首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein‐coupled receptor (GPCR) super‐family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression. However, little is known about the subcellular localization of melatonin receptors and the molecular aspects involved in neuronal functions of melatonin. Identification of protein complexes associated with GPCRs has been shown to be a valid approach to improve our understanding of their function. By combining proteomic and genomic approaches we built an interactome of MT1 and MT2 receptors, which comprises 378 individual proteins. Among the proteins interacting with MT1, but not with MT2, we identified several presynaptic proteins, suggesting a potential role of MT1 in neurotransmission. Presynaptic localization of MT1 receptors in the hypothalamus, striatum, and cortex was confirmed by subcellular fractionation experiments and immunofluorescence microscopy. MT1 physically interacts with the voltage‐gated calcium channel Cav2.2 and inhibits Cav2.2‐promoted Ca2+ entry in an agonist‐independent manner. In conclusion, we show that MT1 is part of the presynaptic protein network and negatively regulates Cav2.2 activity, providing a first hint for potential synaptic functions of MT1.  相似文献   

2.
Melatonin, a circadian rhythm–promoting molecule, has a variety of biological functions, but the functional role of melatonin in the motility of mesenchymal stem cells (MSCs) has yet to be studied. In a mouse skin excisional wound model, we found that transplantation of umbilical cord blood (UCB)‐MSCs pretreated with melatonin enhanced wound closure, granulation, and re‐epithelialization at mouse skin wound sites, where relatively more UCB‐MSCs which were engrafted onto the wound site were detected. Thus, we identified the signaling pathway of melatonin, which affects the motility of UCB‐MSCs. Melatonin (1 μm ) significantly increased the motility of UCB‐MSCs, which had been inhibited by the knockdown of melatonin receptor 2 (MT2). We found that Gαq coupled with MT2 and that the binding of Gαq to MT2 uniquely stimulated an atypical PKC isoform, PKCζ. Melatonin induced the phosphorylation of FAK and paxillin, which were concurrently downregulated by blocking of the PKC activity. Melatonin increased the levels of active Cdc42 and Arp2/3, and it has the ability to stimulate cytoskeletal reorganization‐related proteins such as profilin‐1, cofilin‐1, and F‐actin in UCB‐MSCs. Finally, a lack of MT2 expression in UCB‐MSCs during a mouse skin transplantation experiment resulted in impaired wound healing and less engraftment of stem cells at the wound site. These results demonstrate that melatonin signaling via MT2 triggers FAK/paxillin phosphorylation to stimulate reorganization of the actin cytoskeleton, which is responsible for Cdc42/Arp2/3 activation to promote UCB‐MSCs motility.  相似文献   

3.
Abstract: This study explored the role of the melatonin receptors in methamphetamine (METH)‐induced locomotor sensitization during the light and dark phases in C3H/HeN mice with genetic deletion of the MT1 and/or MT2 melatonin receptors. Six daily treatments with METH (1.2 mg/kg, i.p.) in a novel environment during the light phase led to the development of locomotor sensitization in wild‐type (WT), MT1KO and MT2KO mice. Following four full days of abstinence, METH challenge (1.2 mg/kg, i.p.) triggered the expression of locomotor sensitization in METH‐pretreated but not in vehicle (VEH)‐pretreated mice. In MT1/MT2KO mice, the development of sensitization during the light phase was significantly reduced and the expression of sensitization was completely abrogated upon METH challenge. During the dark phase the development of locomotor sensitization in METH‐pretreated WT, MT1KO and MT2KO mice was statistically different from VEH‐treated controls. However, WT and MT2KO, but not MT1KO mice receiving repeated VEH pretreatments during the dark phase expressed a sensitized response to METH challenge that is of an identical magnitude to that observed upon 6 days of METH pretreatment. We conclude that exposure to a novel environment during the dark phase, but not during the light phase, facilitated the expression of sensitization to a METH challenge in a manner dependent on MT1 melatonin receptor activation by endogenous melatonin. We suggest that MT1 and MT2 melatonin receptors are potential targets for pharmacotherapeutic intervention in METH abusers.  相似文献   

