首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Although increasing evidence indicates that an adipokine adiponectin exerts protective actions on heart, its effects on coronary angiogenesis following pressure overload have not been examined previously. Because disruption of angiogenesis during heart growth leads to contractile dysfunction and heart failure, we hypothesized that adiponectin modulates cardiac remodeling in response to pressure overload through its ability to regulate adaptive angiogenesis. Adiponectin-knockout (APN-KO) and wild-type (WT) mice were subjected to pressure overload caused by transverse aortic constriction (TAC). APN-KO mice exhibited greater cardiac hypertrophy, pulmonary congestion, left ventricular (LV) interstitial fibrosis and LV systolic dysfunction after TAC surgery compared with WT mice. APN-KO mice also displayed reduced capillary density in the myocardium after TAC, which was accompanied by a significant decrease in expression of vascular endothelial growth factor (VEGF) and phosphorylation of AMP-activated protein kinase (AMPK). Inhibition of AMPK in WT mice resulted in aggravated LV systolic function, attenuated myocardial capillary density and decreased VEGF expression in response to TAC. The adverse effects of AMPK inhibition on cardiac function and angiogenic response following TAC were diminished in APN-KO mice relative to WT mice. Moreover, adenovirus-mediated VEGF delivery reversed the TAC-induced deficiencies in cardiac microvessel formation and ventricular function observed in the APN-KO mice. In cultured cardiac myocytes, adiponectin treatment stimulated VEGF production, which was inhibited by inactivation of AMPK signaling pathway. Collectively, these data show that adiponectin deficiency can accelerate the transition from cardiac hypertrophy to heart failure during pressure overload through disruption of AMPK-dependent angiogenic regulatory axis.  相似文献   

2.
Matrix metalloproteinases (MMPs) play an important role in the extracellular matrix remodeling. Experimental and clinical studies have demonstrated that MMP 2 and 9 are upregulated in the dilated failing hearts and involved in the development and progression of myocardial remodeling. However, little is known about the role of MMPs in mediating adverse myocardial remodeling in response to chronic pressure overload (PO). We, thus, hypothesized that selective disruption of the MMP 2 gene could ameliorate PO-induced cardiac hypertrophy and dysfunction in mice. PO hypertrophy was induced by transverse aortic constriction (TAC) in male MMP 2 knockout (KO) mice (n=10) and sibling wild-type (WT) mice (n=9). At 6 weeks, myocardial MMP 2 zymographic activity was 2.4-fold increased in WT+TAC, and this increase was not observed in KO+TAC, with no significant alterations in other MMPs (MMP 1, 3, 8, and 9) or tissue inhibitors of MMPs (1, 2, 3, and 4). TAC resulted in a significant increase in left ventricular (LV) weight and LV end-diastolic pressure (EDP) with preserved systolic function. KO+TAC mice exerted significantly lower LV weight/body weight (4.2+/-0.2 versus 5.0+/-0.2 mg/g; P<0.01), lung weight/body weight (4.9+/-0.2 versus 6.2+/-0.4 mg/g; P<0.01), and LV end-diastolic pressure (4+/-1 versus 10+/-2 mm Hg; P<0.05) than WT+TAC mice despite comparable aortic pressure. KO+TAC mice had less myocyte hypertrophy (cross-sectional area; 322+/-14 versus 392+/-14 microm2; P<0.01) and interstitial fibrosis (collagen volume fraction; 3.3+/-0.5 versus 8.2+/-1.0%; P<0.01) than WT+TAC mice. MMP 2 plays an important role in PO-induced LV hypertrophy and dysfunction. The inhibition of MMP 2 activation may, therefore, be a useful therapeutic strategy to manage hypertensive heart disease.  相似文献   

