首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is associated with macrophage infiltration and metabolic inflammation, both of which promote metabolic disease progression. Melatonin is reported to possess anti‐inflammatory properties by inhibiting inflammatory response of adipocytes and macrophages activation. However, the effects of melatonin on the communication between adipocytes and macrophages during adipose inflammation remain elusive. Here, we demonstrated melatonin alleviated inflammation and elevated α‐ketoglutarate (αKG) level in adipose tissue of obese mice. Mitochondrial isocitrate dehydrogenase 2 (Idh2) mRNA level was also elevated by melatonin in adipocytes leading to increase αKG level. Further analysis revealed αKG was the target for melatonin inhibition of adipose inflammation. Moreover, sirtuin 1 (Sirt1) physically interacted with IDH2 and formed a complex to increase the circadian amplitude of Idh2 and αKG content in melatonin‐inhibited adipose inflammation. Notably, melatonin promoted exosomes secretion from adipocyte and increased adipose‐derived exosomal αKG level. Our results also confirmed that melatonin alleviated adipocyte inflammation and increased ratio of M2 to M1 macrophages by transporting of exosomal αKG to macrophages and promoting TET‐mediated DNA demethylation. Furthermore, exosomal αKG attenuated signal transducers and activators of transduction‐3 (STAT3)/NF‐κB signal by its receptor oxoglutarate receptor 1 (OXGR1) in adipocytes. Melatonin also attenuated adipose inflammation and deceased macrophage number in chronic jet‐lag mice. In summary, our results demonstrate melatonin alleviates metabolic inflammation by increasing cellular and exosomal αKG level in adipose tissue. Our data reveal a novel function of melatonin on adipocytes and macrophages communication, suggesting a new potential therapy for melatonin to prevent and treat obesity caused systemic inflammatory disease.  相似文献   

2.
Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid‐related orphan receptor‐α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac‐targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development.  相似文献   

3.
Melatonin membrane (MT1 and MT2) and nuclear (RORα) receptors have been identified in several mammalian tissues, including the liver. The mechanisms regulating hepatic melatonin receptors are yet unknown. This study investigated whether these receptors exhibit daily changes and the effects of melatonin on their levels. Our results show that mRNAs for MT1/MT2 receptors exhibit circadian rhythms that were followed by rhythms in their respective protein levels; the acrophases for the two rhythms were reached at 04:00 and 05:00 hr, respectively. Pinealectomy blunted the rhythms in both mRNAs and protein levels. In contrast, mRNA and protein levels of nuclear receptor RORα increased significantly after pinealectomy. The cycles of the latter receptor also exhibited circadian rhythms which peaked at 03:00 and 03:45 hr, respectively. Melatonin administration (10–200 mg/kg) increased in a dose‐dependent manner the protein content of MT1/MT2 receptors, with no effects on RORα. Lunzindole treatment, however, did not affect melatonin receptor expression or content of either the membrane or nuclear receptors. Together with previously published findings which demonstrated the intracellular distribution of melatonin in rat liver, the current results support the conclusion that the circadian rhythms of MT1/MT2 and RORα receptors are under the control of the serum and intracellular melatonin levels. Moreover, the induction of MT1/MT2 receptors after the administration of high doses of melatonin further suggests that the therapeutic value of melatonin may not be restricted to only low doses of the indoleamine.  相似文献   

