首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Many studies investigating sleep and memory consolidation have evaluated full‐night sleep rather than alternative sleep periods such as daytime naps. This multi‐centre study followed up on, and was compared with, an earlier full‐night study (Schabus et al., 2004) investigating the relevance of daytime naps for the consolidation of declarative and procedural memory. Seventy‐six participants were randomly assigned to a nap or wake group, and performed a declarative word‐pair association or procedural mirror‐tracing task. Performance changes from before to after a 90‐min retention interval filled with sleep or quiet wakefulness were evaluated between groups. Associations between performance changes, sleep architecture, spindles, and slow oscillations were investigated. For the declarative task we observed a trend towards stronger forgetting across a wake period compared with a nap period, and a trend towards memory increase over the full‐night. For the procedural task, accuracy was significantly decreased following daytime wakefulness, showed a trend to increase with a daytime nap, and significantly increased across full‐night sleep. For the nap protocol, neither sleep stages, spindles, nor slow oscillations predicted performance changes. A direct comparison of day and nighttime sleep revealed that daytime naps are characterized by significantly lower spindle density, but higher spindle activity and amplitude compared with full‐night sleep. In summary, data indicate that daytime naps protect procedural memories from deterioration, whereas full‐night sleep improves performance. Given behavioural and physiological differences between day and nighttime sleep, future studies should try to characterize potential differential effects of full‐night and daytime sleep with regard to sleep‐dependent memory consolidation.  相似文献   

2.
Previous studies suggest that sleep‐specific brain activity patterns such as sleep spindles and electroencephalographic slow‐wave activity contribute to the consolidation of novel memories. The generation of both sleep spindles and slow‐wave activity relies on synchronized oscillations in a thalamo‐cortical network that might be implicated in synaptic strengthening (spindles) and downscaling (slow‐wave activity) during sleep. This study further examined the association between electroencephalographic power during non‐rapid eye movement sleep in the spindle (sigma, 12–16 Hz) and slow‐wave frequency range (0.1–3.5 Hz) and overnight memory consolidation in 20 healthy subjects (10 men, 27.1 ± 4.6 years). We found that both electroencephalographic sigma power and slow‐wave activity were positively correlated with the pre–post‐sleep consolidation of declarative (word list) and procedural (mirror‐tracing) memories. These results, although only correlative in nature, are consistent with the view that processes of synaptic strengthening (sleep spindles) and synaptic downscaling (slow‐wave activity) might act in concert to promote synaptic plasticity and the consolidation of both declarative and procedural memories during sleep.  相似文献   

3.
The current study was designed to further clarify the influence of brain morphology, sleep oscillatory activity and age on memory consolidation. Specifically, we hypothesized, that a smaller volume of hippocampus, parahippocampal and medial prefrontal cortex negatively impacts declarative, but not procedural, memory consolidation. Explorative analyses were conducted to demonstrate whether a decrease in slow‐wave activity negatively impacts declarative memory consolidation, and whether these factors mediate age effects on memory consolidation. Thirty‐eight healthy participants underwent an acquisition session in the evening and a retrieval session in the morning after night‐time sleep with polysomnographic monitoring. Declarative memory was assessed with the paired‐associate word list task, while procedural memory was tested using the mirror‐tracing task. All participants underwent high‐resolution magnetic resonance imaging. Participants with smaller hippocampal, parahippocampal and medial prefrontal cortex volumes displayed a reduced overnight declarative, but not procedural memory consolidation. Mediation analyses showed significant age effects on overnight declarative memory consolidation, but no significant mediation effects of brain morphology on this association. Further mediation analyses showed that the effects of age and brain morphology on overnight declarative memory consolidation were not mediated by polysomnographic variables or sleep electroencephalogram spectral power variables. Thus, the results suggest that the association between age, specific brain area volume and overnight memory consolidation is highly relevant, but does not necessarily depend on slow‐wave sleep as previously conceptualized.  相似文献   

