首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Rapid acceleration-deceleration of an infant's head during intentional shaking should in theory exert stretch or shear forces upon the optic nerves sufficient to cause axonal injury. beta-Amyloid precursor protein (beta-APP) immunohistochemistry recently has been shown to be a highly effective method for identifying diffuse axonal injury in the brains of infants with shaken baby syndrome. In this study, we investigated the utility of beta-APP in identifying optic nerve damage in infants who have sustained fatal whiplash shaking. MATERIALS AND METHODS: beta-Amyloid precursor protein immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections of eyes (including optic disc and distal optic nerve) from infants less than 1 year of age with shaken baby syndrome (5 cases), combined shaken baby syndrome/blunt head trauma (3 cases), and "pure" blunt head trauma (1 case). Nontraumatic control cases included infants who died of suffocation (1 case), sudden infant death syndrome (1 case), and positional asphyxia (1 case) and an enucleation from a child with a retinoblastoma (1 case). Matched hematoxylin-eosin-and neurofilament-stained sections were used for comparison. RESULTS: Three of the 5 shaken baby cases and all 3 combined shaken baby/blunt head trauma cases had optic nerve axonal injury identified by the presence of strongly beta-APP-immunoreactive beaded or swollen axonal segments. Axonal injury could not be detected in the corresponding hematoxylin-eosin-or neurofilament-stained sections. Optic nerve axonal injury was not seen in the case involving pure blunt head trauma or in the nontraumatic control cases. CONCLUSIONS: Optic nerve axonal injury is a prominent feature of intentional fatal whiplash head trauma in infants less than 1 year of age. beta-Amyloid protein precursor immunohistochemistry appears to be the most effective method for demonstrating axonal damage in the optic nerve.  相似文献   

2.
Shaken baby syndrome refers to the constellation of nonaccidental injuries occurring in infants and young children as a consequence of violent shaking. The typical victim of shaken baby syndrome is a male infant younger than six months of age who is alone with the perpetrator at the time of injury. Occurrence of the syndrome is unrelated to race, gender, socioeconomic status, or education. The characteristic injuries observed in shaken baby syndrome include subdural hemorrhages, retinal hemorrhages, and fractures of the ribs or long bones. Although each of these injuries may result from violent shaking of the victim, the most severe brain injuries result from the addition of a forceful impact of the infant's or child's head against a firm surface. The unique anatomic features of the infant's head and skeletal system, which account for the type and pattern of injuries observed in shaken baby syndrome, are emphasized in this article. Anat. Rec. (New Anat.) 253:13–18, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
In the premature infant, periventricular leukomalacia, usually related to hypoxicischemic white matter damage, is the main cause of neurological impairment. We hypothesized that protracted prenatal hypoxia might induce white matter damage during the perinatal period. Pregnant Sprague-Dawley rats were placed in a chamber supplied with hypoxic gas (10% O2-90% N2) from embryonic day 5 (E5) to E20. Neonatal rat brains were investigated by histology, immunocytochemistry, western blotting, in situ hybridization, DNA fragmentation analysis, and in vivo magnetic resonance imaging (MRI). Body weight of pups subjected to prenatal hypoxia was 10 to 30% lower from P0 to P14 than in controls. Specific white matter cysts were detected between P0 and P7 in pups subjected to prenatal hypoxia, in addition to abnormal extra-cellular matrix, increased lipid peroxidation, white matter cell death detected by TUNEL, and increased activated macrophage counts in white matter. Subsequently, gliotic scars and delayed myelination primarily involving immature oligodendrocytes were seen. In vivo MRI with T1, T2, and diffusion sequences disclosed similar findings immediately after birth, showing strong correlations with histological abnormalities. We speculate that protracted prenatal hypoxia in rat induces white matter damage occurring through local inflammatory response and oxidative stress linked to re-oxygenation during the perinatal period.  相似文献   

