首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hallmark of granular corneal dystrophy type 2 (GCD2) is the deposit of mutant transforming growth factor‐β (TGF‐β)‐induced protein (TGFBIp) in the cornea. We have recently shown that there is a delay in autophagic degradation of mutant‐TGFBIp via impaired autophagic flux in GCD2 corneal fibroblasts. We hypothesized that melatonin can specifically induce autophagy and consequently eliminate mutant‐TGFBIp in GCD corneal fibroblasts. Our results show that melatonin activates autophagy in both wild‐type (WT) and GCD2‐homozygous (HO) corneal fibroblast cell lines via the mammalian target of rapamycin (mTOR)‐dependent pathway. Melatonin treatment also led to increased levels of beclin 1, which is involved in autophagosome formation and maturation. Furthermore, melatonin significantly reduced the amounts of mutant‐ and WT‐TGFBIp. Treatment with melatonin counteracted the autophagy‐inhibitory effects of bafilomycin A1, a potent inhibitor of autophagic flux, demonstrating that melatonin enhances activation of autophagy and increases degradation of TGFBIp. Cotreatment with melatonin and rapamycin, an autophagy inducer, had an additive effect on mutant‐TGFBIp clearance compared to treatment with either drug alone. Treatment with the selective melatonin receptor antagonist luzindole did not block melatonin‐induced autophagy. Given its ability to activate autophagy, melatonin is a potential therapeutic agent for GCD2.  相似文献   

2.
We have found recently that melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. In the present study, we further investigated the in vivo effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rats and the potential underlying mechanisms by using haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase, and a key enzyme in melatonin biosynthesis. We have found that injection of haloperidol into the lateral ventricle and into peritoneal cavity compromises spatial memory retention of rats and induces hyperphosphorylation of microtubule-associated protein tau at tau-1 (Ser199/Ser202) and PHF-1 (Ser396/Ser404) epitopes. At mean time, the activity of protein phosphatase-2A (PP-2A), a deficit phosphatase in the Alzheimer's disease brain and superoxide dismutase decreases with an elevated level of malondialdehyde. Supplementation with melatonin by prior injection for 1 wk and reinforcement during the haloperidol administration significantly improves memory retention deficits, arrests tau hyperphosphorylation and oxidative stress, and restores PP-2A activity. These results strongly support the involvement of decreased melatonin in Alzheimer-like spatial memory impairment and tau hyperphosphorylation, and PP-2A may play a role in mediating aberrant melatonin-induced lesions.  相似文献   

3.
Alzheimer's disease (AD) is the most prevalent age‐related neurodegenerative disease, pathologically characterized by the accumulation of amyloid beta (Aβ) aggregation in the brain, and is considered to be the primary cause of cognitive dysfunction. Aβ aggregates lead to synaptic disorder, tau hyperphosphorylation, and neurodegeneration. In this study, the underlying neuroprotective mechanism of melatonin against Aβ1‐42‐induced neurotoxicity was investigated in the mice hippocampus. Intracerebroventricular (i.c.v.) Aβ1‐42‐injection triggered memory impairment, synaptic disorder, hyperphosphorylation of tau protein, and neurodegeneration in the mice hippocampus. After 24 hr of Aβ1‐42 injection, the mice were treated with melatonin (10 mg/kg, intraperitonially) for 3 wks, reversed the Aβ1‐42‐induced synaptic disorder via increasing the level of presyanptic (Synaptophysin and SNAP‐25) and postsynaptic protein [PSD95, p‐GluR1 (Ser845), SNAP23, and p‐CREB (Ser133)], respectively, and attenuated the Aβ1‐42‐induced memory impairment. Chronic melatonin treatment attenuated the hyperphosphorylation of tau protein via PI3K/Akt/GSK3β signaling by activating the p‐PI3K, p‐Akt (Ser 473) and p‐GSK3β (Ser9) in the Aβ1‐42‐treated mice. Furthermore, melatonin decreased Aβ1‐42‐induced apoptosis through decreasing the overexpression of caspase‐9, caspase‐3, and PARP‐1 level. Additionally, the evaluation of immunohistochemical analysis of caspase‐3, Fluorojade‐B, and Nissl staining indicated that melatonin prevented neurodegeneration in Aβ1‐42‐treated mice. Our results demonstrated that melatonin has neuroprotective effect against Aβ1‐42‐induced neurotoxicity through decreasing memory impairment, synaptic disorder, tau hyperphosphorylation, and neurodegeneration via PI3K/Akt/GSK3β signaling in the Aβ1‐42‐treated mouse model of AD. On the basis of these results, we suggest that melatonin could be an effective, promising, and safe neuroprotective candidate for the treatment of progressive neurodegenerative disorders, such as AD.  相似文献   