4.
Recent evidence suggests that the sleep-dependent consolidation of declarative memories relies on the non-rapid eye movement (NREM) rather than the rapid eye movement (REM) phase of sleep. Moreover, a few studies both at the cellular and the behavioural levels have suggested the involvement of sleep spindles, the most synchronous oscillatory waveforms during NREM sleep stage 2, in this process. Our previous study showed that overnight verbal memory retention correlates with the total number of sleep spindles in left frontocentral areas, while spindling in other regions did not correlate with mnemonic retention. In the present study, we show that retention of visuospatial memories over a 24-h period correlates with the total number of sleep spindles detected over parietal regions during the intervening night-time sleep. This result provides further evidence for the association between sleep spindle activity and declarative memory consolidation, and suggests that visuospatial and verbal memory retention differ in the topographic distribution of the NREM spindle activity with which they are associated.  相似文献   

5.
Successful memory consolidation during sleep depends on healthy slow‐wave and rapid eye movement sleep, and on successful transition across sleep stages. In post‐traumatic stress disorder, sleep is disrupted and memory is impaired, but relations between these two variables in the psychiatric condition remain unexplored. We examined whether disrupted sleep, and consequent disrupted memory consolidation, is a mechanism underlying declarative memory deficits in post‐traumatic stress disorder. We recruited three matched groups of participants: post‐traumatic stress disorder (= 16); trauma‐exposed non‐post‐traumatic stress disorder (= 15); and healthy control (= 14). They completed memory tasks before and after 8 h of sleep. We measured sleep variables using sleep‐adapted electroencephalography. Post‐traumatic stress disorder‐diagnosed participants experienced significantly less sleep efficiency and rapid eye movement sleep percentage, and experienced more awakenings and wake percentage in the second half of the night than did participants in the other two groups. After sleep, post‐traumatic stress disorder‐diagnosed participants retained significantly less information on a declarative memory task than controls. Rapid eye movement percentage, wake percentage and sleep efficiency correlated with retention of information over the night. Furthermore, lower rapid eye movement percentage predicted poorer retention in post‐traumatic stress disorder‐diagnosed individuals. Our results suggest that declarative memory consolidation is disrupted during sleep in post‐traumatic stress disorder. These data are consistent with theories suggesting that sleep benefits memory consolidation via predictable neurobiological mechanisms, and that rapid eye movement disruption is more than a symptom of post‐traumatic stress disorder.  相似文献   

6.
Study ObjectivesSynchronization of neural activity within local networks and between brain regions is a major contributor to rhythmic field potentials such as the EEG. On the other hand, dynamic changes in microstructure and activity are reflected in the EEG, for instance slow oscillation (SO) slope can reflect synaptic strength. SO-spindle coupling is a measure for neural communication. It was previously associated with memory consolidation, but also shown to reveal strong interindividual differences. In studies, weak electric current stimulation has modulated brain rhythms and memory retention. Here, we investigate whether SO-spindle coupling and SO slope during baseline sleep are associated with (predictive of) stimulation efficacy on retention performance.MethodsTwenty-five healthy subjects participated in three experimental sessions. Sleep-associated memory consolidation was measured in two sessions, in one anodal transcranial direct current stimulation oscillating at subjects individual SO frequency (so-tDCS) was applied during nocturnal sleep. The third session was without a learning task (baseline sleep). The dependence on SO-spindle coupling and SO-slope during baseline sleep of so-tDCS efficacy on retention performance were investigated.ResultsStimulation efficacy on overnight retention of declarative memories was associated with nesting of slow spindles to SO trough in deep nonrapid eye movement baseline sleep. Steepness and direction of SO slope in baseline sleep were features indicative for stimulation efficacy.ConclusionsFindings underscore a functional relevance of activity during the SO up-to-down state transition for memory consolidation and provide support for distinct consolidation mechanisms for types of declarative memories.  相似文献   

7.
Clemens Z  Fabó D  Halász P 《Neuroscience》2005,132(2):529-535
Despite strong evidence supporting a role for sleep in the consolidation of newly acquired declarative memories, the contribution of specific sleep stages remains controversial. Based on electrophysiological studies in animals, synchronous sleep oscillations have been long proposed as possible origins of sleep-related memory improvement. Nevertheless, no studies to date have directly investigated the impact of sleep oscillations on overnight memory retention in humans. In the present study we provide evidence that overnight verbal memory retention is highly correlated with the number of sleep spindles detected by an automatic algorithm over left frontocentral areas. At the same time, overnight retention of newly learned faces was found to be independent of spindle activity but correlated with non-rapid-eye-movement sleep time. The data strongly support theories suggesting a link between sleep spindle activity and verbal memory consolidation.  相似文献   