3.
Overexpression and activation of protein kinase C-epsilon (PKCepsilon) results in myocardial hypertrophy. However, these observations do not establish that PKCepsilon is required for the development of myocardial hypertrophy. Thus, we subjected PKCepsilon-knockout (KO) mice to a hypertrophic stimulus by transverse aortic constriction (TAC). KO mice show normal cardiac morphology and function. TAC caused similar cardiac hypertrophy in KO and wild-type (WT) mice. However, KO mice developed more interstitial fibrosis and showed enhanced expression of collagen Ialpha1 and collagen III after TAC associated with diastolic dysfunction, as assessed by tissue Doppler echocardiography (Ea/Aa after TAC: WT 2.1+/-0.3 versus KO 1.0+/-0.2; P<0.05). To explore underlying mechanisms, we analyzed the left ventricular (LV) expression pattern of additional PKC isoforms (ie, PKCalpha, PKCbeta, and PKCdelta). After TAC, expression and activation of PKCdelta protein was increased in KO LVs. Moreover, KO LVs displayed enhanced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), whereas p42/p44-MAPK activation was attenuated. Under stretch, cultured KO fibroblasts showed a 2-fold increased collagen Ialpha1 (col Ialpha1) expression, which was prevented by PKCdelta inhibitor rottlerin or by p38 MAPK inhibitor SB 203580. In conclusion, PKCepsilon is not required for the development of a pressure overload-induced myocardial hypertrophy. Lack of PKCepsilon results in upregulation of PKCdelta and promotes activation of p38 MAPK and JNK, which appears to compensate for cardiac hypertrophy, but in turn, is associated with increased collagen deposition and impaired diastolic function.  相似文献   

4.
5.
BACKGROUND: Beta-adrenergic signaling is downregulated in the failing heart, and the significance of such change remains unclear. METHODS AND RESULTS: To address the role of beta-adrenergic dysfunction in heart failure (HF), aortic stenosis (AS) was induced in wild-type (WT) and transgenic (TG) mice with cardiac targeted overexpression of beta(2)-adrenergic receptors (ARs), and animals were studied 9 weeks later. The extents of increase in systolic arterial pressure (P<0.01 versus controls), left ventricular (LV) hypertrophy (TG, 94+/-6 to 175+/-7 mg; WT, 110+/-6 to 168+/-10 mg; both P<0.01), and expression of ANP mRNA were similar between TG and WT mice with AS. TG mice had higher incidences of premature death and critical illness due to heart failure (75% versus 23%), pleural effusion (81% versus 45%), and left atrial thrombosis (81% versus 36%, all P<0.05). A more extensive focal fibrosis was found in the hypertrophied LV of TG mice (P<0.05). These findings indicate a more severe LV dysfunction in TG mice. In sham-operated mice, LV dP/dt(max) and heart rate were markedly higher in TG than WT mice (both P<0.01). dP/dt(max) was lower in both AS groups than in sham-operated controls, and this tended to be more pronounced in TG than WT mice (-32+/-5% versus -16+/-6%, P=0.059), although dP/dt(max) remained higher in TG than WT groups (P<0.05). CONCLUSIONS: Elevated cardiac beta-adrenergic activity by beta(2)-AR overexpression leads to functional deterioration after pressure overload.  相似文献   

6.
Transgenic (TG) mice with cardiac specific 200-fold overexpression of beta(2)-adrenoceptors (beta(2)-AR) have a facilitated development of heart failure following thoracic aortic constriction (TAC). We have studied the alterations of intracellular Ca(2+) transients and myocyte size in wild-type (WT) and TG mice after TAC. Cardiomyocytes were isolated from mice 9 weeks after TAC or sham operation, and incubated with Fura 2/AM. The Ca(2+) transients were determined by Spex dual wavelength Spectrometer during electrical stimulation. The cell size was also determined planimetrically. Cells of sham operated TG mice displayed higher systolic Ca(2+) amplitude than respective WT group (DeltaF(340)/F(380) ratio: 1.05+/-0.08 vs. 0.63+/-0.05; P<0.01), a finding in keeping with enhanced ventricular contractility in the TG mice. However, hypertrophied and failing myocytes of TG animals showed a fall in Ca(2+) transients from sham-operated control levels and there was no difference between TG and WT groups following TAC. In sham-operated groups, the cell size of TG mice was significantly bigger than in WT animals (3212+/-139 vs. 2605+/-162 microm(2); P<0.05). The cell size increased to a similar extent in both groups after TAC (4715+/-216 vs. 5027+/-365 microm(2), P=n.s.). In summary, hypertrophy of cardiomyocytes was present in beta(2)-AR TG mice under baseline conditions. A further hypertrophy occurred during pressure overload to an extent similar to that in WT animals. However, the increased intracellular Ca(2+) transient, seen in sham-operated TG mice, was no longer detectable following development of severe hypertrophy and heart failure. These findings provide explanation on the lack of hemodynamic benefit in beta(2)-AR TG mice subjected to pressure overload.  相似文献   

