首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight female games players (GP) and eight female endurance athletes (EA) ran intermittently at high-intensity and for prolonged periods in hot (30°C) and moderate (16°C) ambient temperatures. The subjects performed a two-part (A, B) test based on repeated 20-m shuttle runs. Part A comprised 60 m of walking, a maximal 15-m sprint, 60 m of cruising (90% maximal oxygen uptake, O2max) and 60 m of jogging (45% O2max) repeated for 75 min with a 3-min rest every 15 min. Part B involved an exercise and rest pattern of 60-s running at 100% O2max and 60-s rest which was continued until fatigue. Although the GP and EA did not respond differently in terms of distances completed, performance was 25 (SEM 4)% less (main effect trial, P < 0.01) in the hot (HT) compared with the moderate trial (MT). Sprints of 15 m took longer to complete in the heat (main effect, trial, P < 0.01), and sprint performance declined during HT but not MT (interaction, trial × time, P < 0.01). A very high correlation was found between the rate of rise in rectal temperature in HT and the distance completed [GP, r =−0.94, P < 0.01; EA (n = 7), r = −0.93, P < 0.01]. Blood lactate [La ]b and plasma ammonia [NH3]p1 concentrations were higher for GP than EA, but were similar in HT and MT [La ]b, HT: GP vs EA, 8.0 (SEM 0.9) vs 4.9 (SEM 1.1) mmol · l−1; MT: GP vs EA, 8.0 (SEM 1.3) vs 4.4 (SEM 1.2) mmol · l−1; interaction, group × time, P < 0.01; [NH3]p1, HT: GP vs EA, 70.1 (SEM 12.7) vs 43.2 (SEM 6.1) mmol · l−1; MT: GP vs EA, 76.8 (SEM 8.8) vs 32.5 (SEM 3.8) μmol · l−1; interaction, group × time, P < 0.01. Ad libitum water consumption was higher in HT [HT: GP vs EA, 18.9 (SEM 2.9) vs 13.5 (SEM 1.7) ml · kg−1 · h−1; MT: GP vs EA, 12.7 (SEM 3.7) vs 8.5 (SEM 1.5) ml · kg−1 · h−1; main effect, group, n.s.; main effect, trial, P < 0.01]. These results would suggest that elevated body temperature is probably the key factor limiting performance of prolonged, intermittent, high-intensity running when the ambient temperature is high, but not because of its effect on the metabolic responses to exercise. Accepted: 19 July 1999  相似文献   

2.
The aim of this study was to determine the effects of drafting behind another swimmer on the metabolic response and stroke characteristics. Six highly trained male triathletes performed two maximal 400-m swims, one in a drafting (D) and one in a non-drafting condition (ND). Their metabolic response was assessed by measuring the oxygen uptake (O2) and the blood lactate concentration at the end of each 400 m. Swimming velocity, stroke frequency, stroke length, and stroke index (velocity multiplied by stroke length) were recorded every 50 m. In the D and ND conditions, there was no difference in O2 [66.7 (1.7) ml · kg−1 · min−1 vs 65.6 (1.2) ml · kg−1 · min−1, respectively], however, the lactate concentrations were lower in D than in ND [9.6 (0.9) mM vs 10.8 (0.9) mM, respectively, P < 0.01]. In D, the performance [1.39 (0.02) m · s−1 vs 1.34 (0.02) m · s−1, respectively, P < 0.01] and the stroking parameters (i.e., stroke length and stroke index) increased significantly, while the stroke frequency remain unchanged. In D, a stable pace was maintained, while in ND, velocity decreased significantly throughout the 400 m. In D, the performance gains were related to the 400-m D velocity (r=0.78, P < 0.05), and to the body fat mass (BFM, r=0.99, P < 0.01). The stroke index in D was also related to BFM (r=0.78, P < 0.05). Faster and leaner swimmers achieved greater performance gains and stroke index when drafting. Thus, drafting during swimming increases the performance and contributes to the maintenance of stable stroking parameters such as stroke frequency and stroke length during a 400-m swim. Accepted: 10 April 2000  相似文献   