4.
Melatonin, a neurohormone that binds to two G protein-coupled receptors MT1 and MT2, is involved in pain regulation, but the distinct role of each receptor has yet to be defined. We characterized the nociceptive responses of mice with genetic inactivation of melatonin MT1 (MT1−/−), or MT2 (MT2−/−), or both MT1/MT2 (MT1−/−/MT2−/−) receptors in the hot plate test (HPT), and the formalin test (FT). In HPT and FT, MT1−/− display no differences compared to their wild-type littermates (CTL), whereas both MT2−/− and MT1−/−/MT2−/− mice showed a reduced thermal sensitivity and a decreased tonic nocifensive behavior during phase 2 of the FT in the light phase. The MT2 partial agonist UCM924 induced an antinociceptive effect in MT1−/− but not in MT2−/− and MT1−/−/MT2−/− mice. Also, the competitive opioid antagonist naloxone had no effects in CTL, whereas it induced a decrease of nociceptive thresholds in MT2−/− mice. Our results show that the genetic inactivation of melatonin MT2, but not MT1 receptors, produces a distinct effect on nociceptive threshold, suggesting that the melatonin MT2 receptor subtype is selectively involved in the regulation of pain responses.  相似文献   

5.
The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G‐protein‐coupled receptors, MT1 and MT2, remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.  相似文献   

6.
Abstract: 5‐Methoxycarbonylamino‐N‐acetyltryptamine (MCA‐NAT) has been initially described as a ligand at non MT1, non MT2 melatonin binding site (MT3) selective versus MT1 and MT2, two membrane melatonin receptors. MCA‐NAT activity has been reported by others in different models, in vivo, particularly in the intra‐ocular pressure (IOP) models in rabbits and monkeys. Its activity was systematically linked to either MT3 or to a new, yet unknown, melatonin receptor. In this article, the melatonin receptor pharmacology of MCA‐NAT is described. MCA‐NAT has micromolar range affinities at the melatonin receptors MT1 and MT2, while in functional studies, MCA‐NAT proved to be a powerful MT1/MT2 partial agonist in the sub‐micromolar range. These data strongly suggest that MCA‐NAT actions might be mediated by these receptors in vivo. Finally, as described by others, we show that MCA‐NAT is unable to elicit any type of receptor‐like functional responses from Chinese hamster ovary cells over‐expressing quinone reductase 2, the MT3.  相似文献   

7.
Abstract: The melatonin receptor family is composed of three members, MT1 and MT2 receptors that bind melatonin with high affinity and the orphan GPR50 that does not bind melatonin but shares significant sequence homology with the two other subtypes. In the absence of any known ligand for this orphan receptor, little is still known about its function. We recently reported the development of the first anti‐GPR50 antibodies that reliably recognized the recombinant human GPR50. We here used these antibodies to study the expression of GPR50 in mouse, rat and human hypothalamus, a region reported to express GPR50 mRNA. GPR50 immunoreactivity (ir) was observed in dorsomedial hypothalamic (DMH) cells co‐stained with the neuronal marker HuC/D. GPR50‐ir was also observed in cells of the ependymal layer of the third ventricle that co‐stained with vimentin. More specifically, its localization in the lower region of the third ventricle and along the long basal processes contacting portal blood vessels in the median eminence (ME) suggested expression of GPR50 in tanycytes. Consistent staining patterns were observed in all three species with two different antibodies. Taken together, our study validates two GPR50‐specific antibodies for the use in rodent and human tissue. Evolutionary conserved expression of GPR50 in DMH neurons and tanycytes, together with previously reported expression of the receptor in the pituitary, support the potentially important role of GPR50 in key hypothalamic functions, including regulation of the hypothalamo‐pituitary axes.  相似文献   

8.
The tryptophan derivative melatonin is an evolutionary old molecule that is involved in a pleiotropy of physiological functions. In humans, age‐related decline of circulating melatonin levels and/or dysregulation of its circadian synthesis pattern have been associated with several disorders and disease states. Several molecular targets have been proposed for melatonin since its discovery, in 1959. Among them, melatonin MT1 and MT2 receptors are the best characterized melatonin targets, mediating melatonin effects in a variety of tissues. They belong to the superfamily of G protein‐coupled receptors. Two back‐to‐back articles published in the “Nature” Journal earlier this year present the first crystal structures of the human MT1 and MT2 in its inactive states. Here, we will briefly outline the discovery path of melatonin receptors until their structural elucidation and discuss how these new findings will guide future research toward a better understanding of their function and rational drug design.  相似文献   