7.
BackgroundCombined angiotensin receptor/neprilysin inhibition with sacubitril/valsartan (Sac/Val) has emerged as a therapy for heart failure. The presumed mechanism of benefit is through prevention of natriuretic peptide degradation, leading to increased cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) signaling. However, the specific requirement of PKG for Sac/Val effects remains untested.Methods and ResultsWe examined Sac/Val treatment in mice with mutation of the cGMP-dependent protein kinase I (PKGI)α leucine zipper domain, which is required for cGMP-PKGIα antiremodeling actions in vivo. Wild-type (WT) or PKG leucine zipper mutant (LZM) mice were exposed to 56-day left ventricular (LV) pressure overload by moderate (26G) transaortic constriction (TAC). At day 14 after TAC, mice were randomized to vehicle or Sac/Val by oral gavage. TAC induced the same degree of LV pressure overload in WT and LZM mice, which was not affected by Sac/Val. Although LZM mice, but not WT, developed LV dilation after TAC, Sac/Val improved cardiac hypertrophy and LV fractional shortening to the same degree in both the WT and LZM TAC mice.ConclusionThese findings indicate the beneficial effects of Sac/Val on LV structure and function in moderate pressure overload. The unexpected finding that PKGIα mutation does not abolish the Sac/Val effects on cardiac hypertrophy and on LV function suggests that signaling other than natriuretic peptide– cGMP–PKG mediates the therapeutic benefits of neprilysin inhibition in heart failure.  相似文献   

8.
BACKGROUND: Aortic regurgitation (AR) causes left ventricular (LV) volume overload, leading to progressive LV dilatation and dysfunction. In the present study it was examined whether blockade of angiotensin II type 1 receptor (AT1) could improve survival in cases of chronic severe AR. METHODS AND RESULTS: AR was induced by puncturing the aortic valves of wild-type (WT) and AT1a knockout (KO) mice. Mice that survived for 4 weeks after the operation were deemed to be a model of chronic severe AR and were followed up for 50 weeks (WT, n=29; KO, n=31). Baseline measurements made 4 weeks after surgery showed similar LV cavity and function in both genotypes. These conditions progressively worsened in both genotypes, but 16 weeks after baseline, KO mice showed significantly less LV dilatation, hypertrophy and interstitial fibrosis than WT mice. Cardiac mRNA expression of B-type natriuretic peptide and type I collagen was lower in KO than WT mice. The 50-week mortality rate was significantly lower among KO (45.2%) than WT (86.2%) mice, and postmortem findings indicated that the lower mortality was attributable to a lower incidence of congestive heart failure. CONCLUSIONS: In cases of chronic severe AR, blockade of AT1 attenuates the progression of LV dilatation, hypertrophy and fibrosis, thereby mitigating heart failure and improving long-term survival.  相似文献   

9.
AMP-activated protein kinase (AMPK), is an important regulator of cardiac metabolism, but its role is not clearly understood in pressure overload induced hypertrophy. In addition, the relationship between AMPK and other important protein kinases such as p38 MAP kinase, Akt and Pim-1 is unclear. Thus we studied the time course of AMPK activity and phosphorylation of Thr-172 of its α-subunit during the development of cardiac hypertrophy. In parallel, we examined the expression and activation of key kinases known to be involved in cardiac hypertrophy that could interact with AMPK (i.e. p38 MAP kinase, Akt and Pim-1). Male C57BL/6J mice underwent sham or transverse aortic constriction (TAC) surgery and the hearts were harvested 2, 4, 6 and 8 weeks later. Despite significant left ventricular (LV) hypertrophy, LV dilation and impaired LV contractile function at all time points in TAC compared to sham mice, the activity and phosphorylation of AMPK were similar to sham. In contrast, p38 and Pim-1 protein expression was transiently increased in TAC mice at 2 and 4 weeks and at 2, 4 and 6 weeks, respectively. In addition, p38 activation by phosphorylation was also transiently increased at 2 to 6 weeks. There were no differences between sham and TAC mice in p38, Akt or Pim-1 at 8 weeks. In conclusion, TAC resulted in a transient up-regulation in the expression of p38 and Pim-1 despite no activation of AMPK or Akt.  相似文献   