3.
The energy cost of front-crawl swimming (Cs, kJ · m−1) at maximal voluntary speeds over distances of 50, 100, 200 and 400 m, and the underwater torque (T′) were assessed in nine young swimmers (three males and six females; 12–17 years old). Cs was calculated from the ratio of the total metabolic energy (E s, kJ) spent to the distance covered. E s was estimated as the sum of the energy derived from alactic (AnAl), lactic (AnL) and aerobic (Aer) processes. In turn, AnL was obtained from the net increase of lactate concentration after exercise, AnAl was assumed to amount to 0.393 kJ · kg−1 of body mass, and Aer was estimated from the maximal aerobic power of the subject. Maximal oxygen consumption was calculated by means of the back-extrapolation technique from the oxygen consumption kinetics recorded during recovery after a 400-m maximal trial. Underwater torque (T′, N · m), defined as the product of the force with which the feet of a subject lying horizontally in water tends to sink times the distance from the feet to the center of volume of the lungs, was determined by means of an underwater balance. Cs (kJ · m−1) turned out to be a continuous function of the speed (v, m · s−1) in both males (Cs=0.603 · 100.228 v , r 2=0.991; n=12) and females (Cs=0.360 · 100.339 v , r 2=0.919; n=24). A significant relationship was found between T′ and Cs at 1.2 m · s−1; Cs=0.042T′ + 0.594, r=0.839, n=10, P < 0.05. On the contrary, no significant relationships were found between Cs and T′ at faster speeds (1.4 and 1.6 m · s−1). This suggests that T′ is a determinant of Cs only at speeds comparable to that maintained by the subjects over the longest, 400-m distance [mean (SD) 1.20 (0.07) m · s−1]. Accepted: 25 August 2000  相似文献   

4.
The metabolic and drag responses, together with the distance between the draftee and the leader, were studied in six female triathletes swimming behind a lead swimmer who used either a two- or a six-beat kick, at an average velocity of 1.24 m · s−1 (range 1.20–1.31). Drag was measured by passive towing. Oxygen consumption [49.1 (3.8) versus 50.4 (5.0) ml · min−1 · kg−1], blood lactate [6.7 (2.3) versus 6.8 (1.9) mM], heart rate [172 (13.6) versus 173.5 (12.5) beats · min−1), rating of perceived exertion [13.7 (1.2) versus 13.5 (1.0)], stroke rate [38.3 (1.5) versus 39.5 (1.4) cycle · min−1], stroke length [1.95 (0.09) versus 1.89 (0.15) m · cycle−1] were not statistically different between the two-beat and the six-beat kick situations. The energy cost of swimming per unit of distance [0.65 (0.06) versus 0.67 (0.08) ml O2 · m−1] and the passive drag were similar for both kicks. The distance separating the draftee from the lead swimmer was between 14 cm and 85 cm and was inversely correlated with passive drag: r=−0.82,P < 0.05, for the two-beat kick and r=−0.82, P <  0.05, for the six-beat kick. The higher the passive drag, the closer the hand of the draftee to the feet of the lead swimmer. It was of no more benefit to triathletes to draft behind a two-beat kick swimmer than behind a six-beat kick swimmer. Accepted: 10 April 2000  相似文献   

5.
The aim of the present study was to determine the effects of 40 km of cycling on the biomechanical and cardiorespiratory responses measured during the running segment of a classic triathlon, with particular emphasis on the time course of these responses. Seven male triathletes underwent four successive laboratory trials: (1) 40 km of cycling followed by a 10-km triathlon run (TR), (2) a 10-km control run (CR) at the same speed as TR, (3) an incremental treadmill test, and (4) an incremental cycle test. The following ventilatory data were collected every minute using an automated breath-by-breath system: pulmonary ventilation ( E, l · min−1), oxygen uptake (O2, ml · min−1 · kg−1), carbon dioxide output (ml · min−1), respiratory equivalents for oxygen ( E/O2) and carbon dioxide ( E/CO2), respiratory exchange ratio (R) respiratory frequency (f, breaths · min−1), and tidal volume (ml). Heart rate (HR, beats · min−1) was monitored using a telemetric system. Biomechanical variables included stride length (SL) and stride frequency (SF) recorded on a video tape. The results showed that the following variables were significantly higher (analysis of variance, P < 0.05) for TR than for CR: O2 [51.7 (3.4) vs 48.3 (3.9) ml · kg−1 · min−1, respectively], E [100.4 (1.4) l · min−1 vs 84.4 (7.0) l · min−1], E/O2 [24.2 (2.6) vs 21.5 (2.7)] E/CO2 [25.2 (2.6) vs 22.4 (2.6)], f [55.8 (11.6) vs 49.0 (12.4) breaths · min−1] and HR [175 (7) vs 168 (9) beats · min−1]. Moreover, the time needed to reach steady-state was shorter for HR and O2 (1 min and 2 min, respectively) and longer for E (7 min). In contrast, the biomechanical parameters, i.e. SL and SF, remained unchanged throughout TR versus CR. We conclude that the first minutes of the run segment after cycling in an experimental triathlon were specific in terms of O2 and cardiorespiratory variables, and nonspecific in terms of biomechanical variables. Accepted: 7 July 1997  相似文献   