4.
Melatonin has been widely studied as a protective agent against oxidative stress. However, the molecular mechanisms underlying neuroprotection in neurodegeneration and ischemic stroke are not yet well understood. In this study, we evaluated the neuroprotective/antioxidant mechanism of action of melatonin in organotypic hippocampal cultures (OHCs) as well as in photothrombotic stroke model in vivo. Melatonin (0.1, 1, and 10 μm ) incubated postoxygen and glucose deprivation (OGD) showed a concentration‐dependent protection; maximum protection was achieved at 10 μm (90% protection). Next, OHCs were exposed to 10 μm melatonin at different post‐OGD times; the protective effect of melatonin was maintained at 0, 1, and 2 hr post‐OGD treatment, but it was lost at 6 hr post‐OGD. The protective effect of melatonin and the reduction in OGD‐induced ROS were prevented by luzindole (melatonin antagonist) and α‐bungarotoxin (α‐Bgt, a selective α7 nAChR antagonist). In Nrf2 knockout mice, the protective effect of melatonin was reduced by 40% compared with controls. Melatonin, incubated 0, 1, and 2 hr post‐OGD, increased the expression of heme oxygenase‐1 (HO‐1), and this overexpression was prevented by luzindole and α‐bungarotoxin. Finally, administration of 15 mg/kg melatonin following the induction of photothrombotic stroke in vivo, reduced infarct size (50%), and improved motor skills; this effect was partially lost in 0.1 mg/kg methyllycaconitine (MLA, selective α7 nAChR antagonist)‐treated mice. Taken together, these results demonstrate that postincubation of melatonin provides a protective effect that, at least in part, depends on nicotinic receptor activation and overexpression of HO‐1.  相似文献   

5.
The human liver fluke Opisthorchis viverrini infection and N‐nitrosodimethylamine (NDMA) administration induce cholangiocarcinoma (CCA) and liver injury in hamsters. Melatonin protects against liver injury and reduces the alteration of mitochondrial structure, mitochondrial membrane potential, and mitochondrial pro‐ and anti‐apoptotic pathways in various cancer types. To investigate the chemopreventive effect of melatonin on CCA genesis and liver injury, hamsters were treated with a combination of O. viverrini infection and NDMA concurrently administered with melatonin (10 mg/kg and 50 mg/kg) for 120 days. Melatonin treatment at 50 mg/kg caused a significant reduction in liver/body weight ratios and decreased tumor volumes leading to an increase in the survival of animals. In the tumorous tissues, the high‐dose melatonin reduced DNA fragmentation and mitochondrial apoptosis by inducing anti‐apoptotic protein (Bcl‐2) in the mitochondrial fraction and down‐regulating cytochrome c, pro‐apoptotic protein (Bax), and caspase‐3 in tumor cytosol. Moreover, a high‐dose melatonin treatment significantly increased mitochondrial antioxidant enzymes and prevented mitochondrial ultrastructure changes in the tumor. Overall, melatonin has potent chemopreventive effects in inhibiting CCA genesis and also reduces liver injury in hamster CCA, which, in part, might involve in the suppression of CCA by reducing tumor mitochondria alteration.  相似文献   

6.
Melatonin confers profound protective effect against myocardial ischemia–reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also ameliorates MI/RI. We hypothesize that melatonin attenuates MI/RI‐induced oxidative damage by activating Notch1/Hes1 signaling pathway with phosphatase and tensin homolog deleted on chromosome 10 (Pten)/Akt acting as the downstream signaling pathway in a melatonin membrane receptor‐dependent manner. Male Sprague Dawley rats were treated with melatonin (10 mg/kg/day) for 4 wk and then subjected to MI/R surgery. Melatonin significantly improved cardiac function and decreased myocardial apoptosis and oxidative damage. Furthermore, in cultured H9C2 cardiomyocytes, melatonin (100 μmol/L) attenuated simulated ischemia–reperfusion (SIR)‐induced myocardial apoptosis and oxidative damage. Both in vivo and in vitro study demonstrated that melatonin treatment increased Notch1, Notch1 intracellular domain (NICD), Hes1, Bcl‐2 expressions, and p‐Akt/Akt ratio and decreased Pten, Bax, and caspase‐3 expressions. However, these protective effects conferred by melatonin were blocked by DAPT (the specific inhibitor of Notch1 signaling), luzindole (the antagonist of melatonin membrane receptors), Notch1 siRNA, or Hes1 siRNA administration. In summary, our study demonstrates that melatonin treatment protects against MI/RI by modulating Notch1/Hes1 signaling in a receptor‐dependent manner and Pten/Akt signaling pathways are key downstream mediators.  相似文献   

7.
Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor‐dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit‐regulated H2O2 and Ca2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein‐coupled receptor were insensitive to melatonin‐induced stomatal closure. Accordingly, the melatonin‐induced H2O2 production and Ca2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125I‐melatonin binding, with apparent Kd (dissociation constant) of 0.73 ± 0.10 nmol/L (r2 = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1‐mediated H2O2 and Ca2+signaling transduction cascade.  相似文献   