10.
OBJECTIVE: Creatine kinase (CK) is responsible for the transport of high-energy phosphates in excitable tissue and is of central importance in myocardial energy homeostasis. Significant changes in myocardial energetics have been reported in mice lacking the various CK isoenzymes. Our hypothesis was that ablation of CK isoenzymes leads to cardiac hypertrophy, impaired function, and aggravation of left ventricular remodeling post-myocardial infarction. METHODS: CK-deficient mice (CK KO) were examined by cardiac magnetic resonance imaging (MRI) to determine left ventricular volumes, ejection fraction, and mass: ten wild-type (WT), 6 mitochondrial CK KO (Mito-CK-/-), 10 cytosolic CK KO (M-CK-/-), and 10 mice with combined KO (M/Mito-CK-/-). RESULTS: While ejection fraction was similar in all groups, there was significant LV dilatation with a approximately 30% increase in LV end-diastolic volumes in Mito-CK-/- and in M/Mito-CK-/-. Compared to WT, there was a striking 73% and 64% increase of LV mass in Mito-CK-/- and in M/Mito-CK-/- mice, respectively, but no significant increase of LV mass (+33%; p=n.s.) in M-CK-/-. Furthermore, significant re-expression of beta-MHC, a marker of myocardial hypertrophy, was found in all CK-deficient hearts. LV remodeling was investigated by MRI in hearts of 7 WT and 10 M/Mito-CK-/- mice 4 weeks postmyocardial infarction (MI). Four weeks post-LAD ligation (MI size approximately 32%), WT and M/Mito-CK-/- showed a similar degree of cardiac dysfunction, dilatation, and hypertrophy. CONCLUSION: Mito-CK-/- and M/Mito-CK-/- mice show significant LV dilatation and marked LV hypertrophy, but LV remodeling post-MI is not aggravated. CK ablation leads to substantial adaptational changes in heart.  相似文献   

11.
Cardiac hypertrophy occurs in many obesity-related conditions. Omentin is an adipose-derived plasma protein that is downregulated under obese conditions. Here, we investigated whether omentin modulates cardiac hypertrophic responses in vivo and in vitro. Systemic administration of an adenoviral vector expressing human omentin (Ad-OMT) to wild-type (WT) mice led to the attenuation of cardiac hypertrophy, fibrosis and ERK phosphorylation induced by transverse aortic constriction (TAC) or angiotensin II infusion. In cultured cardiomyocytes, stimulation with phenylephrine (PE) led to an increase in myocyte size, which was prevented by pretreatment with human omentin protein. Pretreatment of cardiomyocytes with omentin protein also reduced ERK phosphorylation in response to PE stimulation. Ad-OMT enhanced phosphorylation of AMP-activated protein kinase (AMPK) in the heart of WT mice after TAC operation. Blockade of AMPK activation by transduction with dominant-negative mutant forms of AMPK reversed the inhibitory effect of omentin on myocyte hypertrophy and ERK phosphorylation following PE stimulation. Moreover, fat-specific transgenic mice expressing human omentin showed reduced cardiac hypertrophy and ERK phosphorylation following TAC surgery compared to littermate controls. These data suggest that omentin functions to attenuate the pathological process of myocardial hypertrophy via the activation of AMPK in the heart, suggesting that omentin may represent a target molecule for the treatment of cardiac hypertrophy.  相似文献   