8.
Individuals diagnosed with posttraumatic stress disorder (PTSD) experience disruption at both slow‐wave sleep (SWS) and rapid‐eye movement (REM) sleep stages and demonstrate marked memory impairment. A small group of studies suggests that, within the disorder, there is a mechanistic relation between these sleep and memory impairments. This study sought to extend that literature by examining whether, in PTSD‐diagnosed individuals, memory‐retention deficits are present after a sleep‐filled (but not after a wake‐filled) delay (i.e., whether memory deficits can be traced to interruptions of sleep‐dependent memory consolidation). Moreover, we investigated whether SWS‐ or REM‐based disturbances, or both, contribute to retention deficits. We recruited participants into three groups: PTSD (= 21), trauma‐exposed non‐PTSD (TE; = 19) and healthy control (HC; = 20). Using a crossover design, we assessed memory recall before and after an 8‐hr period of polysomnography‐monitored sleep and an 8‐hr period of regular waking activity. PTSD‐diagnosed participants retained less information than controls over the sleep‐filled (but not wake‐filled) delay. Furthermore, increased REM fragmentation predicted postsleep memory retention in PTSD‐diagnosed individuals only. No SWS parameter was associated with or predictive of the amount of information retained postsleep. We conclude that specific REM‐related changes in PTSD‐diagnosed individuals affected sleep‐dependent neutral declarative memory consolidation. Generally, these findings extend the literature suggesting that the co‐occurrence of sleep and memory difficulties in PTSD is not accidental, but that these two symptom clusters are meaningfully related. Specifically, the study illustrates that subtle REM‐related disruptions contribute most strongly to memory impairment in PTSD.  相似文献   

9.
Study Objectives: Nonrapid eye movement sleep boosts hippocampus-dependent, long-term memory formation more so than wake. Studies have pointed to several electrophysiological events that likely play a role in this process, including thalamocortical sleep spindles (12–15 Hz). However, interventional studies that directly probe the causal role of spindles in consolidation are scarce. Previous studies have used zolpidem, a GABA-A agonist, to increase sleep spindles during a daytime nap and promote hippocampal-dependent episodic memory. The current study investigated the effect of zolpidem on nighttime sleep and overnight improvement of episodic memories. Methods: We used a double-blind, placebo-controlled within-subject design to test the a priori hypothesis that zolpidem would lead to increased memory performance on a word-paired associates task by boosting spindle activity. We also explored the impact of zolpidem across a range of other spectral sleep features, including slow oscillations (0–1 Hz), delta (1–4 Hz), theta (4–8 Hz), sigma (12–15 Hz), as well as spindle–SO coupling. Results: We showed greater memory improvement after a night of sleep with zolpidem, compared to placebo, replicating a prior nap study. Additionally, zolpidem increased sigma power, decreased theta and delta power, and altered the phase angle of spindle–SO coupling, compared to placebo. Spindle density, theta power, and spindle–SO coupling were associated with next-day memory performance. Conclusions: These results are consistent with the hypothesis that sleep, specifically the timing and amount of sleep spindles, plays a causal role in the long-term formation of episodic memories. Furthermore, our results emphasize the role of nonrapid eye movement theta activity in human memory consolidation.  相似文献   

10.
Studies suggest that the consolidation of newly acquired memories and underlying long‐term synaptic plasticity might represent a major function of sleep. In a combined repeated‐measures and parallel‐group sleep laboratory study (active waking versus sleep, passive waking versus sleep), we provide evidence that brief periods of daytime sleep (42.1 ± 8.9 min of non‐rapid eye movement sleep) in healthy adolescents (16 years old, all female), compared with equal periods of waking, promote the consolidation of declarative memory (word‐pairs) in participants with high power in the electroencephalographic sleep spindle (sigma) frequency range. This observation supports the notion that sleep‐specific brain activity when reaching a critical dose, beyond a mere reduction of interference, promotes synaptic plasticity in a hippocampal‐neocortical network that underlies the consolidation of declarative memory.  相似文献   