4.
Brain insulin resistance, induced by neuroinflammation and oxidative stress, contributes to neurodegeneration, that is, processes that are associated with Aβ accumulation and TAU hyperphosphorylation. Here, we tested the effect of chronic administration of melatonin (MLT) on brain insulin resistance and cognition deficits caused by a high‐fat diet (HFD) in aged rats. Results showed that MLT supplementation attenuated peripheral insulin resistance and lowered hippocampal oxidative stress levels. Activated microglia and astrocytes and hippocampal levels of TNF‐α in HFD‐fed rats were reduced by MLT treatment. Melatonin also prevented HFD‐induced increases in beta‐amyloid (Aβ) accumulation and TAU phosphorylation in the hippocampus. In addition, impairments of brain insulin signaling elicited by long‐term HFD were restored by MLT treatment, as confirmed by ex vivo insulin stimulation. Importantly, MLT reversed HFD‐induced cognitive decline as measured by a water maze test, normalized hippocampal LTP and restored CREB activity and BDNF levels as well as cholinergic neuronal activity in the hippocampus. Collectively, these findings indicate that MLT may exhibit substantial protective effects on cognition, via restoration of brain insulin signaling.  相似文献   

5.

Acetyl-L-carnitine has been shown to exert neuroprotection against neurodegenerative diseases. The present study was performed to evaluate neuroprotection effects of acetyl-L-carnitine against lipopolysaccharide (LPS) -induced neuroinflammation and clarify possible mechanisms. A single dose (500 µg/kg) of LPS was intraperitoneally injected to rats to induce model. The animals were intraperitoneally treated with different doses of acetyl-L-carnitine (30, 60, and 100) for 6 days. Y-maze task, single-trial passive avoidance and novel object recognition tests were used to evaluate memory impairments. ELISA assay was used to evaluate the expression of TLR4/NFκB, autophagic and oxidative stress markers. Our result showed that intraperitoneal injection of LPS resulted in initiation of neuroinflammation by activation of TLR4/NFκB, suppression of autophagic markers such as LC3 II/ LC3 I ratio and becline-1, and excessive production of ROS and MDA. Intraperitoneal administration of acetyl-L-carnitine contributed to neuroprotection against LPS -induced neuroinflammation by suppression of TLR4/NFκB pathway, restoring activity of autophagy and inhibition of oxidative stress. Collectively, our findings show that acetyl-L-carnitine attenuated LPS-induced neuroinflammation by targeting TLR4/NFκB pathway, autophagy and oxidative stress.

  相似文献   

6.
The purpose of this study was to examine the in vivo effect of melatonin (MEL) on peroxynitrite-induced tau hyperphosphorylation and the involvement of glycogen synthase kinase-3beta (GSK-3beta) and mitogen-activated protein kinase (MAPK) families. Melatonin was injected into the right cerebroventricle of the rats 1 hr before the bilateral hippocampal injection of 3-morpholino-sydnonimine chloride (SIN-1), the recognized donor of peroxynitrite. Thereafter, the phosphorylation level of tau and the activity of the kinases were analyzed. The injection of SIN-1 induced hyperphosphorylation of tau at pS396 epitope with a concomitant activation of GSK-3beta and selective MAPK isoforms including p38alpha, p38beta, and p38delta but not p38gamma. The effect of peroxynitrite was confirmed using uric acid, a recognized scavenger of peroxynitrite. Preinjection of MEL significantly arrested the peroxynitrite-induced hyperphosphorylation of tau and the activation of GSK-3beta and MAPKs. Melatonin also ameliorated peroxynitrite-induced oxidative stress. We conclude that MEL can efficiently arrest peroxynitrite-induced tau hyperphosphorylation, and the underlying mechanism may involve scavenging the reactive species and suppressing the activated GSK-3beta and p38 MAPK family.  相似文献   

