首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Joneckis  CC; Shock  DD; Cunningham  ML; Orringer  EP; Parise  LV 《Blood》1996,87(11):4862-4870
The abnormal adherence of red blood cells (RBC to the blood vessel wall is believed to contribute to the vascular occlusion observed in patients with sickle call anemia. The cell adhesion receptors GPIV (CD36) and integrin alpha 4 beta 1 (CD49d/CD29) were previously identified on circulating sickle reticulocytes, and shown to mediate sickle RBC adhesion to the endothelium. The presence of damaged endothelium in these patients suggests that exposed extracellular matrix proteins could provide a potential substrate for sickle RBC adhesion. To determine whether RBC adhesion receptors could mediate adhesion to extracellular matrix proteins, we tested their ability to adhere to a variety of immobilized, purified proteins under flow conditions. Neither sickle nor normal RBC adhered to fibronectin, vitronectin, fibrinogen, or collagen. In contrast, we observed substantial adhesion of sickle but not normal RBC to thrombospondin (TSP). The adhesion was not inhibited with known antagonists of the GPIV-TSP interaction, nor by inhibitors of several other known binding domains in TSP. Moreover, the adhesion was resistant to inhibition by soluble TSP, suggesting that immobilization of TSP exposes an adhesive site that is cryptic on TSP in solution. However, the glycosaminoglycans, chondroitin sulfate A, and dextran sulfate were potent inhibitors of this adhesion. These results suggest that a mechanism distinct from GPIV is responsible for sickle RBC adhesion to immobilized TSP under flow conditions.  相似文献   

2.
C A Hillery  J P Scott  M C Du 《Blood》1999,94(1):302-309
Sickle red blood cells (SS-RBCs) have enhanced adhesion to the plasma and subendothelial matrix protein thrombospondin-1 (TSP) under conditions of flow in vitro. TSP has at least four domains that mediate cell adhesion. The goal of this study was to map the site(s) on TSP that binds SS-RBCs. Purified TSP proteolytic fragments containing either the N-terminal heparin-binding domain, or the type 1, 2, or 3 repeats, failed to sustain SS-RBC adhesion (<10% adhesion). However, a 140-kD thermolysin TSP fragment, containing the carboxy-terminal cell-binding domain in addition to the type 1, 2, and 3 repeats fully supported the adhesion of SS-RBCs (126% +/- 25% adhesion). Two cell-binding domain adhesive peptides, 4N1K (KRFYVVMWKK) and 7N3 (FIRVVMYEGKK), failed to either inhibit or support SS-RBC adhesion to TSP. In addition, monoclonal antibody C6. 7, which blocks platelet and melanoma cell adhesion to the cell-binding domain, did not inhibit SS-RBC adhesion to TSP. These data suggest that a novel adhesive site within the cell binding domain of TSP promotes the adhesion of sickle RBCs to TSP. Furthermore, soluble TSP did not bind SS-RBCs as detected by flow cytometry, nor inhibit SS-RBC adhesion to immobilized TSP under conditions of flow, indicating that the adhesive site on TSP that recognizes SS-RBCs is exposed only after TSP binds to a matrix. We conclude that the intact carboxy-terminal cell-binding domain of TSP is essential for the adhesion of sickle RBCs under flow conditions. This study also provides evidence for a unique adhesive site within the cell-binding domain that is exposed after TSP binds to a matrix.  相似文献   

3.
Matsui NM  Varki A  Embury SH 《Blood》2002,100(10):3790-3796
The adhesion of sickle erythrocytes to vascular endothelium is important to the generation of vascular occlusion. Interactions between sickle cells and the endothelium use several cell adhesion molecules. We have reported that sickle cell adhesion to endothelial cells under static conditions involves P-selectin. Others have shown that sickle cell adhesion is decreased by unfractionated heparin, but the molecular target of this inhibition has not been defined. We postulated that the adhesion of sickle cells to P-selectin might be the pathway blocked by unfractionated heparin. In this report we demonstrate that the flow adherence of sickle cells to thrombin-treated human vascular endothelial cells also uses P-selectin and that this component of adhesion is inhibited by unfractionated heparin. We also demonstrate that sickle cells adhere to immobilized recombinant P-selectin under flow conditions. This adhesion too was inhibited by unfractionated heparin, in a concentration range that is clinically attainable. These findings and the general role of P-selectin in initiating adhesion of blood cells to the endothelium suggest that unfractionated heparin may be useful in preventing painful vascular occlusion. A clinical trial to test this hypothesis is indicated.  相似文献   