11.
Slow oscillations originating in the prefrontal neocortex during slow-wave sleep (SWS) group neuronal network activity and thereby presumably support the consolidation of memories. Here, we investigated whether the grouping influence of slow oscillations extends to hippocampal sharp wave-ripple (SPW) activity thought to underlie memory replay processes during SWS. The prefrontal surface EEG and multiunit activity (MUA), along with hippocampal local field potentials (LFP) from CA1, were recorded in rats during sleep. Average spindle and ripple activity and event correlation histograms of SPWs were calculated, time-locked to half-waves of slow oscillations. Results confirm decreased prefrontal MUA and spindle activity during EEG slow oscillation negativity and increases in this activity during subsequent positivity. A remarkably close temporal link was revealed between slow oscillations and hippocampal activity, with ripple activity and SPWs being also distinctly decreased during negative half-waves and increased during slow oscillation positivity. Fine-grained analyses of temporal dynamics revealed for the slow oscillation a phase delay of approximately 90 ms with reference to up and down states of prefrontal MUA, and of only approximately 60 ms with reference to changes in SPWs, indicating that up and down states in prefrontal MUA precede corresponding changes in hippocampal SPWs by approximately 30 ms. Results support the notion that the depolarizing surface-positive phase of the slow oscillation and the associated up state of prefrontal excitation promotes hippocampal SPWs via efferent pathways. The preceding disfacilitation of hippocampal events temporally coupled to the negative slow oscillation half-wave appears to serve a synchronizing role in this neocorticohippocampal interplay.  相似文献   

12.
Spatiotemporal activity patterns of neurones are organized by different types of coherent network oscillations. Frequency content and cross‐frequency coupling of cortical oscillations are strongly state‐dependent, indicating that different patterns of wakefulness or sleep, respectively, support different cognitive or mnestic processes. It is therefore crucial to analyse specific sleep patterns with respect to their oscillations, including interaction between fast and slow rhythms. Here we report the oscillation profile of phasic rapid eye movement (REM), a form of REM sleep which has been implicated in hippocampus‐dependent memory processing. In all analysed frequency bands (theta, gamma and fast gamma, respectively) we find higher frequencies and higher power in phasic REM compared to tonic REM or wakefulness. Theta‐phase coupling of fast oscillations, however, was highest in tonic REM, followed by phasic REM and wakefulness. Our data suggest different roles of phasic and tonic REM for information processing or memory formation during sleep.  相似文献   

13.
Spindles and slow waves are hallmarks of non‐rapid eye movement sleep. Both these oscillations are markers of neuronal plasticity, and play a role in memory and cognition. Normal ageing is associated with spindle and slow wave decline and cognitive changes. The present study aimed to assess whether spindle and slow wave characteristics during a baseline night predict cognitive performance in healthy older adults the next morning. Specifically, we examined performance on tasks measuring selective and sustained visual attention, declarative verbal memory, working memory and verbal fluency. Fifty‐eight healthy middle‐aged and older adults (aged 50–91 years) without sleep disorders underwent baseline polysomnographic sleep recording followed by neuropsychological assessment the next morning. Spindles and slow waves were detected automatically on artefact‐free non‐rapid eye movement sleep electroencephalogram. All‐night stage N2 spindle density (no./min) and mean frequency (Hz) and all‐night non‐rapid eye movement sleep slow wave density (no./min) and mean slope (μV/s) were analysed. Pearson's correlations were performed between spindles, slow waves, polysomnography and cognitive performance. Higher spindle density predicted better performance on verbal learning, visual attention and verbal fluency, whereas spindle frequency and slow wave density or slope predicted fewer cognitive performance variables. In addition, rapid eye movement sleep duration was associated with better verbal learning potential. These results suggest that spindle density is a marker of cognitive functioning in older adults and may reflect neuroanatomic integrity. Rapid eye movement sleep may be a marker of age‐related changes in acetylcholine transmission, which plays a role in new information encoding.  相似文献   

14.
Functional memory disorder (FMD) is characterized by mnestic and attentional deficits without symptoms of mild cognitive impairment or dementia. FMD usually develops in subjects with high psychosocial stress level and is classified to the somatoform disorders. We assessed memory performance (procedural mirror tracing task, declarative visual and verbal memory task) and other cognitive functions before and after one night of sleep in 12 FMD patients (mean age: 51.7 yrs, 7 females) and 12 healthy subjects matched for age, gender and IQ. Memory performance and other neurocognitive tasks did not differ between the groups at baseline. After one night of sleep, FMD patients showed an impairment of declarative memory consolidation compared to healthy subjects (visual task: p = 0.004; verbal task: p = 0.039). Spectral analysis of sleep-EEG indicated an increased cortical excitation in FMD. We hypothesize that a hyperarousal state in FMD might contribute to sleep disturbance implicating negative effects on declarative memory consolidation.  相似文献   