7.
Hyperphosphorylation of microtubule-associated protein tau at specific sites is a recognized pathological process in Alzheimer's disease (AD), and protein kinase A (PKA) is a crucial kinase in AD-like tau hyperphosphorylation. In the present study, isoproterenol (ISO) was injected bilaterally into hippocampus of rat brain; ISO is a specific PKA activator and it induces tau hyperphosphorylation. With this system, melatonin (MT) was shown to protect against ISO-induced tau hyperphosphorylation. We found that hippocampal injection of ISO (0.02 microm) induced PKA overactivation and tau hyperphosphorylation at both paired helical filament (PHF)-1 and tau-1 sites. ISO injection also resulted in activation of superoxide dismutase (SOD) and elevation of malondialdehyde (MDA), parameters suggesting elevated oxidative stress. Preinfusion of MT intraperitoneally partially reversed ISO-induced tau hyperphosphorylation at the PHF-1 epitope (1 and 10 mg/kg continuously for 4 wk or 10 mg/kg for 1, 2 or 3 wk) and tau-1 epitope (10 mg/kg for 2 wk). Furthermore, MT (10 mg/kg for 2 wk) obviously antagonized ISO-induced PKA overactivation, as well as enhanced SOD activity and decreased the level of MDA. It is suggested from these data that ISO may induce abnormal hyperphosphorylation of tau through not only the activation of PKA but also because of the fact that it increases oxidative stress; MT may protect against ISO-induced tau hyperphosphorylation through suppression of both PKA overactivation and oxidative stress.  相似文献   

8.
Autophagy modulation is a potential therapeutic strategy for tongue squamous cell carcinoma (TSCC). Melatonin possesses significant anticarcinogenic activity. However, whether melatonin induces autophagy and its roles in cell death in TSCC are unclear. Herein, we show that melatonin induced significant apoptosis in the TSCC cell line Cal27. Apart from the induction of apoptosis, we demonstrated that melatonin‐induced autophagic flux in Cal27 cells as evidenced by the formation of GFP‐LC3 puncta, and the upregulation of LC3‐II and downregulation of SQSTM1/P62. Moreover, pharmacological or genetic blockage of autophagy enhanced melatonin‐induced apoptosis, indicating a cytoprotective role of autophagy in melatonin‐treated Cal27 cells. Mechanistically, melatonin induced TFE3(Ser321) dephosphorylation, subsequently activated TFE3 nuclear translocation, and increased TFE3 reporter activity, which contributed to the expression of autophagy‐related genes and lysosomal biogenesis. Luzindole, a melatonin membrane receptor blocker, or MT2‐siRNA partially blocked the ability of melatonin to promote mTORC1/TFE3 signaling. Furthermore, we verified in a xenograft mouse model that melatonin with hydroxychloroquine or TFE3‐siRNA exerted a synergistic antitumor effect by inhibiting autophagy. Importantly, TFE3 expression positively correlated with TSCC development and poor prognosis in patients. Collectively, we demonstrated that the melatonin‐induced increase in TFE3‐dependent autophagy is mediated through the melatonin membrane receptor in TSCC. These data also suggest that blocking melatonin membrane receptor‐TFE3‐dependent autophagy to enhance the activity of melatonin warrants further attention as a treatment strategy for TSCC.  相似文献   