4.
The brains from 12 babies up to 21/2 years of age, who died after repeated non-accidental injury to the head, were subjected to detailed neuropathological examination. The nine brains from infants under 5 months showed contusional tears--slit like lesions in the white matter surrounded by astrocytes and associated with evidence of old and recent haemorrhage. The three brains from infants over 5 months showed white matter lesions similar to those seen in adults after closed head injury, including damage in the dorsolateral quadrant of the brain stem without axonal hemispheric damage, which may have been a result of whiplash injury after shaking. In addition, all the brains examined showed diffuse gliosis. This paper draws attention to contusional tears and other white matter lesions, which the authors believe are manifestations of mechanical damage produced by trauma. The long term neurological and intellectual defects observed in patients suffering non-accidental injury early in life are increasingly being recognised, although it is difficult to identify the extent to which these are due to social or neuropathological factors. We suggest that the white matter damage we describe has an important role.  相似文献   

5.
目的:探讨胶质纤维酸性蛋白(GFAP)在宫内感染后低龄大鼠脑组织中的表达变化及其意义。方法: 对孕大鼠子宫内注入大肠杆菌建立宫内感染的大鼠模型,以子宫内注入生理盐水为对照组。两组分别于生后1、3、7、14及21 d取幼鼠脑组织,应用免疫组化方法检测脑组织中不同脑区GFAP的表达。结果: 生后1、3 d龄大鼠仅脑室旁白质区可见少许GFAP阳性细胞,两组细胞数无显著差异(P>0.05),其余脑区未见明显GFAP表达。感染组7日龄大鼠脑室旁白质和海马区GFAP阳性细胞数增多,与对照组比较差异显著(脑室旁白质区:9.73±3.55 vs 5.67±1.90,P<0.05;海马区:7.81±3.61 vs 2.16±1.11,P<0.05)。感染组14 d龄大鼠脑室旁白质、胼胝体及皮层区GFAP阳性细胞数增多,与对照组比较均有显著差异(脑室旁白质区:12.72±1.81 vs 9.00±0.93,P<0.01;胼胝体区:10.98±3.26 vs 4.44±1.15,P<0.01;皮层区:5.43±1.79 vs 2.71±0.67,P<0.01)。两组21 d龄大鼠各脑区GFAP阳性细胞数无显著差异(P>0.05)。结论: 宫内感染后低龄大鼠脑组织中GFAP表达增加。  相似文献   

6.
杜阳  姚琳丽  杨阳  高明  郝爱军 《解剖学报》2013,44(2):163-169
目的 探讨粒细胞集落刺激因子通过影响小胶质细胞的活化对缺氧导致的脑室周围白质损伤(PWMD)的保护作用。方法 将1d龄新生小鼠108只随机分为对照组、损伤组及治疗组,后两组经缺氧箱缺氧法制备脑室周围白质损伤模型,造模前及造模后2h给予治疗组存活鼠腹腔注射粒细胞集落刺激因子,之后每日1次,1d、3d、7d后各处死3组部分动物。取全脑切片进行免疫荧光双标检测小胶质细胞的募集以及炎性因子的分泌情况;取脑室周围白质,采用酶联免疫吸附剂测定法检测炎性因子分泌水平;利用RT-PCR法检测致炎因子和抑炎因子的分泌以及两类活化小胶质细胞的数量和比例变化情况;治疗组结束给药于7d,分别于5d、8d、10d、12d、30d进行神经行为学实验,观察其感觉运动功能的发育。结果 粒细胞集落刺激因子能够促进小鼠运动功能恢复,改善脑瘫症状,改变活化小胶质细胞中M1型细胞和M2型细胞的数量和比例,使促炎性因子分泌降低,抑炎因子及神经营养因子分泌升高,改善损伤导致的神经发育异常及神经行为缺陷。结论 利用粒细胞集落刺激因子干预脑室周围白质损伤可以抗炎,并可以诱导小胶质细胞向神经保护方向转化,调节炎性因子和神经营养因子的分泌。  相似文献   