8.
It is generally established that the unstable plaque is the major cause of acute clinical sequelae of atherosclerosis. Unfortunately, terms indicating lesions prone to plaque instability, such as "vulnerable plaque," and the different phenotypes of unstable plaques, such as plaque rupture, plaque fissuring, intraplaque hemorrhage, and erosion, are often used interchangeably. Moreover, the different phenotypes of the unstable plaque are mostly referred to as plaque rupture. In the first part of this review, we will focus on the definition of true plaque rupture and the definitions of other phenotypes of plaque instability, especially on intraplaque hemorrhage, and discuss the phenotypes of available animal models of plaque instability. The second part of this review will address the pathogenesis of plaque rupture from a local and a systemic perspective. Plaque rupture is thought to occur because of changes in the plaque itself or systemic changes in the patient. Interestingly, contributing factors seem to overlap to a great extent and might even be interrelated. Finally, we will propose an integrative view on the pathogenesis of plaque rupture.  相似文献   

9.
10.
Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium‐induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin‐43 preservation. After stabilization in Krebs‐Henseleit solution (4.5 mEq/L K+), isolated hearts from Wistar rats underwent perfusion with low‐potassium (1 mEq/L) solution and melatonin (100 μmol/L), a melatonin receptor blocker (luzindole, 5 μmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin‐43 were examined. Melatonin reduced the incidence of low potassium‐induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin‐43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin‐43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium‐induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin‐43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.  相似文献   

11.
L‐3,4‐dihydroxyphenylalanine (L‐DOPA) reduces symptoms of Parkinson's disease (PD), but suffers from serious side effects on long‐term use. Melatonin (10–30 mg/kg, 6 doses at 10 hr intervals) was investigated to potentiate L‐DOPA therapeutic effects in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced parkinsonism in mice. Striatal tyrosine hydroxylase (TH) immunoreactivity, TH, and phosphorylated ser 40 TH (p‐TH) protein levels were assayed on 7th day. Nigral TH‐positive neurons stereology was conducted on serial sections 2.8 mm from bregma rostrally to 3.74 mm caudally. MPTP caused 39% and 58% decrease, respectively, in striatal fibers and TH protein levels, but 2.5‐fold increase in p‐TH levels. About 35% TH neurons were lost between 360 and 600 μm from 940 μm of the entire nigra analyzed, but no neurons were lost between 250 μm rostrally and 220 μm caudally. When L‐DOPA in small doses (5–8 mg/kg) failed to affect MPTP‐induced akinesia or catalepsy, co‐administration of melatonin with L‐DOPA attenuated these behaviors. Melatonin administration significantly attenuated MPTP‐induced loss in striatal TH fibers (82%), TH (62%) and p‐TH protein (100%) levels, and nigral neurons (87–100%). Melatonin failed to attenuate MPTP‐induced striatal dopamine depletion. L‐DOPA administration (5 mg/kg, once 40 min prior to sacrifice, p.o.) in MPTP‐ and melatonin‐treated mice caused significant increase in striatal dopamine (31%), as compared to L‐DOPA and MPTP‐treated mice. This was equivalent to 8 mg/kg L‐DOPA administration in parkinsonian mouse. Therefore, prolonged, effective use of L‐DOPA in PD with lesser side effects could be achieved by treating with 60% lower doses of L‐DOPA along with melatonin.  相似文献   