4.
Pregnancy in sickle cell disease (SCD) has been associated with increased complications such as vaso-occlusive crises, severe anemia and foetal loss. It has been proposed that the sickling of red blood cells (RBCs) inside the placenta circulation could participate to these complications. The present study investigated the adhesion of sickle RBCs on human trophoblast-derived cell and its extracellular matrix. Results demonstrated 1) similar adhesion of sickle RBCs and healthy RBCs to trophoblast but 2) a greater adhesion of sickle RBCs to the extracellular matrix of trophoblasts as compared with healthy RBCs. This greater adhesion could partly involve the Lu/BCAM glycoproteins and could participate to the complications reported in SCD pregnant women.  相似文献   

5.

Background

We have previously demonstrated that therapy with orally administered L-glutamine improves nicotinamide adenosine dinucleotide (NAD) redox potential of sickle red blood cells (RBC). On further analysis of L-glutamine therapy for sickle cell anemia patients, the effect of L-glutamine on adhesion of sickle RBC to human umbilical vein endothelial cells (HUVEC) was examined.

Methods

The first part of the experiment was conducted with the blood samples of the 5 adult sickle cell anemia patients who had been on L-glutamine therapy for at least 4 weeks on a dosage of 30 grams per day compared to those of patient control group. In the second part of the experiment 6 patients with sickle cell anemia were studied longitudinally. Five of these patients were treated with oral L-glutamine 30 grams daily and one was observed without treatment as the control. t-test and paired t-test were used for determination of statistical significance in cross-sectional and longitudinal studies respectively.

Results

In the first study, the mean adhesion to endothelial cells with the autologous plasma incubated cells were 0.97 ± 0.45 for the treated group and 1.91 ± 0.53 for the nontreated group (p < 0.02). Similarly with lipopolysaccharide (LPS) incubated cells the mean adhesion to endothelial cells were 1.39 ± 0.33 for the treated group and 2.80 ± 0.47 for the untreated group (p < 0.001). With the longitudinal experiment, mean decrease in the adhesion to endothelial cells was 1.13 ± 0.21 (p < 0.001) for the 5 treated patients whereas the control patient had slight increase in the adhesion to endothelial cells.

Conclusion

In these studies, oral L-glutamine administration consistently resulted in improvement of sickle RBC adhesion to HUVEC. These data suggest positive physiological effects of L-glutamine in sickle cell disease.  相似文献   

6.
The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.  相似文献   

7.
Platt  OS; Falcone  JF 《Blood》1995,86(5):1992-1998
The pattern of membrane abnormalities in sickle red blood cells suggests that sickle hemoglobin damages membrane proteins. We have previously shown a functional defect in sickle ankyrin, poor spectrin- binding ability. Here we examine the other major binding interactions of sickle membrane proteins including spectrin self-association, binding of ankyrin and protein 4.1 to protein 3, and the formation of the spectrin-actin-protein 4.1 complex. We found that sickle spectrin was normal in self-association and ability to participate in the spectrin-actin-protein 4.1 complex. Sickle protein 4.1 bound normally to protein 3 and formed normal complexes with actin and spectrin, even when sickle spectrin was used. The only major abnormality we found was a reduced ability of sickle protein 3 to bind ankyrin. This functional defect could not be explained experimentally on the basis of cysteine modification or enhanced tyrosine phosphorylation. We conclude that damage of sickle membrane proteins is not a diffuse scattershot process, but is largely confined to regions near membrane-associated hemoglobin, the spectrin-binding domain of ankyrin and the ankyrin- binding domain of protein 3. The mechanism and consequences of this damage continues to be investigated.  相似文献   