6.
The present study included data from three marathon races to investigate the hypothesis that a relationship exists between running intensity and elevated concentrations of interleukin (IL)-6 in plasma. The study included a total of 53 subjects whose mean age was 30.6 [95% confidence interval (CI) 1.4] years, mean body mass 77.7 (95%CI 2.0) kg, mean maximal oxygen uptake (O2max) 59.3 (95%CI 1.4) ml · min−1 · kg−1, and who had participated in the Copenhagen Marathons of 1996, 1997 or 1998, achieving a mean running time of 206 (95%CI 7) min. Running intensity was calculated as running speed divided by O2max. The concentration of IL-6 in plasma peaked immediately after the run. There was a negative correlation between peak IL-6 concentration and running time (r=−0.30, P < 0.05) and a positive correlation between peak IL-6 concentration and running intensity (r=0.32, P < 0.05). The IL-1 receptor antagonist (IL-1ra) plasma concentration peaked 1.5 h after the run and there was a positive correlation between the peak plasma concentrations of IL-6 and IL-1ra (r=0.39, P < 0.01). Creatine kinase (CK) plasma concentration peaked on the 1st day after the run, but no association was found between peak concentrations of IL-6 and CK. In conclusion, the results confirmed the hypothesized association between plasma IL-6 concentration and running intensity, but did not confirm the previous finding of a connection between IL-6 plasma concentration and muscle damage. Accepted: 6 August 2000  相似文献   

7.
It is generally assumed that exercise and shivering are analogous processes with regard to substrate utilisation and that, as a consequence, exercise can be used as a model for shivering. In the present study, substrate utilisation during exercise and shivering at the same oxygen consumption (O2) were compared. Following an overnight fast, eight male subjects undertook a 2-h immersion in cold water, designed to evoke three different intensities of shivering. At least 1 week later they undertook a 2-h period of bicycle ergometry during which the exercise intensity was varied to match the O2 recorded during shivering. During both activities hepatic glucose output (HGO), the rate of glucose utilisation (Rd), blood glucose, plasma insulin, free fatty acid (FFA) and beta-hydroxybutyrate (B-HBA) concentrations were measured. The O2 measured during the different levels of shivering averaged 0.49 l · min−1 (level 1: low), 0.6 l · min−1 (level 2: low-moderate), and 0.9 l · min−1 (level 3: moderate), and corresponded closely to the levels measured during exercise. HGO and Rd were greater (P < 0.05) during exercise than during shivering at the same O2 (9.5% and 14.7%, respectively). The average (SD) HGO during level 3 exercise was 3.0 (0.91) mg · kg−1 . min−1 compared to 2.76 (1.0) mg · kg−1 . min−1 during shivering. The values for Rd were 3.06 (0.98) mg · kg−1 · min−1 during level 3 exercise and 2.68 (0.82) mg · kg−1 · min−1 during shivering. Blood glucose levels did not differ between conditions, averaging 5.4 (0.3) mmol . l−1 over all levels of shivering and 5.2 (0.3) mmol · l−1 during exercise. Plasma FFA and B-HBA were higher (P < 0.01) during shivering than during corresponding exercise (12.3% and 33.3%, respectively). FFA averaged 0.61 (0.2) mmol · l−1 over all levels of shivering and 0.47 (0.16) mmol · l−1 during exercise. The figures for B-HBA were 0.44 (0.13) mmol · l−1 during all levels of shivering and 0.32 (0.1) mmol · l−1 during exercise. Plasma insulin was higher (P < 0.05) during level 2 and 3 shivering compared to corresponding exercise; at these levels the average value for plasma insulin was 95.9 (21.9) pmol · l−1 during shivering and 80.6 (16.1) pmol · l−1 during exercise. On the basis of the present findings it is concluded that, with regard to substrate utilisation, shivering and exercise of up to 2 h duration should not be regarded as analogous processes. Accepted: 12 February 1997  相似文献   

8.
The purpose of this study was to examine the physiological effects of 3000-m swimming on subsequent 3-h cycling time trial performance in ultraendurance triathletes. Eight highly trained ultraendurance triathletes [mean (SEM) age 34 (2) years, body fat 12.5 (0.8)%, maximum oxygen consumption 63.2 (2.1) ml · kg−1 · min−1] completed two randomly assigned trials 1 week apart. The swim/bike trial (SB) involved 3000 m of swimming [min:s 52:28 (1:48)] immediately followed by a 3-h cycling performance at a self-selected time-trial pace. The control trial (CON) consisted of an identical 3-h cycling time trial but without prior swimming. Subjects consumed an 8% carbohydrate (CHO)/electrolyte beverage during both trials at the rate of 60 g CHO · h−1 and 1 l · h−1. No significant differences were evident between CON and SB on the dependent measures (CON vs SB): power output [, 222 (14) W vs 212 (13) W], heart rate [f c, 147 (5) beats · min−1 vs 143 (4) beats · min−1; %f cmax 80.0 (1.6)% vs 78.4 (1.5)%], oxygen uptake [3.10 (0.12) l · min−1 vs 2.97 (0.15) l · min−1], minute ventilation [82.5 (4.4) l · min−1 vs 77.3 (3.7) l · min−1], rating of perceived exertion [14.6 (0.4) vs 14.0 (0.1)], blood lactate [6.1 (0.5) mmol · l−1 vs 4.8 (0.5) mmol · l−1], and blood glucose [5.0 (0.2) mmol · l−1 vs 5.3 (0.1) mmol · l−1; all non-significant at the P > 0.05 level]. However, the CON respiratory exchange ratio was significantly greater than for SB [0.91 (0.01) vs 0.89 (0.01); P < 0.05], suggesting that the SB trial required a greater reliance on lipid as a fuel substrate. Hence, the main finding in the present study was that 3000 m of swimming had no significant performance effect (in terms of ) on subsequent 3-h cycling performance in ultraendurance triathletes. Accepted: 2 March 2000  相似文献   