7.
Periventricular leukomalacia (PVL) is the main cause of neurologic handicap in pre-term infants. The understanding of cellular and molecular mechanisms leading to white matter damage is critical for development of innovative therapeutic strategies for PVL.The pathogenesis of PVL remains unclear but possibly involves glutamate excitotoxicity as an important molecular pathway. We previously described a neonatal mouse model of excitotoxic white matter lesion mimicking human PVL. In the present study, we used this experimental tool to investigate the cellular populations and the glutamate receptor subtypes involved in excitotoxic white matter lesions. Combined immunohistochemical, electron microscopic, and cell death detection data revealed that microglial activation and astrocytic death were the primary responses of white matter to excitotoxic insult. In vitro experiments suggested that microglia activated by ibotenate released soluble factors that kill astrocytes. The use of selective agonists and antagonists of glutamate receptors revealed that N-methyl-D-aspartate (NMDA) receptor activation was essential and sufficient to produce cystic white matter lesions. NMDA receptor immunohistochemistry labeled microglial cells in the neonatal periventricular white matter. The developing white matter displayed a window of sensitivity to excitotoxic damage that was paralleled by the transient presence of NMDA receptor-expressing white matter cells. Assuming that similar pathophysiologic mechanisms are present in human pre- term infants, microglia and NMDA receptors could represent key targets for treatment of PVL.  相似文献   

8.
Umbilical cord occlusion causes fetal hypoxemia which can result in brain injury including damage to cerebral white matter. Excessive glutamate release may be involved in the damage process. This study examined the relation between extracellular glutamate levels in the cerebral white matter of the ovine fetus during and after intermittent umbilical cord occlusion and the degree of resultant fetal brain injury. Fetal sheep underwent surgery for chronic catheterisation and implantation of an intra-cerebral microdialysis probe at 130 days of gestation (term approximately 147 days). Four days after surgery (day 1), seven fetuses were subjected to 5x2 min umbilical cord occlusions, and on the following day (day 2) they were subjected to either 4 or 5x4 min umbilical cord occlusions; seven fetuses served as controls. Microdialysis samples were collected before, during and after the umbilical cord occlusions to determine extracellular glutamate levels in the cerebral white matter. Fetal blood gas status was measured and the fetal electrocorticogram was recorded continuously. During the periods of umbilical cord occlusions on both days 1 and 2, fetal arterial oxygen saturation, arterial partial pressure of oxygen and arterial pH decreased (P<0.05) while arterial partial pressure of carbon dioxide increased (P<0.05). All fetuses showed episodes of isoelectric electrocortical activity during umbilical cord occlusions on both days 1 and 2. In fetuses with patent microdialysis probes there were marked increases of glutamate efflux in the cerebral white matter following umbilical cord occlusion. Fetal brains were removed at autopsy on day 5 and subjected to histological assessment. Brain damage was observed in all fetuses exposed to cord occlusion, particularly in the periventricular white matter, with the most extensive damage occurring in the fetuses with the greatest increases in glutamate levels. We conclude that, in the unanesthetised fetus in utero, glutamatergic processes are associated with umbilical cord occlusion-induced brain damage in the cerebral white matter.  相似文献   

9.
目的研究中枢神经系统小胶质细胞(MG)正常发育尤其是少突胶质细胞前体细胞(OPCs)最易受损阶段的发育,探讨宫内感染早产鼠MG依赖的OPCs损伤机制。方法①观察正常C57B/L鼠不同胎龄(孕10、15d)和生后(0、5、10d)MG和OPCs在脑白质的发育分布情况,明确两者在发育和分布上的关联。②建立脂多糖(LPS)宫内感染新生鼠模型(宫内分别接种LPS5、10和20μg·mL-1为感染A-C组),以PBS溶液接种为对照组。以Tomato lectin作为静息状态MG标志,CD68作为活化MG的特殊抗体,O4+作为OPCs抗体,抗体浮片法进行免疫组化染色并计数分析。③Western blot法检测各组脑室周围白质组织Toll样受体-4(TLR-4)蛋白表达。④采用ELISA法检测各组MG活化后IL-2、TNF-α和SOD水平变化。结果①MG在孕10d胎鼠Tomato lectin表达低下,孕15d胎鼠表达显著增高,MG主要分布在脑室周围白质区域,灰质皮质几乎不表达。出生后,脑室周围白质区域MG的表达有所下降,灰质皮质的表达逐渐增高。②感染A-C组CD68+细胞数量均显著增加,与对照组差异有统计学意义(P〈0.01),但感染C组与B组CD68+细胞数量差异无统计学意义(P〉0.05)。与对照组比较,感染A-C组均可见O4+细胞数量显著性下降(P〈0.01),其中以感染C组下降最为明显。③对照组未检测到TLR-4蛋白表达,感染A-C组均可见LPS剂量依赖的TLR-4蛋白表达增加,与对照组差异有统计学意义(P〈0.05)。④随接种LPS剂量增大,IL-2和TNF-α水平较对照组呈显著增加趋势,SOD水平较对照组呈显著降低趋势。结论新生鼠发育依赖的MG在脑白质受损区域过度表达,表明活化MG起到本底激活效应,是早产儿脑白质损伤的物质基础。  相似文献   