12.
Exercise‐induced physiological hypertrophy provides protection against cardiovascular disease, whereas disease‐induced pathological hypertrophy leads to heart failure. Emerging evidence suggests pleiotropic roles of melatonin in cardiac disease; however, the effects of melatonin on physiological vs pathological cardiac hypertrophy remain unknown. Using swimming‐induced physiological hypertrophy and pressure overload‐induced pathological hypertrophy models, we found that melatonin treatment significantly improved pathological hypertrophic responses accompanied by alleviated oxidative stress in myocardium but did not affect physiological cardiac hypertrophy and oxidative stress levels. As an important mediator of melatonin, the retinoid‐related orphan nuclear receptor‐α (RORα) was significantly decreased in human and murine pathological hypertrophic cardiomyocytes, but not in swimming‐induced physiological hypertrophic murine hearts. In vivo and in vitro loss‐of‐function experiments indicated that RORα deficiency significantly aggravated pathological cardiac hypertrophy, and notably weakened the anti‐hypertrophic effects of melatonin. Mechanistically, RORα mediated the cardioprotection of melatonin in pathological hypertrophy mainly by transactivation of manganese‐dependent superoxide dismutase (MnSOD) via binding to the RORα response element located in the promoter region of the MnSOD gene. Furthermore, MnSOD overexpression reversed the pro‐hypertrophic effects of RORα deficiency, while MnSOD silencing abolished the anti‐hypertrophic effects of RORα overexpression in pathological cardiac hypertrophy. Collectively, our findings provide the first evidence that melatonin exerts an anti‐hypertrophic effect on pathological but not physiological cardiac hypertrophy via alleviating oxidative stress through transactivation of the antioxidant enzyme MnSOD in a RORα‐dependent manner.  相似文献   

13.
Targeting mitochondrial quality control with melatonin has been found promising for attenuating diabetic cardiomyopathy (DCM), although the underlying mechanisms remain largely undefined. Activation of SIRT6 and melatonin membrane receptors exerts cardioprotective effects while little is known about their roles during DCM. Using high‐fat diet‐streptozotocin‐induced diabetic rat model, we found that prolonged diabetes significantly decreased nocturnal circulatory melatonin and heart melatonin levels, reduced the expressions of cardiac melatonin membrane receptors, and decreased myocardial SIRT6 and AMPK‐PGC‐1α‐AKT signaling. 16 weeks of melatonin treatment inhibited the progression of DCM and the following myocardial ischemia‐reperfusion (MI/R) injury by reducing mitochondrial fission, enhancing mitochondrial biogenesis and mitophagy via re‐activating SIRT6 and AMPK‐PGC‐1α‐AKT signaling. After the induction of diabetes, adeno‐associated virus carrying SIRT6‐specific small hairpin RNA or luzindole was delivered to the animals. We showed that SIRT6 knockdown or antagonizing melatonin receptors abolished the protective effects of melatonin against mitochondrial dysfunction as evidenced by aggravated mitochondrial fission and reduced mitochondrial biogenesis and mitophagy. Additionally, SIRT6 shRNA or luzindole inhibited melatonin‐induced AMPK‐PGC‐1α‐AKT activation as well as its cardioprotective actions. Collectively, we demonstrated that long‐term melatonin treatment attenuated the progression of DCM and reduced myocardial vulnerability to MI/R injury through preserving mitochondrial quality control. Melatonin membrane receptor‐mediated SIRT6‐AMPK‐PGC‐1α‐AKT axis played a key role in this process. Targeting SIRT6 with melatonin treatment may be a promising strategy for attenuating DCM and reducing myocardial vulnerability to ischemia‐reperfusion injury in diabetic patients.  相似文献   

14.
Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque   总被引:5,自引:0,他引:5  
Thin cap atheroma is the precursor of plaque rupture, which accounts for a majority of coronary thrombi. The morphologic features of thin cap atheromas that predict rupture are unknown, but we know from studies of ruptured plaques that large necrotic cores, fibrous cap < 65 microns and numerous macrophages within the cap likely indicate instability. There is some evidence that a speckled pattern of calcification is associated with vulnerability to rupture. There are usually multiple thin cap atheroma in the hearts of patients dying with acute plaque rupture, as well as multiple fibroatheromas with intraplaque hemorrhage. Targeted therapy for the purpose of stabilizing coronary lesions that are prone to rupture is a major future goal of the interventionist.  相似文献   