9.
Melatonin promotes sleep. However, the underlying mechanisms are unknown. Orexin neurons in the perifornical lateral hypothalamus (PFH ) are pivotal for wake promotion. Does melatonin promote sleep by inhibiting orexin neurons? We used C57BL /6J mice and designed 4 experiments to address this question. Experiment 1 used double‐labeled immunofluorescence and examined the presence of melatonin receptors on orexin neurons. Second, mice, implanted with bilateral guides targeted toward PFH and sleep‐recording electrodes, were infused with melatonin (500 pmole/50 nL/side) at dark onset (onset of active period), and spontaneous bouts of sleep‐wakefulness were examined. Third, mice, implanted with bilateral guides into the PFH , were infused with melatonin (500 pmole/50 nL/side) at dark onset and euthanized 2 hours later, to examine the activation of orexin neurons using c‐Fos expression in orexin neurons. Fourth, mice, implanted with PFH bilateral guides and sleep‐recording electrodes, were infused with melatonin receptor antagonist, luzindole (10 pmol/50 nL/side), at light onset (onset of sleep period), and spontaneous bouts of sleep‐wakefulness were examined. Our results suggest that orexin neurons express MT 1, but not MT 2 receptors. Melatonin infusion into the PFH , at dark onset, site‐specifically and significantly increased NREM sleep (43.7%, P  = .003) and reduced wakefulness (12.3%, P  = .013). Local melatonin infusion at dark onset inhibited orexin neurons as evident by a significant reduction (66%, P  = .0004) in the number of orexin neurons expressing c‐Fos. Finally, luzindole infusion‐induced blockade of melatonin receptors in PFH at sleep onset significantly increased wakefulness (44.1%, P  = .015). Based on these results, we suggest that melatonin may act via the MT 1 receptors to inhibit orexin neurons and promote sleep.  相似文献   

10.
Although melatonin receptors are widely expressed in the mammalian central nervous system and peripheral tissues, there are limited data regarding the functions of melatonin in cerebellar Purkinje cells. Here, we identified a novel functional role of melatonin in modulating P‐type Ca2+ channels and action‐potential firing in rat Purkinje neurons. Melatonin at 0.1 μm reversibly decreased peak currents (IBa) by 32.9%. This effect was melatonin receptor 1 (MTR1) dependent and was associated with a hyperpolarizing shift in the voltage dependence of inactivation. Pertussis toxin pretreatment, intracellular application of QEHA peptide, and a selective antibody raised against the Gβ subunit prevented the inhibitory effects of melatonin. Pretreatment with phosphatidylinositol 3‐kinase (PI3K) inhibitors abolished the melatonin‐induced decrease in IBa. Surprisingly, melatonin responses were not regulated by Akt, a common downstream target of PI3K. Melatonin treatment significantly increased protein kinase C (PKC) activity 2.1‐fold. Antagonists of PKC, but not of protein kinase A, abolished the melatonin‐induced decrease in IBa. Melatonin application increased the membrane abundance of PKCδ, and PKCδ inhibition (either pharmacologically or genetically) abolished the melatonin‐induced IBa response. Functionally, melatonin increased spontaneous action‐potential firing by 53.0%; knockdown of MTR1 and blockade of P‐type channels abolished this effect. Thus, our results suggest that melatonin inhibits P‐type channels through MTR1 activation, which is coupled sequentially to the βγ subunits of Gi/o‐protein and to downstream PI3K‐dependent PKCδ signaling. This likely contributes to its physiological functions, including spontaneous firing of cerebellar Purkinje neurons.  相似文献   

11.
Functional MT1 and MT2 melatonin receptors in mammals   总被引:10,自引:0,他引:10  
Melatonin, dubbed the hormone of darkness, is known to regulate a wide variety of physiological processes in mammals. This review describes well-defined functional responses mediated through activation of high-affinity MT1 and MT2 proteinteoupled receptors viewed as potential targets for drug discovery. MT1 melatonin receptors modulate neuronal firing, arterial vasoconstriction, cell proliferation in cancer cells, and reproductive and metabolic functions. Ativation of MT2 melatonin receptors phase shift circadian rhythms of neuronal firing in the suprachiasmatic nucleus, inhibit dopamine release in retina, induce vasodilation and inhibition of leukocyte rolling in arterial beds, and enhance immune responses. The melatonin-mediated responses elicited by activation of MT1 and MT2 native melatonin receptors are dependent on circadian time, duration and mode of exposure to endogenous or exogenous melatonin, and functional receptor sensitivity. Together, these studies underscore the importance of carefully linking each melatonin receptor type to specific functional responses in target tissues to facilitate the design and development of novel therapeutic agent.  相似文献   