9.
An evaluation of mechanical power during walking and running in humans was undertaken after developing a specially designed running ergometer (RE) in which the subjects gripped the handlebar in front of them keeping both arms straight and in a horizontal position. Ten subjects participated in comparisons of the mean horizontal pushing force (MF am) on the handlebar with the mean horizontal ground reaction force (MF fp) recorded by force platform under the RE during five different constant speeds of walking or running and sprint running with maximal effort. Mechanical power developed during sprint running on the RE was compared with a 50 m sprint. Mean linear velocity (Mv) of the RE belt was recorded by the rotary encoder attached to the axis of the belt. Mean mechanical power calculated from the handlebar setting (MP am=MF am × Mv) was compared to that calculated from force platform recordings (MP fp=MF fp × Mv). A high test-retest reproducibility was observed for both MF fp (r=0.889) and MF am (r=0.783). Larger values for the coefficient of variation for MF am (11.3%–15.8%) were observed than for MF fp (3.3%–8.2%). The MP am, which were obtained from five different constant speeds of walking, running and sprint running were closely correlated to those of MP fp (y=0.98x − 19.10,r=0.982, P < 0.001). In sprint running, MP am was 521.7 W (7.67 W · kg−1) and was correlated to the 50 m sprint time (r=−0.683, P < 0.01). It is concluded that the newly developed RE was useful in the estimation of mechanical power output during human locomotion such as when walking, jogging and sprinting. Accepted: 10 October 2000  相似文献   

10.
Physiological predictors of flat-water kayak performance in women   总被引:1,自引:0,他引:1  
This study was conducted to investigate the relationship between selected physiological variables and 500-m flat-water kayak (K500) performance. Nine female, high-performance kayak paddlers, mean (SD) age 23 (5) years, participated in this investigation. Testing was conducted over 6 days and included anthropometric measurements (height, body mass and skinfolds), an incremental test to determine both peak O2 and the “anaerobic threshold” (Than), and a 2-min, all-out test to calculate accumulated oxygen deficit (AOD). Blood lactate concentrations were measured during the incremental test and at the completion of both tests. Subjects also completed a K500 race under competition conditions. K500 time was significantly correlated with both peak O2 (r=−0.82, P < 0.05) and the power output achieved at the end of the incremental test (r=−0.75, P < 0.05). However, the variable most strongly correlated with K500 time was Than (r=−0.89, P < 0.05). A stepwise multiple regression, for which r=0.95 and the standard error of estimate=1.6 s, yielded the following equation: K500time(s)=160.60.154×AOD·kg−1−0.250 × Than. In conclusion, the results of this study have demonstrated that although K500 performance is a predominantly aerobic activity, it does require a large anaerobic contribution. The importance of both the aerobic and anaerobic energy systems is reflected by the K500 time being best predicted by a linear combination of Than and AOD · kg−1. This suggests the need to develop and implement training programmes that develop optimally both of these physiological attributes. Further research is required to elucidate the most effective means by which to develop both the aerobic and anaerobic energy systems. Accepted: 29 December 1999  相似文献   