15.
Sleep and memory studies often focus on overnight rather than long‐term memory changes, traditionally associating overnight memory change (OMC) with sleep architecture and sleep patterns such as spindles. In addition, (para‐)sympathetic innervation has been associated with OMC after a daytime nap using heart rate variability (HRV). In this study we investigated overnight and long‐term performance changes for procedural memory and evaluated associations with sleep architecture, spindle activity (SpA) and HRV measures (R‐R interval [RRI], standard deviation of R‐R intervals [SDNN], as well as spectral power for low [LF] and high frequencies [HF]). All participants (= 20, Mage = 23.40 ± 2.78 years) were trained on a mirror‐tracing task and completed a control (normal vision) and learning (mirrored vision) condition. Performance was evaluated after training (R1), after a full‐night sleep (R2) and 7 days thereafter (R3). Overnight changes (R2‐R1) indicated significantly higher accuracy after sleep, whereas a significant long‐term (R3‐R2) improvement was only observed for tracing speed. Sleep architecture measures were not associated with OMC after correcting for multiple comparisons. However, individual SpA change from the control to the learning night indicated that only “SpA enhancers” exhibited overnight improvements for accuracy and long‐term improvements for speed. HRV analyses revealed that lower SDNN and LF power was associated with better OMC for the procedural speed measure. Altogether, this study indicates that overnight improvement for procedural memory is specific for spindle enhancers, and is associated with HRV during sleep following procedural learning.  相似文献   

16.
In order to evaluate verbal memory consolidation during sleep in subjects experiencing sleepwalking or sleep terror, 19 patients experiencing sleepwalking/sleep terror and 19 controls performed two verbal memory tasks (16‐word list from the Free and Cued Selective Reminding Test, and a 220‐ and 263‐word modified story recall test) in the evening, followed by nocturnal video polysomnography (= 29) and morning recall (night‐time consolidation after 14 h, = 38). The following morning, they were given a daytime learning task using the modified story recall test in reverse order, followed by an evening recall test after 9 h of wakefulness (daytime consolidation, = 38). The patients experiencing sleepwalking/sleep terror exhibited more frequent awakenings during slow‐wave sleep and longer wakefulness after sleep onset than the controls. Despite this reduction in sleep quality among sleepwalking/sleep terror patients, they improved their scores on the verbal tests the morning after sleep compared with the previous evening (+16 ± 33%) equally well as the controls (+2 ± 13%). The performance of both groups worsened during the daytime in the absence of sleep (?16 ± 15% for the sleepwalking/sleep terror group and ?14 ± 11% for the control group). There was no significant correlation between the rate of memory consolidation and any of the sleep measures. Seven patients experiencing sleepwalking also sleep‐talked during slow‐wave sleep, but their sentences were unrelated to the tests or the list of words learned during the evening. In conclusion, the alteration of slow‐wave sleep during sleepwalking/sleep terror does not noticeably impact on sleep‐related verbal memory consolidation.  相似文献   

17.
We investigated changes of slow‐wave activity and sleep slow oscillations in the night following procedural learning boosted by reinforcement learning, and how these changes correlate with behavioural output. In the Task session, participants had to reach a visual target adapting cursor's movements to compensate an angular deviation introduced experimentally, while in the Control session no deviation was applied. The task was repeated at 13:00 hours, 17:00 hours and 23:00 hours before sleep, and at 08:00 hours after sleep. The deviation angle was set at 15° (13:00 hours and 17:00 hours) and increased to 45° (reinforcement) at 23:00 hours and 08:00 hours. Both for Task and Control nights, high‐density electroencephalogram sleep recordings were carried out (23:30?19:30 hours). The Task night as compared with the Control night showed increases of: (a) slow‐wave activity (absolute power) over the whole scalp; (b) slow‐wave activity (relative power) in left centro‐parietal areas; (c) sleep slow oscillations rate in sensorimotor and premotor areas; (d) amplitude of pre‐down and up states in premotor regions, left sensorimotor and right parietal regions; (e) sigma crowning the up state in right parietal regions. After Task night, we found an improvement of task performance showing correlations with sleep slow oscillations rate in right premotor, sensorimotor and parietal regions. These findings suggest a key role of sleep slow oscillations in procedural memories consolidation. The diverse components of sleep slow oscillations selectively reflect the network activations related to the reinforced learning of a procedural visuomotor task. Indeed, areas specifically involved in the task stand out as those with a significant association between sleep slow oscillations rate and overnight improvement in task performance.  相似文献   