12.
Matrix metalloproteinase-mediated degradation of type I collagen may play a role in cardiac remodeling after strain or injury. To explore this hypothesis, we used mice homozygous (r/r) for a targeted mutation in Col1a1; these mice synthesize collagen I that resists collagenase cleavage at Gly975-Leu976. A total of 64 r/r and 84 littermate wild-type mice (WT) underwent experimental pressure overload by transverse aortic constriction (TAC) or myocardial infarction (MI). Echocardiographic, hemodynamic, and histological parameters were evaluated up to 12 weeks after TAC or 21 days after MI. At 4 weeks after TAC, collagen levels, wall thickness, and echocardiographic parameters were similar in the 2 groups. At 12 weeks after TAC, r/r mice had smaller LV dimensions (ESD: 2.7+/-0.2 mm WT versus 1.7+/-0.2 mm r/r, P<0.013; EDD: 3.8+/-0.2 mm WT versus 3.1+/-0.1 mm r/r, P<0.013); better fractional shortening (30+/-2% WT versus 46+/-4% r/r; P<0.013); and lower LV/body weight ratios (7.3+/-0.6 WT and 5.1+/-0.5 r/r; P<0.013). Surprisingly, these differences were not accompanied by differences in collagen accumulation, myocyte cross-sectional areas, wall thickness, or microvessel densities. Furthermore, no differences in LV remodeling assessed by echocardiography, fibrosis, or hemodynamic parameters were found between r/r and WT mice after MI. Thus, a mutation that encodes a collagenase cleavage-resistant collagen I does not affect early LV remodeling after TAC or MI, suggesting that collagen cleavage at this site is not the mechanism by which metalloproteinases mediate LV remodeling. Collagen cleavage could, however, have a role in preservation of cardiac function in late remodeling by mechanisms independent of collagen accumulation. We were not able to detect collagen cleavage fragments, and could not, therefore, rule out the possibility of collagen cleavage at additional sites.  相似文献   

13.
BACKGROUND: Pressure overload induces the cardiac expression of parathyroid hormone-related protein (PTHrP). Plasma levels are elevated in patients with heart disease. It is unknown whether this represents an epiphenomenon or suggests involvement in hypertrophy. AIM: To identify a potential role of PTHrP in pressure induced hypertrophy and heart failure. METHODS AND RESULTS: Pressure load was produced via thoracic aortic constriction (TAC) and application of a PTHrP antagonist (PTHrP(7-34)) via osmotic minipumps in mice. Main findings were confirmed in vitro by exposing isolated adult ventricular mice cardiomyocytes to PTHrP(1-34) (100 nmol/l). TAC treated animals developed myocardial hypertrophy within 2 weeks. The heart weight to body weight ratio increased from 5.02+/-0.14 mg/g (sham/vehicle) and 5.16+/-0.19 mg/g (sham/antagonist) to 6.59+/-0.85 mg/g (TAC/vehicle) and 7.07+/-0.80 mg/g (TAC/antagonist) (each n=6-8; p<0.05 for TAC vs. sham; not significantly different between TAC groups). In parallel, the expression of atrial natriuretic factor increased. Cardiac dysfunction (+dP/dt, -dP/dt), however, was significantly lower in TAC mice receiving the antagonist, and SERCA2 expression was higher. Isolated cardiomyocytes exposed to PTHrP(1-34) developed reduced cell shortening. This reduction in cell function was abolished in the co-presence of the antagonist. CONCLUSION: PTHrP contributes to the progression of cardiac dysfunction in the pressure overloaded heart.  相似文献   