11.
Oxygen consumption at steady state (V˙O 2, l · min−1) and mechanical power (, W) were measured in five subjects riding a human-powered vehicle (HPV, the Karbyk, a four-wheeled recumbent cycle) on a flat concrete road at constant sub-maximal speeds. The external mechanical work spent per unit of distance (W, J · m−1), as calculated from the ratio of to the speed (v, m · s−1), was found to increase with the square of v: =8.12+(0.262 ·v 2) (r=0.986, n=31), where the first term represents the mechanical energy wasted, over a unit of distance, against frictional forces (rolling resistance, Rr), and the second term (k · v 2) is the work performed, per unit distance, to overcome the air drag. The rolling coefficient (Cr, obtained dividing Rr by m · g, where m is the overall mass and g is the acceleration of gravity) amounted to [mean (SD)] 0.0084 (0.0008), that is about 60% higher than that of a racing bicycle. The drag coefficient was calculated from the measured values of k, air density (ρ) and frontal area (A) [Cx=k · (0.5 · A · ρ)−1], and amounted to 1.067 (0.029), that is about 20% higher than that of a racing bicycle. The energy cost of riding the HPV (Ck, J · m−1) was measured from the ratio of metabolic power above rest (net V˙O 2, expressed in J · s−1) to the speed (v, m · s−1); the value of this parameter increased with the square of v, as described by: Ck=61.45 + (0.675 · v 2) (r=0.711, n=23). The net mechanical efficiency (η) was calculated from the ratio of W to Ck: over the investigated speed range this turned out to be 0.22 (0.021). Best performance times (BPTs) of a “typical”élite athlete riding the Karbyk were calculated over the distances of 1, 5 and 10 km: these were about 8% longer than the BPTs calculated, on the same subjects, when riding a conventional racing bicycle. Accepted: 7 August 2000  相似文献   

12.
Prediction equations of shivering metabolism are critical to the development of models of thermoregulation during cold exposure. Although the intensity of maximal shivering has not yet been predicted, a peak shivering metabolic rate (Shivpeak) of five times the resting metabolic rate has been reported. A group of 15 subjects (including 4 women) [mean age 24.7 (SD 6) years, mean body mass 72.1 (SD 12) kg, mean height 1.76 (SD 0.1) m, mean body fat 22.3 (SD 7)% and mean maximal oxygen uptake (O2max) 53.2 (SD 9) ml O2 · kg−1 · min−1] participated in the present study to measure and predict Shivpeak. The subjects were initially immersed in water at 8°C for up to 70 min. Water temperature was then gradually increased at 0.8 °C · min−1 to a value of 20 °C, which it was expected would increase shivering heat production based on the knowledge that peripheral cold receptors fire maximally at approximately this temperature. This, in combination with the relatively low core temperature at the time this water temperature was reached, was hypothesized would stimulate Shivpeak. Prior to warming the water from 8 to 20 °C, the oxygen consumption was 15.1 (SD 5.5) ml · kg−1 · min−1 at core temperatures of approximately 35 °C. After the water temperature had risen to 20 °C, the observed Shivpeak was 22.1 (SD 4.2) ml O2 · kg−1 · min−1 at core and mean skin temperatures of 35.2 (SD 0.9) and 22.1 (SD 2.2) °C, respectively. The Shivpeak corresponded to 4.9 (SD 0.8) times the resting metabolism and 41.7 (SD 5.1)% of O2max. The best fit equation predicting Shivpeak was Shivpeak (ml O2 · kg−1 · min−1)=30.5 + 0.348 ×O2max (ml O2 · kg−1 · min−1) − 0.909 × body mass index (kg · m−2) − 0.233 × age (years); (P=0.0001; r 2=0.872). Accepted: 7 September 2000  相似文献   

13.
Exercise decreases insulin resistance and increases maximal exercise capacity as estimated from maximal oxygen uptake (O2max). Recent reports have demonstrated that the mitochondrial DNA (mtDNA) content of blood is correlated with O2max in healthy subjects (mean age 31 years) and is inversely correlated with insulin resistance parameters. The aim of this study was to determine the effect of regular exercise on the mtDNA content in the peripheral blood of 16 healthy young women of mean age 24.8 (SD 6.2) years and 14 healthy older women of mean age 66.7 (SD 5.8) years. The exercise programme lasted for 10 weeks and consisted of three sessions a week, each of 1 h and aiming to attain 60%–80% of O2max. The mtDNA content of peripheral blood was measured by competitive polymerase chain reaction. The O2max had significantly increased following the exercise programme [from 33.1 (SD 3.4) to 35.2 (SD 3.4) ml · kg−1 · min−1 in the young and from 24.3 (SD 5.3) to 30.3 (SD 7.3) ml · kg−1 · min−1 in the older women, both P < 0.05]. Exercise decreased systolic blood pressure, and concentrations of triglyceride, low density lipoprotein-cholesterol (LDL-C), glucose and insulin in the blood of the young and of total cholesterol, LDL-C and glucose in that of the older women. High density lipoprotein-cholesterol (HDL-C) in the young women was increased by exercise. The mtDNA content significantly increased following the exercise programme in both groups [from 27.1 (SD 17.9) to 52.7 (SD 44.6) amol · 5 ng−1 genomic DNA in the young and from 15.3 (SD 10.2) to 32.1 (SD 30.0) amol · 5 ng−1 genomic DNA in the older women, both P < 0.05]. There was a significant positive correlation between the change in mtDNA content and the change in O2max (r=0.74 in the young and r=0.71 in the older women, both P < 0.01). In conclusion, 10 weeks of moderate intensity, regular exercise increased the mtDNA content in peripheral blood and decreased insulin resistance parameters. This data suggests that increase in the mtDNA content may be associated with increased insulin sensitivity. Accepted: 15 April 2000  相似文献   