15.
In this study, we examined the relationships between p38 mitogen‐activated protein kinase (MAPK) activation in the cuneate nucleus (CN) and behavioral hypersensitivity after chronic constriction injury (CCI) of the median nerve. We further investigated effects of melatonin administration and pinealectomy on p38 MAPK activation and development of hypersensitivity. Using immunohistochemistry and immunoblotting, low levels of phosphorylated p38 (p‐p38) MAPK were detected in CN of normal rats. As early as 1 day after CCI, p‐p38 MAPK levels in the ipsilateral CN were significantly increased (1.4 ± 0.2‐fold, P < 0.05), which reached a maximum at 7 days (5.1 ± 0.4‐fold, P < 0.001). Double immunofluorescence labeling with cell‐specific markers showed that p‐p38 MAPK immunoreactive cells co‐expressed OX‐42, a microglia activation maker, suggesting the expression of p‐p38 MAPK in microglia. Microinjection of SB203580, a p38 MAPK inhibitor, into the CN 1 day after CCI attenuated injury‐induced behavioral hypersensitivity in a dose‐dependent manner. Furthermore, animals received melatonin treatment at daily doses of 37.5, 75, 150, or 300 mg/kg from 30 min before until 3 days after CCI. Melatonin treatment dose‐dependently attenuated p‐p38 MAPK levels, release of pro‐inflammatory cytokines, and behavioral hypersensitivity following CCI; conversely, pinealectomy that resulted in a reduction in endogenous melatonin levels exacerbated these effects. In conclusion, median nerve injury‐induced microglial p38 MAPK activation in the CN modulated development of behavioral hypersensitivity. Melatonin supplementation eased neuropathic pain via inhibition of p38 MAPK signaling pathway; contrarily, reducing endogenous blood melatonin levels by pinealectomy promoted phosphorylation of p38 MAPK and made rats more vulnerable to nerve injury‐induced neuropathic pain.  相似文献   

16.
Environmental endocrine chemicals have various adverse effects on the development of vertebrates. Fluorene‐9‐bisphenol (BHPF), a substitute of bisphenol A (BPA), is widely used in commercial production. The effects of BHPF on development and behavior are unclear. Melatonin plays a protective role under many unfavorable conditions. In this study, we investigated the effects of BHPF on the development and behaviors of zebrafish and whether melatonin reverses effects induced by BHPF. Zebrafish embryos were exposed to 0.1, 10, or 1000 nmol/L BHPF with or without 1 μmol/L melatonin from 2 hours postfertilization to 6 days postfertilization. The results showed that 0.1 and 10 nmol/L BHPF had little effect on development. High‐dose BHPF (1000 nmol/L) delayed the development, increased mortality and surface tension of embryonic chorions, caused aberrant expression of the key genes (ntl, shh, krox20, pax2, cmlc2) in early development detected by in situ hybridization, and damaged the CaP motor neurons, which were associated with locomotion ability detected by immunofluorescence. Melatonin addition reversed or weakened these adverse effects of BHPF on development, and melatonin alone increased surface tension as the effects of high‐dose BHPF. However, all groups of BHPF exposure triggered insomnia‐like behaviors, with increased waking activity and decreased rest behaviors. BHPF acted on the hypocretin (hcrt) system and upregulated the expression of sleep/wake regulators such as hcrt, hcrt receptor (hcrtr), arylalkylamine N‐acetyltransferase‐2 (aanat2). Melatonin recovered the alternation of sleep/wake behaviors induced by BHPF and restored abnormal gene expression to normal levels. This study showed that high‐dose BHPF had adverse effects on early development and induced behavioral alternations. However, melatonin prevented BHPF‐induced aberrant development and sleep/wake behaviors.  相似文献   

17.
Although monocytes/macrophages are considered important in atherogenesis, their role in established plaques is unclear. For example, macrophage content is associated with plaque instability, but their loss through cell death is observed at sites of plaque rupture. To examine the role of monocytes/macrophages in atherosclerosis, we developed CD11b-diphtheria toxin (DT) receptor (DTR) transgenic mice, whereby administration of DT selectively kills monocytes/macrophages. DT treatment reduced peripheral blood monocytes and tissue macrophages and inhibited macrophage function in CD11b-DTR mice and apolipoprotein E-null (apoE(-/-)) mice transplanted with CD11b-DTR bone marrow. In atherogenesis experiments, DT markedly reduced plaque development and altered plaque composition, reducing collagen content and necrotic core formation. In mice with established plaques, acute DT treatment induced macrophage apoptosis and reduced macrophage content but did not induce plaque inflammation, thrombosis, or rupture. Furthermore, despite a 50% reduction in monocytes, chronic DT treatment of these mice did not alter plaque extent or composition, most likely because of ongoing recruitment/proliferation of monocytes with recovery of macrophage content. We conclude that monocytes/macrophages are critical to atherogenesis, but established plaques are more resistant to reductions in monocytes.  相似文献   