14.
There is an association between obesity and heart failure associated with LV dysfunction. Adiponectin is an adipocyte-derived hormone that is downregulated in obesity. Here, we examined the role of adiponectin in cardiac remodeling after myocardial infarction with loss- and gain-of-function genetic manipulations in an experimental model. Myocardial infarction was created in adiponectin-deficient (APN-KO) and wild-type (WT) mice by the permanent ligation of the left anterior descending (LAD) artery. For some experiments, adenoviral vectors expressing adiponectin or beta-galactosidase were delivered systemically. Cardiac structure and function were assessed by echocardiographic and Millar catheter measurements. Myocardial capillary density was assessed by staining with anti-CD31 antibody. Myocyte apoptotic activity was determined by TUNEL-staining. Myocardial interstitial fibrosis was evaluated by Masson's trichrome staining. APN-KO mice showed exacerbated left ventricular (LV) dilation, myocyte hypertrophy and contractile dysfunction compared with WT mice at 4 weeks after LAD ligation. Impaired LV function in APN-KO mice was coupled to myocyte hypertrophy, increased apoptotic activity and interstitial fibrosis in the remote zone, and reduced capillary density in the infarct border zone. No difference in infarct size was observed between WT and APN-KO mice. Administration of adenovirus-mediated adiponectin in WT mice resulted in decreased LV dilatation and improved LV function that was associated with increased capillary density in the infarct border zone and decreased myocyte hypertrophy, diminished myocardial apoptosis and decreased interstitial fibrosis in the remote zone. These data suggest that adiponectin protects against the development of systolic dysfunction after myocardial infarction through its abilities to suppress cardiac hypertrophy and interstitial fibrosis, and protect against myocyte and capillary loss.  相似文献   

15.
16.
AMP activated protein kinase (AMPK) plays an important role in regulating myocardial metabolism and protein synthesis. Activation of AMPK attenuates hypertrophy in cultured cardiac myocytes, but the role of AMPK in regulating the development of myocardial hypertrophy in response to chronic pressure overload is not known. To test the hypothesis that AMPKalpha2 protects the heart against systolic overload-induced ventricular hypertrophy and dysfunction, we studied the response of AMPKalpha2 gene deficient (knockout [KO]) mice and wild-type mice subjected to 3 weeks of transverse aortic constriction (TAC). Although AMPKalpha2 KO had no effect on ventricular structure or function under control conditions, AMPKalpha2 KO significantly increased TAC-induced ventricular hypertrophy (ventricular mass increased 46% in wild-type mice compared with 65% in KO mice) while decreased left ventricular ejection fraction (ejection fraction decreased 14% in wild-type mice compared with a 43% decrease in KO mice). AMPKalpha2 KO also significantly exacerbated the TAC-induced increases of atrial natriuretic peptide, myocardial fibrosis, and cardiac myocyte size. AMPKalpha2 KO had no effect on total S6 ribosomal protein (S6), p70 S6 kinase, eukaryotic initiation factor 4E, and 4E binding protein-1 or their phosphorylation under basal conditions but significantly augmented the TAC-induced increases of p-p70 S6 kinase(Thr389), p-S6(Ser235), and p-eukaryotic initiation factor 4E(Ser209). AMPKalpha2 KO also enhanced the TAC-induced increase of p-4E binding protein-1(Thr46) to a small degree and augmented the TAC-induced increase of p-Akt(Ser473). These data indicate that AMPKalpha2 exerts a cardiac protective effect against pressure-overload-induced ventricular hypertrophy and dysfunction.  相似文献   

17.
Osteopontin (OPN), an extracellular matrix protein, is expressed in the myocardium with hypertrophy and failure. We tested the hypothesis that OPN plays a role in left ventricular (LV) remodeling after myocardial infarction (MI). Accordingly, OPN expression and LV structural and functional remodeling were determined in wild-type (WT) and OPN knockout (KO) mice 4 weeks after MI. Northern analysis showed increased OPN expression in the infarcted region, peaking 3 days after MI and gradually decreasing over the next 28 days. In the remote LV, OPN expression was biphasic, with peaks at 3 and 28 days. In situ hybridization and immunohistochemical analyses showed increased OPN mRNA and protein primarily in the interstitium. Infarct size, heart weight, and survival were similar in KO and WT mice after MI (P=NS), whereas the lung wet weight/dry weight ratio was increased in the KO mice (P<0.005 versus sham-operated mice). Peak LV developed pressure was reduced to a similar degree after MI in the KO and WT mice. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive myocytes was similar in KO and WT mice after MI. In contrast, post-MI LV chamber dilation was approximately twice as great in KO versus WT mice (P<0.001). Myocyte length increased after MI in WT mice (P<0.001) but not in KO mice. Electron microscopy showed increased collagen content in WT mice after MI but not in KO mice after MI. Type I collagen content was increased approximately 3-fold and approximately 7-fold in remote and infarcted regions, respectively, of WT hearts after MI but not in KO hearts (P<0.01 versus WT hearts). Likewise, Northern analyses showed increased collagen I(alpha(1)) mRNA after MI in remote regions of WT hearts but not in KO hearts. Thus, increased OPN expression plays an important role in regulating post-MI LV remodeling, at least in part, by promoting collagen synthesis and accumulation.  相似文献   