14.
 To determine the effect of acute plasma volume (PV) expansion on substrate utilization, blood metabolites and catecholamines to prolonged, moderate intensity cycle exercise, eight untrained men mean maximal oxygen uptake,O2max 4.10 (SEM 0.32) l · min−1 were infused (10 ml·kg−1) with a 6% dextran (DEX) solution. These responses were also compared to those elicited using a short-term training (TR) protocol involving cycling for 90 to 120 min · day−1 at 60% O2max for 3 consecutive days. In general DEX, which resulted in a calculated expansion of PV by 23.9%, was without effect in modifying exercise oxygen uptake or the reduction in the respiratory exchange ratio (R) observed during prolonged exercise. In addition, the concentrations of blood glucose, glycerol, alanine and serum free fatty acids, although altered (P < 0.05) by exercise, were not altered by DEX. Blood lactate concentration was only higher (P < 0.05) at 30 min of exercise during DEX compared to the control. With the exception of blood lactate concentration, which was reduced (P < 0.05), TR did not change R or the concentrations of other blood metabolites. The concentrations of nonadrenaline and adrenaline, were depressed (P < 0.05) by DEX and TR at 60 and 90 min of exercise. These results would suggest that mechanisms as yet undefined can compensate for the estimated 10% reduction in arterial oxygen content mediated by acute PV expansion and enable prolonged exercise to be performed without adjustments in substrate selection and substrate mobilization. Accepted: 23 August 1996  相似文献   

15.
Cycling on Earth, in space, on the Moon   总被引:1,自引:0,他引:1  
The mechanical power for cycling (Pc) at constant ground speed (s), in the absence of wind on smooth hard terrain is the sum of the power dissipated against rolling resistance, gravity and air resistance: Pc=a · s + M · g · s · sin γ + b · s 3, where a and b are constants, M is the mass of the subject plus bike, g is the acceleration of gravity and γ is the angle of the terrain with the horizontal. The constant b depends upon the drag coefficient (Cd), the overall area projected on the frontal plane (A f), and the air density (ρa): b=0.5 · Cd · A f · ρa. In turn, ρa depends on air pressure (P B) and temperature (T): ρa0 · 0.359 · P B · T−1, where ρ0 is the air density at 760 mmHg (101.3 kPa) and 273 K. The metabolic power developed by the cyclist (Ė c) is related to Pc:Ė c=Pc·η−1, where η is the mechanical efficiency of cycling. The experimental values of a, b and η are fairly well known so that, if the maximal metabolic power as a function of the performance time is known for a given cyclist, the following set of data can be individually calculated: (1) best performances over any given distance and for any given altitude above sea level, (2) the effects of posture and body size on maximal speeds, and (3) the maximal incline of the terrain that can be overcome at any given speed or coasting speed for any given downslope. The above set of information makes it possible also to calculate the characteristics of a “Twin Bikes System” (TBS) for preventing microgravity deconditioning during long-term space flight. The TBS consists of two bicycles that are mechanically coupled by a differential gearing, which move at the very same speed, but in the opposite sense, along the inner wall of a cylindrically shaped space module. The circular trajectories induce a centrifugal acceleration vector (a c) oriented along the head-to-feet direction of each subject: a c=v t 2 · r −1 where v t is the tangential velocity and r the radius of gyration, which is equal to the inner radius of the space module. So, any desired value of a c can be achieved by appropriately selecting v t, wherefrom the mechanical and metabolic powers that the astronauts must generate can be readily calculated. Experiments performed in a ground-based human centrifuge have shown that the discomfort derived from the rotating environment is reasonably low and well tolerated. If the appropriate atmospheric pressure is provided, cycling on circular or elliptical tracks may be useful to reduce cardiovascular deconditioning that occurs due to the reduced gravity in permanently manned lunar bases. Indeed, on the curved parts of the path a cyclist will generate a horizontal outward acceleration: a c=s 2 · r −1, where s is the velocity along the track and r is the radius of curvature. To counterbalance a c, the subject plus bike must lean inwards so that the vectorial sum of a c plus the lunar gravity (g L=1.62 m · s−2) is applied along a straight line that includes the centre of mass of the system and the point of wheel contact with the ground. For values of s from 10 to 20 m · s−1 and r from 50 to 200 m, this vectorial sum ranges from 1.05 to 5.03 g L (0.17–0.83 g). Accepted: 20 March 2000  相似文献   