8.
9.
Cytosolic free calcium levels in sickle red blood cells   总被引:6,自引:0,他引:6  
Murphy  E; Berkowitz  LR; Orringer  E; Levy  L; Gabel  SA; London  RE 《Blood》1987,69(5):1469-1474
In this study, we used a recently developed nuclear magnetic resonance (NMR) technique to measure ionized calcium in sickle erythrocytes. The NMR technique, which involves 19F NMR studies of a fluorinated calcium chelator quinMF, [2-(2-amino-4-methyl-5-fluorophenoxy)methyl-8- aminoquinoline-N,N,N',N'- tetraacetic acid] provides a novel approach to the study of ionized calcium in erythrocytes since the presence of hemoglobin precludes the use of fluorescent calcium indicators. The mean value for ionized calcium in oxygenated sickle erythrocytes was 18 +/- 2 nmol/L (SE). Experiments with normal RBCs gave a mean value of 21 +/- 2 nmol/L (SE). After 1 hour of deoxygenation, mean values for ionized calcium in sickle erythrocytes did not increase as compared with values obtained under oxygen. To investigate whether deoxygenation stimulated endocytosis, sickle erythrocytes were deoxygenated for 1 hour in the presence of impermeant FBAPTA (1,2 bis-(2-amino-5- fluorophenoxy) ethane N,N,N',N'-tetraacetic acid). Cells were then separated from the extracellular medium and assayed for the presence of FBAPTA; they had incorporated significant quantities of the extracellular FBAPTA. This incorporation was not observed with normal erythrocytes. These data are consistent with at least a portion of the elevation in total cell calcium in sickle erythrocytes arising as a consequence of an endocytotic process in which extracellular calcium ions are incorporated into vesicles. Additional experiments show that these intracellular vesicles accumulate Ca2+ on further deoxygenation, consistent with a transient increase in ionized cell calcium. These studies represent the first use of NMR spectroscopy to evaluate endocytotic processes.  相似文献   

10.
The Lutheran (Lu) blood group and basal cell adhesion molecule (BCAM) antigens are both carried by 2 glycoprotein isoforms of the immunoglobulin superfamily representing receptors for the laminin alpha(5) chain. In addition to red blood cells, Lu/BCAM proteins are highly expressed in endothelial cells. Abnormal adhesion of red blood cells to the endothelium could potentially contribute to the vaso-occlusive episodes in sickle cell disease. Considering the presence of integrin consensus-binding sites in Lu/BCAM proteins, we investigated their potential interaction with integrin alpha(4)beta(1), the unique integrin expressed on immature circulating sickle red cells. Using cell adhesion assays under static and flow conditions, we demonstrated that integrin alpha(4)beta(1) expressed on transfected cells bound to chimeric Lu-Fc protein. We showed that epinephrine-stimulated sickle cells, but not control red cells, adhered to Lu-Fc via integrin alpha(4)beta(1) under flow conditions. Antibody-mediated activation of integrin alpha(4)beta(1) induced adhesion of sickle red cells to primary human umbilical vein endothelial cells; this adhesion was inhibited by soluble Lu-Fc and vascular cell adhesion molecule-1 (VCAM-1)-Fc proteins. This novel interaction between integrin alpha(4)beta(1) in sickle red cells and endothelial Lu/BCAM proteins could participate in sickle cell adhesion to endothelium and potentially play a role in vaso-occlusive episodes.  相似文献   