18.
19.
OBJECTIVE: Heart failure as a consequence of sustained hemodynamic overload is among the most prevalent diseases in developed countries. The aim of the present study was to investigate the specific role of endothelial nitric oxide synthase (eNOS) in pressure overload-induced left ventricular (LV) hypertrophy. METHODS AND RESULTS: Chronic pressure-overload LV hypertrophy was induced by abdominal aortic banding (AC) in wild-type (WT) and eNOS(-/-) mice. Six weeks after abdominal AC, the consequences of the sustained pressure overload on LV morphology and function were noninvasively and invasively assessed using echocardiography and a 1.4 F conductance catheter. Sham-operated eNOS(-/-) mice had significantly increased systolic blood pressure, slightly enhanced systolic function (preload recruitable stroke work) and normal diastolic function but no evidence of left ventricular hypertrophy when compared to sham-operated WT animals. AC resulted in a greater increase in anterior wall thickness in eNOS(-/-) mice (0.8+/-0.03 mm) compared to WT mice (0.7+/-0.03 mm; P<0.05). The LV end-diastolic diameter was unchanged by AC in eNOS(-/-) mice (sham: 3.8+/-0.1 mm, AC: 3.7+/-0.2 mm) but significantly increased in WT mice (sham: 3.9+/-0.1 mm, AC: 4.5+/-0.2 mm; P<0.05). Interstitial fibrosis and myocyte hypertrophy were greater in eNOS(-/-) than in WT mice after AC. AC in eNOS(-/-) mice caused a greater diastolic than systolic dysfunction compared to WT mice. CONCLUSION: Chronic pressure overload in eNOS(-/-) mice results in concentric LV hypertrophy without LV dilation and impaired systolic and diastolic function. These findings suggest that eNOS limits LV remodeling and dysfunction and modulates extracellular matrix proteins under chronic pressure overload.  相似文献   

20.
Oxidative stress plays an important role in the development of cardiac remodeling after myocardial infarction (MI), but the sources of oxidative stress remain unclear. We investigated the role of Nox2-containing reduced nicotinamide-adenine dinucleotide phosphate oxidase in the development of cardiac remodeling after MI. Adult Nox2(-/-) and matched wild-type (WT) mice were subjected to coronary artery ligation and studied 4 weeks later. Infarct size after MI was similar in Nox2(-/-) and WT mice. Nox2(-/-) mice exhibited significantly less left ventricular (LV) cavity dilatation and dysfunction after MI than WT mice (eg, echocardiographic LV end-diastolic volume: 75.7+/-5.8 versus 112.4+/-12.3 microL; ejection fraction: 41.6+/-3.7 versus 32.9+/-3.2%; both P<0.05). Similarly, in vivo LV systolic and diastolic functions were better preserved in Nox2(-/-) than WT mice (eg, LV dP/dt(max): 7969+/-385 versus 5746+/-234 mm Hg/s; LV end-diastolic pressure: 12.2+/-1.3 versus 18.0+/-1.8 mm Hg; both P<0.05). Nox2(-/-) mice exhibited less cardiomyocyte hypertrophy, apoptosis, and interstitial fibrosis; reduced increases in expression of connective tissue growth factor and procollagen 1 mRNA; and smaller increases in myocardial matrix metalloproteinase-2 activity than WT mice. These data suggest that the Nox2-containing reduced nicotinamide-adenine dinucleotide phosphate oxidase contributes significantly to the processes underlying adverse cardiac remodeling and contractile dysfunction post-MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号