16.
Low exercise-induced plasma adrenaline (A) responses have been reported in resistance-trained individuals. In the study reported here, we investigated the interaction between strength gain and neural adaptation of the muscles, and the plasma A response in eight healthy men during a short-term resistance-training period. The subjects performed 5 resistance exercises (E1–E5), consisting of 6 sets of 12 bilateral leg extensions performed at a 50% load, and with 2 days rest in between. Average electromyographic (EMG) signal amplitude was recorded before and after the exercises, from the knee extensor muscles in isometric maximal voluntary contraction (MVC) as well as during the exercises (aEMGmax and aEMGexerc, respectively). Total oxygen consumed during the exercises (O2tot) was also measured. All of the exercises were exhaustive and caused significant decreases in MVC (34–36%, P < 0.001). As expected, the concentric one-repetition maximum (1-RM), MVC and aEMGmax were all higher before the last exercise (E5) than before the first exercise (E1; 7, 9 and 19%, respectively, P < 0.05). In addition, in E5 the aEMGexerc:load and O2tot:load ratios were lower than in E1 (−5 and −14%, P < 0.05), indicating enhanced efficiency of the muscle contractions, However, the post-exercise plasma noradrenaline (NA) and A were not different in these two exercises [mean (SD) 10.2 (3.8) nmol · l−1 vs 11.3 (6.0) nmol · l−1, ns, and 1.2 (1.0) nmol · l−1 vs 1.9 (1.1) nmol · l−1, ns, respectively]. However, although NA increased similarly in every exercise (P < 0.01), the increase in A reached the level of statistical significance only in E1 (P < 0.05). The post-exercise A was also already lower in E2 [0.7 (0.7) nmol · l−1, P < 0.05) than in E1, despite the higher post-exercise blood lactate concentration than in the other exercises [9.4 (1.1) mmol · l−1, P < 0.05]. Thus, the results suggest that the observed attenuation in the A response can not be explained by reduced exercise-induced strain due to the strength gain and neural adaptation of the muscles. Correlation analysis actually revealed that those individuals who had the highest strength gain during the training period even tended to have an increased post-exercise A concentration in the last exercise as compared to first one (r=0.76, P < 0.05). Accepted: 10 February 2000  相似文献   

17.
The purpose of the present study was to investigate the effect of recruitment on the relationship between peak torque and physiological cross-sectional area (PCSA) in human muscle. A group of 11 healthy men participated in this study. Isokinetic knee extension torques at seven (0, 30, 60, 120, 180, 240, and 300° · s−1) velocities were determined. Magnetic resonance imaging (MRI) was performed to calculate PCSA of right quadriceps femoris (QF) muscle. Exercise-induced contrast shifts in spin-spin relaxation time (T2)-weighted MRI were taken at rest and immediately after repetitive knee-extension exercise and T2 of QF were calculated. The MRI pixels with T2 values more than 1 SD greater than the means at rest were considered to represent QF muscle that had contracted. The area of activated PCSA within the total in QF was expressed as percentage activated PCSA and used as an index of muscle recruitment. The PCSA correlated with peak torque at 0° · s−1 (r=0.615, P < 0.05); in contrast, activated PCSA correlated with peak torque at 120° · s−1 (r=0.603, P < 0.05) and 180° · s−1 (r=0.606, P < 0.05). Additionally, there was a significant difference in correlation coefficients between the activated PCSA-peak torque relationship and the PCSA-torque relationship (P < 0.05). These results suggested that muscle recruitment affects the PCSA-torque relationship. Accepted: 11 August 2000  相似文献   

18.
This study examined how strenuous strength training affected the Na-K pump concentration in the knee extensor muscle of well-trained men and whether leg muscle strength and endurance was related to the pump concentration. First, the pump concentration, taken as 3H-ouabain binding, was measured in top alpine skiers since strength training is important to them. Second, well-trained subjects carried out strenuous eccentric resistance training either 1, 2, or 3 times · week−1 for 3 months. The Na-K pump concentration, the maximal muscle strength in a full squat lift (one repetition maximum, 1 RM), and the muscle endurance, taken as the number of full squat lifts of a mass of 70% of the 1 RM load, were measured before and after the training period. The mean pump concentration of the alpine skiers was 425 (SEM 11) nmol · kg−1 wet muscle mass. The subjects in part two increased their maximal strength in a dose-dependent manner. The muscle endurance increased for all subjects but independently of the training programme. From a mean starting value of 356 (SEM 6) nmol · kg−1 the mean Na-K pump concentration increased by 54 (SEM 15) nmol · kg−1 (+15%, P < 0.001) when the results for all subjects were pooled. The effect was larger for those who had trained twice a week than for those who had trained only once a week (P=0.025), suggesting that the effect of strength training depended on the amount of training carried out. The muscle strength and endurance were not related to the pump concentration, suggesting that the pumping power of this enzyme did not limit the performance during heavy lifting. However, the individual improvements in the endurance test during the training period correlated with the individual changes in the pump concentration (r Spearman=0.5; P=0.01) which could mean that a common factor both increases the pump concentration and makes the muscles more adapted to repeated heavy lifting. Accepted: 8 August 2000  相似文献   