10.
Diffuse axonal injury in head injury: definition, diagnosis and grading   总被引:97,自引:0,他引:97  
Diffuse axonal injury is one of the most important types of brain damage that can occur as a result of non-missile head injury, and it may be very difficult to diagnose post mortem unless the pathologist knows precisely what he is looking for. Increasing experience with fatal non-missile head injury in man has allowed the identification of three grades of diffuse axonal injury. In grade 1 there is histological evidence of axonal injury in the white matter of the cerebral hemispheres, the corpus callosum, the brain stem and, less commonly, the cerebellum; in grade 2 there is also a focal lesion in the corpus callosum; and in grade 3 there is in addition a focal lesion in the dorsolateral quadrant or quadrants of the rostral brain stem. The focal lesions can often only be identified microscopically. Diffuse axonal injury was identified in 122 of a series of 434 fatal non-missile head injuries--10 grade 1, 29 grade 2 and 83 grade 3. In 24 of these cases the diagnosis could not have been made without microscopical examination, while in a further 31 microscopical examination was required to establish its severity.  相似文献   

11.
The clinical course in the periventricular leukomalacia complex   总被引:1,自引:0,他引:1  
Intraventricular hemorrhage (IVH) and classical periventricular leukomalacia complex are considered the two most common forms of perinatal anoxic-ischemic brain injury. However, recently, a third entity, the periventricular leukomalacia complex (PLC) was described and was seen in 31 percent of 61 premature infants coming to autopsy from the University of Connecticut Neonatal Intensive Care Unit (NBIC) and in several other centers. Periventricular leukomalacia complex consists of necrotizing lesions of the periventricular white and grey matter, hippocampus and subiculum, cerebellum and basis pontis. The clinical course of PLC is similar to that of IVH, but it is important to differentiate PLC as the widespread nature of these lesions may lead to a poor neurological outcome.  相似文献   

12.
Periventricular leukomalacia (PVL) is the dominant form of brain injury in premature infants and no specific treatment is currently available. Neotrofin, a neurotrophin agonist, has been shown to provide neuroprotection in several in vivo and in vitro studies. The aim of this study was to investigate the neuroprotective effect of neotrofin treatment after endotoxin induced PVL in a rat model. Wistar rat pups were divided into four groups as: (1) control, (2) lipopolysaccharide (LPS)-administered group, (3) LPS-administered and prenatal maternal neotrofin-treated group and (4) LPS-administered and postnatal neotrofin-treated group. Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) was administered consecutively at the 18th and 19th embryonic days to establish endotoxin-induced PVL model. In the prenatal treatment group dams received an i.p. injection of neotrofin (60 mg/kg) following after the second LPS dose; and in the postnatal treatment group rat pups received i.p. injection of neotrofin (60 mg/kg) at birth. At P7, apoptosis and hypomyelination in periventricular white matter were evaluated by immunohistochemical assessments. The prenatal maternal neotrofin treatment significantly reduced the number of apoptotic cell death and greatly prevented LPS-stimulated loss of hypomyelinization. However, neotrofin treatment in the postnatal period was not as effective as intrauterine treatment. Given our results, neotrofin may be useful in reducing brain injury and possessing clinical relevance for the treatment of white matter injury in newborns.  相似文献   