18.
Although melatonin receptors are widely expressed in the mammalian central nervous system and peripheral tissues, there are limited data regarding the functions of melatonin in cerebellar Purkinje cells. Here, we identified a novel functional role of melatonin in modulating P‐type Ca2+ channels and action‐potential firing in rat Purkinje neurons. Melatonin at 0.1 μm reversibly decreased peak currents (IBa) by 32.9%. This effect was melatonin receptor 1 (MTR1) dependent and was associated with a hyperpolarizing shift in the voltage dependence of inactivation. Pertussis toxin pretreatment, intracellular application of QEHA peptide, and a selective antibody raised against the Gβ subunit prevented the inhibitory effects of melatonin. Pretreatment with phosphatidylinositol 3‐kinase (PI3K) inhibitors abolished the melatonin‐induced decrease in IBa. Surprisingly, melatonin responses were not regulated by Akt, a common downstream target of PI3K. Melatonin treatment significantly increased protein kinase C (PKC) activity 2.1‐fold. Antagonists of PKC, but not of protein kinase A, abolished the melatonin‐induced decrease in IBa. Melatonin application increased the membrane abundance of PKCδ, and PKCδ inhibition (either pharmacologically or genetically) abolished the melatonin‐induced IBa response. Functionally, melatonin increased spontaneous action‐potential firing by 53.0%; knockdown of MTR1 and blockade of P‐type channels abolished this effect. Thus, our results suggest that melatonin inhibits P‐type channels through MTR1 activation, which is coupled sequentially to the βγ subunits of Gi/o‐protein and to downstream PI3K‐dependent PKCδ signaling. This likely contributes to its physiological functions, including spontaneous firing of cerebellar Purkinje neurons.  相似文献   

19.
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage‐associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF‐κB, STATs, and NLRP3/caspase‐1. Notably, miRNAs (eg, miR‐155/‐34a/‐23a), cellular metabolic pathways (eg, α‐KG, HIF‐1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage‐associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage‐associated diseases.  相似文献   

20.
We investigated the ability of targeted immunomicelles to detect and assess macrophages in atherosclerotic plaque using MRI in vivo. There is a large clinical need for a noninvasive tool to assess atherosclerosis from a molecular and cellular standpoint. Macrophages play a central role in atherosclerosis and are associated with plaques vulnerable to rupture. Therefore, macrophage scavenger receptor (MSR) was chosen as a target for molecular MRI. MSR-targeted immunomicelles, micelles, and gadolinium-diethyltriaminepentaacetic acid (DTPA) were tested in ApoE-/- and WT mice by using in vivo MRI. Confocal laser-scanning microscopy colocalization, macrophage immunostaining and MRI correlation, competitive inhibition, and various other analyses were performed. In vivo MRI revealed that at 24 h postinjection, immunomicelles provided a 79% increase in signal intensity of atherosclerotic aortas in ApoE-/- mice compared with only 34% using untargeted micelles and no enhancement using gadolinium-DTPA. Confocal laser-scanning microscopy revealed colocalization between fluorescent immunomicelles and macrophages in plaques. There was a strong correlation between macrophage content in atherosclerotic plaques and the matched in vivo MRI results as measured by the percent normalized enhancement ratio. Monoclonal antibodies to MSR were able to significantly hinder immunomicelles from providing contrast enhancement of atherosclerotic vessels in vivo. Immunomicelles provided excellent validated in vivo enhancement of atherosclerotic plaques. The enhancement seen is related to the macrophage content of the atherosclerotic vessel areas imaged. Immunomicelles may aid in the detection of high macrophage content associated with plaques vulnerable to rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号