12.
13.
14.
Melatonin MT1 and MT2 receptor ligands have been vigorously explored for the last 4 decades. Inspection of approximately 80 publications in the field revealed that most melatonergic ligands were structural analogues of melatonin combining three essential features of the parent compound: an aromatic ring bearing a methoxy group and an amide side chain in a relative arrangement similar to that present in melatonin. While several series of MT2-selective agents—agonists, antagonists, or partial agonists—were reported, the field was lacking MT1-selective agents. Herein, we describe various approaches toward the development of melatonergic ligands, keeping in mind that most of the molecules/pharmacophores obtained were essentially melatonin copies, even though diverse tri- or tetra-cyclic compounds were explored. In addition to lack of structural diversity, only few studies examined the activity of the reported melatonergic ligands in vivo. Moreover, an extensive pharmacological characterization including biopharmaceutical stability, pharmacokinetic properties, specificity toward other major receptors to name a few remained scarce. For example, many of the antagonists described were not stable in vivo, were not selective for the melatonin receptor subtype of interest, and were not fully characterized from a pharmacological standpoint. Indeed, virtual screening of large compound libraries has led to the recent discovery of potent and selective melatonin receptor agonists and partial agonists of new chemotypes. Having said this, the melatonergic field is still lacking subtype-selective melatonin receptor antagonists “active” in vivo, which are critical to our understanding of melatonin and melatonin receptors’ role in basic physiology and disease.  相似文献   

15.
16.
Recent studies implicate melatonin in the antinociceptive activity of sensory neurons. However, the underlying mechanisms are still largely unknown. Here, we identify a critical role of melatonin in functionally regulating Cav3.2 T‐type Ca2+ channels (T‐type channel) in trigeminal ganglion (TG) neurons. Melatonin inhibited T‐type channels in small TG neurons via the melatonin receptor 2 (MT2 receptor) and a pertussis toxin‐sensitive G‐protein pathway. Immunoprecipitation analyses revealed that the intracellular subunit of the MT2 receptor coprecipitated with Gαo. Both shRNA‐mediated knockdown of Gαo and intracellular application of QEHA peptide abolished the inhibitory effects of melatonin. Protein kinase C (PKC) antagonists abolished the melatonin‐induced T‐type channel response, whereas inhibition of conventional PKC isoforms elicited no effect. Furthermore, application of melatonin increased membrane abundance of PKC‐eta (PKCη) while antagonism of PKCη or shRNA targeting PKCη prevented the melatonin‐mediated effects. In a heterologous expression system, activation of MT2 receptor strongly inhibited Cav3.2 T‐type channel currents but had no effect on Cav3.1 and Cav3.3 current amplitudes. The selective Cav3.2 response was PKCη dependent and was accompanied by a negative shift in the steady‐state inactivation curve. Furthermore, melatonin decreased the action potential firing rate of small TG neurons and attenuated the mechanical hypersensitivity in a mouse model of complete Freund's adjuvant‐induced inflammatory pain. These actions were inhibited by T‐type channel blockade. Together, our results demonstrated that melatonin inhibits Cav3.2 T‐type channel activity through the MT2 receptor coupled to novel Gβγ‐mediated PKCη signaling, subsequently decreasing the membrane excitability of TG neurons and pain hypersensitivity in mice.  相似文献   