9.
Autophagy is an important survival pathway and participates in the host response to infection. Beneficial effects of melatonin have been previously reported in an animal model of acute liver failure (ALF) induced by the rabbit hemorrhagic disease virus (RHDV). This study was aimed to investigate whether melatonin protection against liver injury induced by the RHDV associates to modulation of autophagy. Rabbits were infected with 2 × 104 hemagglutination units of a RHDV isolate and received 20 mg/kg melatonin at 0, 12, and 24 hr postinfection. RHDV induced autophagy, with increased expression of beclin‐1, ubiquitin‐like autophagy‐related (Atg)5, Atg12, Atg16L1 and sequestrosome 1 (p62/SQSTM1), protein 1 light chain 3 (LC3) staining, and conversion of LC3‐I to autophagosome‐associated LC3‐II. These effects reached a maximum at 24 hr postinfection, in parallel to extensive colocalization of LC3 and lysosome‐associated membrane protein (LAMP)‐1. The autophagic response induced by RHDV infection was significantly inhibited by melatonin administration. Melatonin treatment also resulted in decreased immunoreactivity for RHDV viral VP60 antigen and a significantly reduction in RHDV VP60 mRNA levels, oxidized to reduced glutathione ratio (GSSG/GSH), caspase‐3 activity, and immunoglobulin‐heavy‐chain‐binding protein (BiP) and CCAAT/enhancer‐binding protein homologous protein (CHOP) expression. Results indicate that, in addition to its antioxidant and antiapoptotic effects, and the suppression of ER stress, melatonin induces a decrease in autophagy associated with RHDV infection and inhibits RHDV RNA replication. Results obtained reveal novel molecular pathways accounting for the protective effect of melatonin in this animal model of ALF.  相似文献   

10.
An orally bioavailable and blood-brain barrier penetrating analog of the kinase inhibitor K252a was able to prevent the typical motor deficits in the tau (P301L) transgenic mouse model (JNPL3) and markedly reduce soluble aggregated hyperphosphorylated tau. However, neurofibrillary tangle counts were not reduced in the successfully treated cohort, suggesting that the main cytotoxic effects of tau are not exerted by neurofibrillary tangles but by lower molecular mass aggregates of tau. Our findings strongly suggest that abnormal tau hyperphosphorylation plays a critical role in the development of tauopathy and suggest a previously undescribed treatment strategy for neurodegenerative diseases involving tau pathology.  相似文献   

11.
Our previous study suggested that melatonin‐mediated neuroprotective effects are related with the activation of autophagy. However, the mechanism of melatonin‐mediated autophagic activation in prion‐mediated mitochondrial damage is not reported. Alpha‐7 nicotinic acetylcholine receptors (α7nAchR) is a member of nicotinic acetylcholine receptors, and α7nAchR activation regulates via melatonin. Thus, we hypothesized that melatonin‐mediated neuroprotective effect related with to autophagy pathway as a result of α7nAchR regulation. Inactivation of α7nAchR inhibited melatonin‐mediated autophagic activation and protective effect against prion‐mediated mitochondrial neurotoxicity. Also, knockdown of ATG5 blocked the melatonin‐mediated neuroprotection and did not influence to the activation of α7nAchR caused by melatonin. This report is the first study demonstrating that melatonin‐mediated autophagic activation regulates via modulation of α7nAchR signals, and upregulation of α7nAchR signals induced by melatonin plays a pivotal role in neuroprotection of prion‐mediated mitochondrial neurotoxicity. Our results suggested that regulator of α7 nAChR signals including melatonin may have used for neuroprotective strategies for the neurodegenerative disorders including prion diseases.  相似文献   

12.
This study investigated the effects of melatonin on diabetic cardiomyopathy (DCM) and determined the underlying mechanisms. Echocardiography indicated that melatonin notably mitigated the adverse left ventricle remodeling and alleviated cardiac dysfunction in DCM. The mechanisms were attributed to increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin inhibited Mst1 phosphorylation and promoted Sirt3 expression in DCM. These results indicated that melatonin may exert its effects through Mst1/Sirt3 signaling. To verify this hypothesis, a DCM model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1?/?) mice was constructed. As expected, melatonin increased autophagy, reduced apoptosis and improved mitochondrial biogenesis in Mst1 Tg mice subjected to DCM injury, while it had no effects on Mst1?/? mice. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated diabetes to probe the mechanisms involved. Melatonin administration promoted autophagic flux as demonstrated by elevated LC3‐II and lowered p62 expression in the presence of bafilomycin A1. The results suggest that melatonin alleviates cardiac remodeling and dysfunction in DCM by upregulating autophagy, limiting apoptosis, and modulating mitochondrial integrity and biogenesis. The mechanisms are associated with Mst1/Sirt3 signaling.  相似文献   