13.
OBJECTIVE: Accurate identification of diffuse axonal injury is important in the forensic investigation of infants who have died from traumatic brain injury. beta-Amyloid precursor protein (beta-APP) immunohistochemical staining is highly sensitive in identifying diffuse axonal injury. However, the effectiveness of this method in brain-injured infants has not been well established. The present study was undertaken to assess the utility of beta-APP immunohistochemistry in detecting diffuse axonal injury in infants with either shaken baby syndrome or blunt head trauma. MATERIALS AND METHODS: Archival formalin-fixed, paraffin-embedded blocks from infants (<1 year old) with shaken baby syndrome (7 cases) and blunt head trauma (3) and blocks from 7 control cases that included nontraumatic cerebral edema (1), acute hypoxic-ischemic encephalopathy (1), and normal brain (5) were immunostained for beta-APP. A semiquantitative assessment of the severity of axonal staining was made. Corresponding hematoxylin-eosin-stained sections were examined for the presence of axonal swellings. RESULTS: Immunostaining for beta-APP identified diffuse axonal injury in 5 of 7 infants with shaken baby syndrome and 2 of 3 infants with blunt head trauma. Immunoreactive axons were easily identified and were present in the majority of the sections examined. By contrast, hematoxylineosin staining revealed axonal swellings in only 3 of 7 infants with shaken baby syndrome and 1 of 3 infants with blunt head trauma. Most of these sections had few if any visible axonal swellings, which were often overlooked on initial review of the slides. No beta-APP immunoreactivity was observed in any of the 7 control cases. CONCLUSIONS: Immunostaining for beta-APP can easily and reliably identify diffuse axonal injury in infants younger than 1 year and is considerably more sensitive than routine hematoxylin-eosin staining. We recommend its use in the forensic evaluation of infants with fatal craniocerebral trauma.  相似文献   

14.
Fan LW  Pang Y  Lin S  Rhodes PG  Cai Z 《Neuroscience》2005,133(1):159-168
Our previous studies have shown that intracerebral administration of endotoxin, lipopolysaccharide (LPS), induces selective white matter injury and hypomyelination in the neonatal rat brain and that the LPS-induced brain injury is associated with activation of microglia. To test the hypothesis that inhibition of microglial activation may protect against LPS-induced white matter injury, we examined roles of minocycline, a putative suppressor of microglial activation, on LPS-induced brain injury in the neonatal rat. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in postnatal day 5 Sprague-Dawley rats and control rats were injected with sterile saline. Minocycline (45 mg/kg) was administered intraperitoneally 12 h before and immediately after LPS injection and then every 24 h for 3 days. Inflammatory responses, activation of microglia and brain injury were examined 1 and 3 days after LPS injection. LPS injection resulted in brain injury in selective brain areas, including bilateral ventricular enlargement, cell death at the sub- and periventricular areas, loss of O4+ and O1+ oligodendrocyte (OL) immunoreactivity and hypomyelination, as indicated by decreased myelin basic protein immunostaining, in the neonatal rat brain. Minocycline administration significantly attenuated LPS-induced brain injury in these rat brains. The protective effect of minocycline was associated with suppressed microglial activation as indicated by the decreased number of activated microglial cells following LPS stimulation and with consequently decreased elevation of interleukin 1beta and tumor necrosis factor-alpha concentrations induced by LPS and a reduced number of inducible nitric oxide synthase expressing cells. Protection of minocycline was also linked with the reduction in LPS-induced oxidative stress, as indicated by 4-hydroxynonenal positive OLs. The overall results suggest that reduction in microglial activation may protect the neonatal brain from LPS-induced white matter injury and inhibition of microglial activation might be an effective approach for the therapeutic treatment of infection-induced white matter injury.  相似文献   

15.
An illustrative case of diffuse axonal injury (DAI) emphasizes features that help to separate focal outer head trauma owing to blows and/or falls from angular acceleration head injuries associated with diffuse inner brain lesions. In the past, explaining significant neurological deficits and death as the result of diffuse closed head trauma received from high-speed automobile accidents has been difficult as well as confusing. The long-term consequences from such diffuse inner cerebral trauma are still poorly defined. Head injuries sustained in automobile accidents have been associated with diffuse brain damage characterized by axonal injury at the moment of impact. The reported victim of a motor vehicle accident showed post-mortem findings for both inner cerebral trauma and focal outer cerebral damage. The diffuse degeneration of cerebral white matter is associated with sagittal and lateral acceleration with centroaxial trauma and has a different pathogenesis from outer focal head trauma, typified by subdural hematomas and coup injuries. Unlike outer cerebral injury, over 50 percent of victims with diffuse axonal injury die within two weeks. These individuals characteristically have no lucid interval and remain unconscious, vegetative, or severely disabled until death. Compared to head trauma victims without diffuse axonal injury, there is a lower incidence of skull fractures, subdural hemorrhages, or other intracranial mass effect as well as outer brain contusions. Primary brainstem injuries often demonstrated at autopsy are seen in the reported victim. Diffuse axonal injury is produced by various angles of acceleration with prolonged acceleration/deceleration usually accompanying traffic accidents. Less severe diffuse axonal injury causes concussion.  相似文献   