18.
Study ObjectivesSlow wave and spindle coupling supports memory consolidation, and loss of coupling is linked with cognitive decline and neurodegeneration. Coupling is proposed to be a possible biomarker of neurological disease, yet little is known about the different subtypes of coupling that normally occur throughout human development and aging. Here we identify distinct subtypes of spindles within slow wave upstates and describe their relationships with sleep stage across the human lifespan.MethodsCoupling within a cross-sectional cohort of 582 subjects was quantified from stages N2 and N3 sleep across ages 6–88 years old. Results were analyzed across the study population via mixed model regression. Within a subset of subjects, we further utilized coupling to identify discrete subtypes of slow waves by their coupled spindles.ResultsTwo different subtypes of spindles were identified during the upstates of (distinct) slow waves: an “early-fast” spindle, more common in stage N2 sleep, and a “late-fast” spindle, more common in stage N3. We further found stages N2 and N3 sleep contain a mixture of discrete subtypes of slow waves, each identified by their unique coupled-spindle timing and frequency. The relative contribution of coupling subtypes shifts across the human lifespan, and a deeper sleep phenotype prevails with increasing age.ConclusionsDistinct subtypes of slow waves and coupled spindles form the composite of slow wave sleep. Our findings support a model of sleep-dependent synaptic regulation via discrete slow wave/spindle coupling subtypes and advance a conceptual framework for the development of coupling-based biomarkers in age-associated neurological disease.  相似文献   

19.
Sleep has been shown to facilitate the consolidation of newly acquired motor memories in adults. However, the role of sleep in motor memory consolidation is less clear in children and adolescents, especially concerning real‐life gross‐motor skills. Therefore, we investigated the effects of sleep and wakefulness on a complex gross‐motor adaptation task by using a bicycle with an inverse steering device. A total of 29 healthy adolescents aged between 11 and 14 years (five female) were either trained to ride an inverse steering bicycle (learning condition) or a stationary bicycle (control condition). Training took place in the morning (wake, n = 14) or in the evening (sleep, n = 15) followed by a 9‐hr retention interval and a subsequent re‐test session. Slalom cycling performance was assessed by speed (riding time) and accuracy (standard deviation of steering angle) measures. Behavioural results showed no evidence for sleep‐dependent memory consolidation. However, overnight gains in accuracy were associated with an increase in left hemispheric N2 slow sleep spindle activity from control to learning night. Furthermore, decreases in REM and tonic REM duration were related to higher overnight improvements in accuracy. Regarding speed, an increase in REM and tonic REM duration was favourable for higher overnight gains in riding time. Thus, although not yet detectable on a behavioural level, sleep seemed to play a role in the acquisition of gross‐motor skills. A promising direction for future research is to focus on the possibility of delayed performance gains in adolescent populations.  相似文献   

20.
The benefits of sleep for the consolidation of procedural motor skills are less robust in older adults, although the precise reasons for this remain unclear. To date, even less is known about these processes in older adults with neurodegenerative diseases, particularly those which impact on motor functioning. While sleep disturbance and motor symptoms are frequent disabling features of Parkinson's disease, no known studies have directly probed sleep‐dependent memory consolidation for motor skill learning in Parkinson's disease. Forty patients with idiopathic Parkinson's disease (age = 63.7 years ± 7.7; disease duration 4.1 years ± 4.4) completed a motor skill learning task pre‐ and post‐sleep and were compared to 20 age‐ and sex‐matched controls recruited from the community. Polysomnography was undertaken during the post‐training night and measures of sleep architecture were derived. Parkinson's disease patients did not demonstrate any apparent deficits in within‐session learning and overnight stabilization compared to controls, with both groups failing to demonstrate offline improvements in performance (i.e. memory consolidation). In controls, longer duration in slow wave sleep was associated with improved next‐day session learning (= 0.007). However, in Parkinson's disease, no relationships between sleep parameters and learning measures were found. Slow wave sleep microarchitecture and the use of dopaminergic medications may contribute to impaired sleep‐dependent multi‐session acquisition of motor skill learning in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号