striatal dopamine (DA) release induced by various doses of haloperidol.The subcutaneous injection of 0.01, 0.1 or 1 mg/kg haloperidol dose-dependently increased DA outflow (160, 219 and 230% of baseline, respectively). The effect of 0.01 mg/kg haloperidol was, respectively, potentiated by the 5-HT uptake inhibitor citalopram (1 mg/kg, s.c.; +35%) and reduced by the 5-HT(1A) receptor agonist 8-OH-DPAT (0.025 mg/kg, s.c.; -32%). Also, it was reduced by the 5-HT(2A) antagonist SR 46349B (0.5 mg/kg, s.c. ; -40%) or by the 5-HT(2A/2B/2C) antagonist ritanserin (1.25 mg/kg, i.p.; -34%), and potentiated by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg, i.p; +78%). Further, only this latter compound significantly modified basal dopamine release by itself (+26%). Dopamine released by 0.1 mg/kg haloperidol was enhanced (+100%) by citalopram, decreased (-61%) by SR 4634B, but unaltered by SB 206553. Finally, none of the compounds used were able to modify the enhancement of dopamine release induced by 1 mg/kg haloperidol.These results show that central 5-HT(2A) and 5-HT(2C) receptors exert an opposite (respectively excitatory and inhibitory) influence on DA release. Moreover, they suggest that the 5-HT(2A)-dependent modulation depends on the degree of central DA receptor blockade.  相似文献   

16.
5-Hydroxytryptamine (5-HT) plays a role in the regulation of 3, 4-dihydroxyphenylethylamine (dopamine) neurons in the brain, but the precise mechanism of regulation by 5-HT(1A) receptors of dopamine release has not been defined. The present study describes the effect of 5-?3-[[(2S)-1,4-benzodioxan-2ylmethyl]amino]propoxy?-1, 3-benzodioxole HCl (MKC-242), a highly potent and selective 5-HT(1A) receptor agonist, on dopamine release in the prefrontal cortex using microdialysis in the freely moving rat. Subcutaneous injection of MKC-242 (0.3 - 1.0 mg kg(-1)) increased extracellular levels of dopamine in the prefrontal cortex. The effect of MKC-242 in the prefrontal cortex was antagonized by pretreatment with the selective 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xanecarboxamide (WAY100635; 1 mg kg(-1), i.p.). Local application of WAY100635 (10 microM) via a microdialysis probe antagonized the effect of systemic MKC-242 in an increasing dopamine release, and locally infused 8-hydroxy-2-(di-n-propylamino)tetralin (10 microM) increased dopamine release in the prefrontal cortex. MKC-242 increased cortical dopamine release in the rats pretreated with 5, 7-dihydroxytryptamine (150 microgram, i.c.v.) that caused an almost complete reduction in cortical 5-HT content. The effect of MKC-242 to increase dopamine release was also observed in the hippocampus, but not in the striatum or nucleus accumbens. Fluoxetine, a selective serotonin reuptake inhibitor, increased dopamine release in the prefrontal cortex, but not in the nucleus accumbens, while buspirone, a 5-HT(1A) receptor agonist, increased dopamine release in both brain regions. The present results indicate that activation of postsynaptic 5-HT(1A) receptors increases dopamine release in a brain region-specific manner.  相似文献   

17.
RATIONALE: The dopamine-releasing agent d-amphetamine and the 5-HT(2) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) have similar effects on free-operant timing behavior. The selective D(1) dopamine receptor antagonist 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol (SKF-83566), but not the D(2) dopamine receptor antagonist haloperidol, can antagonize the effect of d-amphetamine, and the selective 5-HT(2A) receptor antagonist (+/-)2,3-dimethoxyphenyl-1-(2-(4-piperidine)-methanol (MDL-100907) can antagonize the effect of DOI. However, it is not known whether the effect of d-amphetamine can be reversed by MDL-100907 and the effect of DOI by dopamine receptor antagonists. OBJECTIVE: The objective of this work is to examine the interactions of d-amphetamine and DOI with MDL-100907, SKF-83566, and haloperidol on timing performance. MATERIALS AND METHODS: Rats (n = 12-15 per experiment) were trained under the free-operant psychophysical procedure to press two levers (A and B) in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic functions were fitted to the data from each rat for the derivation of timing indices [T (50) (time corresponding to %B = 50); Weber fraction]. Rats were treated systemically with d-amphetamine or DOI, alone and in combination with haloperidol, SKF-83566, or MDL-100907. RESULTS: d-Amphetamine (0.4 mg kg(-1)) reduced T (50) compared to vehicle; this effect was antagonized by SKF-83566 (0.03 mg kg(-1)) and MDL-100907 (0.5 mg kg(-1)), but not by haloperidol (0.05, 0.1 mg kg(-1)). DOI (0.25 mg kg(-1)) also reduced T (50); this effect was reversed by MDL-100907 (0.5 mg kg(-1)), but not by SKF-83566 (0.03 mg kg(-1)) or haloperidol (0.05 mg kg(-1)). CONCLUSIONS: The results suggest that both 5-HT(2A) and D(1) receptors, but not D(2) receptors, are involved in d-amphetamine's effect on timing behavior in the free-operant psychophysical procedure. DOI's effect on timing is mediated by 5-HT(2A) receptors, but neither D(1) nor D(2) receptors are involved in this effect.  相似文献   