11.
Red blood cell (RBC) alloimmunization is a significant clinical complication of sickle cell disease (SCD). It can lead to difficulty with cross‐matching for future transfusions and may sometimes trigger life‐threatening delayed hemolytic transfusion reactions. We conducted a retrospective study to explore the association of clinical complications and age of RBC with alloimmunization in patients with SCD followed at a single institution from 2005 to 2012. One hundred and sixty six patients with a total of 488 RBC transfusions were evaluated. Nineteen patients (11%) developed new alloantibodies following blood transfusions during the period of review. The median age of RBC units was 20 days (interquartile range: 14–27 days). RBC antibody formation was significantly associated with the age of RBC units (P = 0.002), with a hazard ratio of 3.5 (95% CI: 1.71–7.11) for a RBC unit that was 7 days old and 9.8 (95% CI: 2.66–35.97) for a unit that was 35 days old, 28 days after the blood transfusion. No association was observed between RBC alloimmunization and acute vaso‐occlusive complications. Although increased echocardiography‐derived tricuspid regurgitant jet velocity (TRV) was associated with the presence of RBC alloantibodies (P = 0.02), TRV was not significantly associated with alloimmunization when adjusted for patient age and number of transfused RBC units. Our study suggests that RBC antibody formation is significantly associated with older age of RBCs at the time of transfusion. Prospective studies in patients with SCD are required to confirm this finding. Am. J. Hematol. 90:691–695, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Joiner CH  Jiang M  Claussen WJ  Roszell NJ  Yasin Z  Franco RS 《Blood》2001,97(12):3976-3983
Sickling-induced cation fluxes contribute to cellular dehydration of sickle red blood cells (SS RBCs), which in turn potentiates sickling. This study examined the inhibition by dipyridamole of the sickling-induced fluxes of Na(+), K(+), and Ca(++) in vitro. At 2% hematocrit, 10 microM dipyridamole inhibited 65% of the increase in net fluxes of Na(+) and K(+) produced by deoxygenation of SS RBCs. Sickle-induced Ca(++) influx, assayed as (45)Ca(++) uptake in quin-2-loaded SS RBCs, was also partially blocked by dipyridamole, with a dose response similar to that of Na(+) and K(+) fluxes. In addition, dipyridamole inhibited the Ca(++)-activated K(+) flux (via the Gardos pathway) in SS RBCs, measured as net K(+) efflux in oxygenated cells exposed to ionophore A23187 in the presence of external Ca(++), but this effect resulted from reduced anion conductance, rather than from a direct effect on the K(+) channel. The degree of inhibition of sickling-induced fluxes was dependent on hematocrit, and up to 30% of dipyridamole was bound to RBC membranes at 2% hematocrit. RBC membrane content of dipyridamole was measured fluorometrically and correlated with sickling-induced flux inhibition at various concentrations of drug. Membrane drug content in patients taking dipyridamole for other clinical indications was similar to that producing inhibition of sickling-induced fluxes in vitro. These data suggest that dipyridamole might inhibit sickling-induced fluxes of Na(+), K(+), and Ca(++) in vivo and therefore have potential as a pharmacological agent to reduce SS RBC dehydration. (Blood. 2001;97:3976-3983)  相似文献   

13.
Red blood cells (RBCs) have been ascribed a unique role in dilating blood vessels, which requires O2-regulated binding and bioactivation of NO by Hb and transfer of NO equivalents to the RBC membrane. Vasoocclusion in hypoxic tissues is the hallmark of sickle cell anemia. Here we show that sickle cell Hb variant S (HbS) is deficient both in the intramolecular transfer of NO from heme iron (iron nitrosyl, FeNO) to cysteine thiol (S-nitrosothiol, SNO) that subserves bioactivation, and in transfer of the NO moiety from S-nitrosohemoglobin (SNO-HbS) to the RBC membrane. As a result, sickle RBCs are deficient in membrane SNO and impaired in their ability to mediate hypoxic vasodilation. Further, the magnitudes of these impairments correlate with the clinical severity of disease. Thus, our results suggest that abnormal RBC vasoactivity contributes to the vasoocclusive pathophysiology of sickle cell anemia, and that the phenotypic variation in expression of the sickle genotype may be explained, in part, by variable deficiency in RBC processing of NO. More generally, our findings raise the idea that defective NO processing may characterize a new class of hemoglobinopathy.  相似文献   