17.
Abstract: Melatonin is predominantly involved in signaling circadian and seasonal rhythms, and its synthesis is regulated by the environmental light/dark cycle. The selection pressure by geographically different environmental light/dark cycles, which is predominantly determined by sunshine duration, on the global distribution of genetic polymorphisms in the melatonin pathway is not well understood. Recent genetic association studies identified various disease‐predisposition polymorphisms in this pathway. We investigated the correlations between the prevalence of these clinically important single nucleotide polymorphisms (SNPs) and sunshine duration among worldwide human populations from twelve regions in the CEPH‐HGDP database rs4753426, a recently reported predisposition SNP for type 2 diabetes in the promoter of the MT2 melatonin receptor gene (MTNR1B), which was not included in the CEPH‐HGDP genotyping array, was additionally genotyped. This SNP showed a marginally significant correlation in 760 CEPH‐HGDP DNA samples (r = ?0.5346, P = 0.0733), and it showed the most prominent association among the candidate melatonin pathway SNPs examined. To control for population structure, which may lead to a false positive correlation, we genotyped this SNP in a replication set of 1792 subjects from China. The correlation was confirmed among Chinese populations (r = ?0.8694, P = 0.0002), and was also statistically significant after correction of other climatic and geographical covariants in multiple regression analysis (β = ?0.907, P = 1.94 × 10?5). Taken together, it suggests that the human melatonin signaling pathway, particularly MT2 melatonin receptor may have undergone a selective pressure in response to global variation in sunshine duration.  相似文献   

18.
19.
Melatonin (MLT) is widely used to treat sleep disorders although the underlying mechanism is still elusive. In mice, using wheel-running detection, we found that exogenous MLT could completely recover the period length prolonged by N-methyl-D-aspartate receptor (NMDAR) impairment due to the injection of the NMDAR antagonist MK-801, a preclinical model of psychosis. The analysis of the possible underlying mechanisms indicated that MLT could regulate the homeostatic state in the ventrolateral preoptic nucleus (VLPO) instead of the circadian process in the suprachiasmatic nucleus (SCN). In addition, our data showed that MK-801 decreased Ca2+-related CaMKII expression and CREB phosphorylation levels in the VLPO, and MLT could rescue these intracellular impairments but not NMDAR expression levels. Accordingly, Gcamp6 AAV virus was injected in-vivo to further monitor intracellular Ca2+ levels in the VLPO, and MLT demonstrated a unique ability to increase Ca2+ fluorescence compared with MK-801-injected mice. Additionally, using the selective melatonin MT2 receptor antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT), we discovered that the pharmacological effects of MLT upon NMDAR impairments were mediated by melatonin MT2 receptors. Using electroencephalography/electromyography (EEG/EMG) recordings, we observed that the latency to the first nonrapid eye movement (NREM) sleep episode was delayed by MK-801, and MLT was able to recover this delay. In conclusion, exogenous MLT by acting upon melatonin MT2 receptors rescues sleep phase delayed by NMDAR impairment via increasing intracellular Ca2+ signaling in the VLPO, suggesting a regulatory role of the neurohormone on the homeostatic system.  相似文献   

20.
This study focused on the effect of melatonin on reprogramming with specific regard to the generation of induced pluripotent stem cells (iPSCs). Here, a secondary inducible system, which is more accurate and suitable for studying the involvement of chemicals in reprogramming efficiency, was used to evaluate the effect of melatonin on mouse iPSC generation. Secondary fibroblasts collected from all‐iPSC mice through tetraploid complementation were cultured in induction medium supplemented with melatonin at different concentrations (0, 10?6, 10?7, 10?8, 10?9, or 10?10 m ) or with vitamin C (50 μg/mL) as a positive control. Compared with untreated group (0.22 ± 0.04% efficiency), 10?8 (0.81 ± 0.04%), and 10?9 m (0.83 ± 0.08%) melatonin supplementation significantly improved reprogramming efficiency (< 0.05). Moreover, we verified that the iPSCs induced by melatonin treatment (MiPSCs) had the same characteristics as typical embryonic stem cells (ESCs), including expression of the pluripotency markers Oct4, Sox2, and Nanog, the ability to form teratomas and all three germ layers of the embryo, as well as produce chimeric mice with contribution to the germ line. Interestingly, only the melatonin receptor MT2 was detected in secondary fibroblasts, while MiPSCs and ESCs expressed MT1 and MT2 receptors. Furthermore, during the early stage of reprogramming, expression of the apoptosis‐related genes p53 and p21 was lower in the group treated with 10?9 m melatonin compared with the untreated controls. In conclusion, melatonin supplementation enhances the efficiency of murine iPSC generation. These beneficial effects may be associated with inhibition of the p53‐mediated apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号