19.
The purpose of the current investigation was to determine whether sodium citrate enhances endurance cycling performance and, if so, what dosage(s) produces this effect. Eight trained [peak power output: 362 (48) W; power:weight: 5.1 (0.4) W · kg−1, mean (SD)] male cyclists were requested to complete four, 40-km time-trials, each separated by 3–7 days, on their own bicycles, mounted on a Kingcycle ergometer. To mimic the stochastic nature of cycle road races, the time-trials included four 500-m, four 1-km and two 2-km sprints. The experimental conditions involved the ingestion of three dosages of sodium citrate dissolved in 400 ml water: 0.2 g · kg−1, 0.4 g · kg−1 and 0.6 g · kg−1 body mass (b.m.) and a placebo (calcium carbonate, 0.1 g · kg−1 b.m.). Subjects were asked to complete both the sprints and total distance in the fastest time possible. Venous blood samples were collected before, as well as at 10-km intervals during the trials for the analysis of plasma lactate and glucose concentrations and for the measurement of blood pH and PCO2 levels. Immediately before, as well as during exercise, pH was significantly higher in the group ingesting the highest citrate dose (range 7.36–7.45) compared to the placebo (range 7.31–7.39) and the two lower citrate dosages. Despite this, no significant differences in power output (P=0.886) or time taken to complete the 40 km (P=0.754) were measured between the four trials. The average performance times (in min:s, with SD in parentheses) and average power output (in W) for the 40-km time-trials were: 58:46 (5:06) [265 (62) W], 60:24 (6:07) [251 (59) W], 61:47 (5:07) [243 (44) W] and 60:02 (5.05) [255 (55) W] for the 0.2, 0.4, 0.6 g · kg−1 b.m. sodium citrate and placebo trials, respectively. There were also no significant differences measured between treatments in terms of time, power output, speed or heart rate during the 500-m, 1-km and 2-km sprints. The ingestion of increasing sodium citrate dosages before exercise produced dose-dependent changes in pH, base excess and HCO 3 concentrations before and during the 40-km time-trial. However, these changes influenced neither the time-trial time nor the sprinting performance times. Accepted: 7 June 2000  相似文献   

20.
The purpose of this study was to investigate the effects of endurance training on the ventilatory response to acute incremental exercise in elite cyclists. Fifteen male elite cyclists [mean (SD) age 24.3 (3.3) years, height 179 (6) cm, body mass 71.1 (7.6) kg, maximal oxygen consumption (O2max) 69 (7) ml · min−1 · kg−1] underwent two exercise tests on a cycle ergometer. The first test was assessed in December, 6 weeks before the beginning of the cycling season. The second test was performed in June, in the middle of the season. During this period the subjects were expected to be in a highly endurance-trained state. The ventilatory response was assessed during an incremental exercise test (20 W · min−1). Oxygen consumption (O2), carbon dioxide production (CO2), minute ventilation ( E), and heart rate (HR) were assessed at the following points during the test: at workloads of 200 W, 250 W, 300 W, 350 W, 400 W and at the subject's maximal workload, at a respiratory exchange ratio (R) of 1, and at the ventilatory threshold (Thvent) determined using the V-slope-method. Post-training, the mean (SD) O2max was increased from the pre-training level of 69 (7) ml · min−1 · kg−1 (range 61.4–78.6) to 78 (6) ml · min−1 · kg−1 (range 70.5–86.3). The mean post-training O2 was significantly higher than the pre training value (P < 0.01) at all work rates, at Thvent and at R=1. O2 was also higher at all work rates except for 200 W and 250 W. E was significantly higher at Thvent and R=1. Training had no effect on HR at all workloads examined. An explanation for the higher O2 cost for the same work rate may be that in the endurance-trained state, the adaptation to an exercise stimulus with higher intensity is faster than for the less-trained state. Another explanation may be that at the same work rate, in the less-endurance-trained state power is generated using a significantly higher anaerobic input. The results of this study suggest the following practical recommendations for training management in elite cyclists: (1) the O2 for a subject at the same work rate may be an indicator of the endurance-trained state (i.e., the higher the O2, the higher the endurance-trained capacity), and (2) the need for multiple exercise tests for determining the HR at Thvent during a cycling season is doubtful since at Thvent this parameter does not differ much following endurance training. Accepted: 19 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号