14.
15.
Propagation of the vaso-occlusive process in sickle cell anaemia (SCA) is a complex process involving the adhesion of steady-state SCA patients red cells and reticulocytes to the vascular endothelium. The effect of hydroxyurea therapy (HUT) on the adhesive properties of sickle cells and the expression of adhesion molecule genes by erythroid cells of SCA individuals is not yet fully understood. The expressions of the CD36 gene and the VLA-4-integrin subunit genes, CD49d (alpha-subunit) and CD29 (beta-subunit), were compared in the reticulocytes of steady-state SCA patients and patients on HUT using real-time PCR. Basal adhesion of red cells from these subjects was also compared using static adhesion assays, as was surface protein expression, using flow cytometry. Basal sickle red cell adhesion to fibronectin was significantly greater than that of normal cells (P < 0.01); in contrast, HUT was associated with significantly lower levels (P < 0.01) of red cell adhesion that were similar to those of control cells; this decrease could not be justified solely by altered reticulocyte numbers in this population. Accordingly, flow cytometry demonstrated that reticulocytes from patients on HUT had significantly lower CD36 and CD49d surface expressions (P < 0.01) and, importantly, significantly lower expressions of the CD36, CD49d and CD29 genes (P < 0.05) than reticulocytes of SCA patients not on HUT. Taken together, data support the hypothesis that HUT reduces the adhesive properties of sickle cells and that this decrease appears to be mediated, at least in part, by a decrease in the gene and, consequently, surface protein expression of adhesion molecules such as VLA-4 and CD36.  相似文献   

16.
17.
Setty  BN; Stuart  MJ 《Blood》1996,88(6):2311-2320
We investigated the effects of hypoxia on red blood cell (RBC)- endothelial cell (EC) adherence and the potential mechanism(s) involved in mediating this effect. We report that hypoxia significantly increased sickle RBC adherence to aortic EC when compared with the normoxia controls. However, hypoxia had no effect on the adherence of normal RBCs. In additional studies, we found that the least dense sickle RBCs containing CD36+ and VLA-4+ reticulocytes were involved in hypoxia-induced adherence. We next evaluated the effects of hypoxia on the expression of EC surface receptors involved in RBC adherence to macrovascular ECs, including vascular cell adhesion molecule-1 (VCAM- 1), intracellular adhesion molecule-1 (ICAM-1), and the vitronectin receptor (VnR). Hypoxia upregulated the expression of both VCAM-1 and ICAM-1, whereas no effect on VnR was noted. Potential involvement of VCAM-1 and ICAM-1 in mediating hypoxia-induced sickle RBC-EC adhesion was next investigated using monoclonal antibodies against these receptors. Whereas anti-VCAM-1 had no effect on basal adherence, it inhibited hypoxia-induced sickle RBC adherence in a concentration- dependent manner, with 50% to 75% inhibition noted at 10 to 60 micrograms/mL antibody (n = 6, P < .05 to P < .01). Anti-ICAM-1 (10 to 60 micrograms/mL, n = 8) had no effect on either basal or hypoxia- induced adherence. As noted in the bovine aortic ECs, hypoxia stimulated the adherence of sickle RBCs to human retinal capillary ECs, and this response appeared to be mediated via mechanisms similar to those observed with macro-endothelium, ie, via the adhesive receptor combination VCAM-1-VLA-4. Our studies show that hypoxia enhances sickle RBC adhesion to both macrovascular and human microvascular ECs via the adhesive receptor VCAM-1. Our findings are of interest because hypoxia is an integral part of the pathophysiology of the vaso-occlusive phenomenon in sickle cell anemia.  相似文献   

18.
Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the β-globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.  相似文献   

19.
Increased exposure of sickle red blood cells to phosphatidylserine promotes its adhesion to the endothelium. A monoclonal antibody to lactadherin, a phosphatidylserine binding protein, inhibits sickle cell adhesion to histamine-stimulated endothelial cells in flowing blood. Added lactadherin enhances the adhesion via the integrin alphaVbeta3. These results indicate that lactadherin can mediate phosphatidylserine-expressing sickle cell adhesion to the endothelium.  相似文献   

20.
Several transgenic murine models for sickle cell anemia have been developed that closely reproduce the biochemical and physiological disorders in the human disease. A comprehensive characterization is described of hematologic parameters of mature red blood cells, reticulocytes, and red cell precursors in the bone marrow and spleen of a murine sickle cell model in which erythroid cells expressed exclusively human alpha, gamma, and betaS globin. Red cell survival was dramatically decreased in these anemic animals, partially compensated by considerable enhancement in erythropoietic activity. As in humans, these murine sickle cells contain a subpopulation of phosphatidylserine-exposing cells that may play a role in their premature removal. Continuous in vivo generation of this phosphatidylserine-exposing subset may have a significant impact on the pathophysiology of sickle cell disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号