18.
These studies investigated the role of serotonin-1A (5-HT1A) and 5-HT2A receptors in the behavioral effects of dipropyltryptamine (DPT). Eight rats discriminated 0.56 mg/kg 2,5-dimethoxy-4-methylamphetamine (DOM) from saline and responded under a fixed ratio 5 schedule of food presentation; 12 other rats were used for observational studies. DOM and DPT increased responding on the DOM lever with 3.2 mg/kg DPT producing greater than 95% responding on the DOM lever; this effect of DPT was antagonized by the 5-HT2A receptor antagonist MDL100907. In another study, the 5-HT1A and 5-HT7 receptor agonist 8-OH-DPAT produced lower-lip retraction and, at larger doses, flat body posture; DPT alone produced flat body posture and not lower-lip retraction; MDL100907 alone did not produce either effect. Pretreatment with DPT blocked 8-OH-DPAT-elicited lower-lip retraction, suggesting antagonist activity of DPT at 5-HT1A receptors; however, in the presence of MDL100907 DPT produced not only flat body posture but also lower-lip retraction, suggesting that agonist activity of DPT at 5-HT2A receptors masked agonist activity at 5-HT1A receptors. Lower-lip retraction and flat body posture by DPT in the presence of MDL100907 were attenuated by the 5-HT1A receptor antagonist WAY100635. These findings suggest that DPT has agonist activity at 5-HT1A and 5-HT2A receptors and that effects at 5-HT2A receptors mask effects at 5-HT1A receptors.  相似文献   

19.
5-HT (20 microM) enhanced dopamine (DA) D2-like receptor mediated reduction of the firing rate of DA neurons in the substantia nigra pars compacta (A9) and ventral tegmental area (A10) in a rat midbrain slice preparation. Quinpirole (30 nM) induced a mean reduction of the firing rate in A9 and A10 DA neurons to 64 +/- 4%, respectively, 71 +/- 5% of the baseline value. Bath application of 5-HT in the presence of quinpirole further reduced the firing rate to 37 +/- 7% in A9 and 33 +/- 13% in A10. The 5-HT2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, 500 nM) enhanced quinpirole-induced reduction of firing rate of A10 DA neurons, but not of A9 DA neurons, suggesting that different 5-HT receptor subtypes are involved in modulation of dopamine D2-like receptor mediated inhibition in the two regions. The selective 5-HT2A receptor antagonist MDL100907 and the selective 5-HT2C receptor antagonist SB242084 (50 and 500 nM) both abolished the enhancement of quinpirole-induced reduction by either 5-HT or DOI, suggesting the involvement of direct and indirect (possibly via interneurons) modulation pathways in A10. The involvement of 5-HT and specific 5-HT2 receptors in augmentation of auto-inhibition in A10 could have important implications for our understanding of the mechanism of atypical antipsychotic drug action.  相似文献   

20.
Employing a two-lever, food-reinforced, Fixed Ratio 10 drug discrimination procedure, rats were trained to recognize the highly-selective serotonin (5-HT)(2A) receptor antagonist, MDL100,907 (0.16 mg/kg, i.p.). They attained criterion after a mean +/- S.E.M. of 70 +/- 11 sessions. MDL100,907 fully generalized with an Effective Dose (ED)(50) of 0.005 mg/kg, s.c. A further selective 5-HT(2A) antagonist, SR46349, similarly generalized with an ED(50) of 0.04 mg/kg, s.c. In distinction, the selective 5-HT(2B) antagonist, SB204,741 (0.63 and 10.0 mg/kg), the 5-HT(2B/2C) antagonist, SB206,553 (0.16 and 2.5 mg/kg) and the selective 5-HT(2C) antagonists, SB242,084 (2.5 and 10.0 mg/kg,) and RS102221 (2.5 and 10.0 mg/kg), did not significantly generalize. In conclusion, selective blockade of 5-HT(2A) receptors by MDL100,907 elicits a discriminative stimulus in rats which appears to be specifically mediated via 5-HT(2A) as compared with 5-HT(2B) and 5-HT(2C) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号