16.
The effect of the respiratory stimulant, doxapram, on white matter damage was investigated in neonatal rats under cerebral ischemia. Five-day-old rats underwent bilateral carotid artery occlusion with or without 50 mg/kg i.p. of doxapram. Their brains were neuropathologically examined 48 h later. Doxapram induced about a 20% decrease of PCO(2) for 90 min, but did not cause any neuropathological abnormalities. Bilateral carotid artery occlusion resulted in mild cerebrocortical lesions in 67% of pups, and white matter lesions in the internal capsule in 44%. Doxapram, in addition to bilateral carotid artery occlusion, produced more severe white matter injury in the internal capsule (injury score; 0.67+/-0.87 vs. 1.70+/-0.48, P<0.05) and in the subcortical white matter (0.33+/-0. 67 vs. 1.10+/-0.54, P<0.05). These results demonstrated that the use of doxapram under an ischemic condition accentuates white matter damage in neonatal rats.  相似文献   

17.
Hereditary retinal vasculopathy with cerebral white matter lesions   总被引:2,自引:0,他引:2  
We report on a syndrome of progressive visual loss and leukoencephalopathy affecting several relatives. Affected individuals had evidence of retinal vasculopathy on fluorescein angiogram and periventricular white matter lesions on brain magnetic resonance imaging. The clinical manifestations in this family suggest transmission of an autosomal dominant vasculopathy affecting both retinal and intracranial vessels.  相似文献   

18.
Fan LW  Mitchell HJ  Rhodes PG  Cai Z 《Neuroscience》2008,151(3):737-744
Although white matter damage is a fundamental neuropathological feature of periventricular leukomalacia (PVL), the motor and cognitive deficits observed later in infants with PVL indicate the possible involvement of cerebral neuronal dysfunction. Using a previously developed rat model of white matter injury induced by cerebral lipopolysaccharide (LPS) injection, we investigated whether LPS exposure also results in neuronal injury in the neonatal brain and whether alpha-phenyl-n-tert-butyl-nitrone (PBN), an antioxidant, offers protection against LPS-induced neuronal injury. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in Sprague-Dawley rats (postnatal day 5) and control rats were injected with sterile saline. LPS exposure resulted in axonal and neuronal injury in the cerebral cortex as indicated by elevated expression of beta-amyloid precursor protein, altered axonal length and width, and increased size of cortical neuronal nuclei. LPS exposure also caused loss of tyrosine hydroxylase positive neurons in the substantia nigra and the ventral tegmental areas of the rat brain. Treatments with PBN (100 mg/kg) significantly reduced LPS-induced neuronal and axonal damage. The protection of PBN was associated with an attenuation of oxidative stress induced by LPS as indicated by the reduced number of 4-hydroxynonenal, malondialdehyde or nitrotyrosine positive cells in the cortical area following LPS exposure, and with the reduction in microglial activation stimulated by LPS. The finding that an inflammatory environment may cause both white matter and neuronal injury in the neonatal brain supports the possible anatomical correlate for the intellectual deficits and the other cortical and deep gray neuronal dysfunctions associated with PVL. The protection of PBN may indicate the potential usefulness of antioxidants for treatment of these neuronal dysfunctions.  相似文献   

19.
20.
The immunopathology of multiple sclerosis: an overview   总被引:2,自引:0,他引:2  
Multiple sclerosis (MS) is traditionally seen as an inflammatory demyelinating disease, characterized by the formation of focal demyelinated plaques in the white matter of the central nervous system. In this review we describe recent evidence that the spectrum of MS pathology is much broader. This includes demyelination in the cortex and deep gray matter nuclei, as well as diffuse injury of the normal-appearing white matter. The mechanisms responsible for the formation of focal lesions in different patients and in different stages of the disease as well as those involved in the induction of diffuse brain damage are complex and heterogeneous. This heterogeneity is reflected by different clinical manifestations of the disease, such as relapsing or progressive MS, and also explains at least in part the relation of MS to other inflammatory demyelinating diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号