13.
Melatonin functions as a crucial mediator of sterile neuroinflammation; however, the underlying mechanisms remain poorly understood. Dysfunctional mitochondria, a main source of reactive oxygen species, are impacted in inflammation activation. This study aimed to examine the effect of melatonin on inflammation via elimination of damaged mitochondria after controlled cortical impact, an in vivo model of traumatic brain injury (TBI). Here, we demonstrated that inhibition of mitophagy, the selective degradation of damaged mitochondria by autophagy, markedly enhanced inflammation induced by TBI. Melatonin treatment activated mitophagy through the mTOR pathway, then to attenuate TBI‐induced inflammation. Furthermore, treatment with melatonin significantly ameliorated neuronal death and behavioral deficits after TBI, while 3‐methyladenine reversed this effect by inhibiting mitophagy. Taken together, these results highlight a role for melatonin in protecting against TBI‐triggered immunopathology, which is accomplished by negatively regulating inflammation activation and IL‐1β secretion via the autophagy of damaged mitochondria.  相似文献   

14.
Despite efforts to curb the incidence of obesity and its comorbidities, this condition remains the fifth leading cause of death worldwide. To identify ways to reduce this global effect, we investigated the actions of daily melatonin administration on oxidative stress parameters and autophagic processes as a possible treatment of obesity in ob/ob mice. The involvement of melatonin in many physiological functions, such as the regulation of seasonal body weight variation, glucose uptake, or adiposity, and the role of this indoleamine as an essential antioxidant, has become the focus of numerous anti‐obesity studies. Here, we examined the oxidative status in the livers of obese melatonin‐treated and untreated mice, observing a decrease in the oxidative stress levels through elevated catalase activity. ROS‐mediated autophagy was downregulated in the liver of melatonin‐treated animals and was accompanied by significant accumulation of p62. Autophagy is closely associated with adipogenesis; in this study, we report that melatonin‐treated obese mice also showed reduced adiposity, as demonstrated by diminished body weight and reduced peroxisome proliferator‐activated receptor gamma expression. Based on these factors, it is reasonable to assume that oxidative stress and autophagy play important roles in obesity, and therefore, melatonin could be an interesting target molecule for the development of a potential therapeutic agent to curb body weight.  相似文献   

15.
Prolonged exposure to gamma‐hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti‐oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2‐related factor 2 and antioxidant responsive element (Nrf2‐ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time‐of‐flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [14C]‐2‐deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB‐intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti‐oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose‐dependent manner, thereby increased the Nrf2‐ARE signaling‐related downstream anti‐oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2‐ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury.  相似文献   

16.
17.
Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre‐ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)‐related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre‐ischemia melatonin treatment was able to attenuate IR‐induced ER stress and autophagy. In addition, with tandem RFP‐GFP‐LC3 adeno‐associated virus, we demonstrated pre‐ischemic melatonin significantly alleviated IR‐induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR‐induced autophagy was significantly blocked by ER stress inhibitor (4‐PBA), as well as ER‐related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5‐dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre‐ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress‐dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke.  相似文献   

18.
Melatonin acts as a pleiotropic agent in various age‐related neurodegenerative diseases. In this study, we examined the underlying neuroprotective mechanism of melatonin against D‐galactose‐induced memory and synaptic dysfunction, elevated reactive oxygen species (ROS), neuroinflammation and neurodegeneration. D‐galactose was administered (100 mg/kg intraperitoneally (i.p.)) for 60 days. After 30 days of D‐galactose administration, vehicle (same volume) or melatonin (10 mg/kg, i.p.) was administered for 30 days. Our behavioral (Morris water maze and Y‐maze test) results revealed that chronic melatonin treatment alleviated D‐galactose‐induced memory impairment. Additionally, melatonin treatment reversed D‐galactose‐induced synaptic disorder via increasing the level of memory‐related pre‐and postsynaptic protein markers. We also determined that melatonin enhances memory function in the D‐galactose‐treated mice possibly via reduction of elevated ROS and receptor for advanced glycation end products (RAGE). Furthermore, Western blot and morphological results showed that melatonin treatment significantly reduced D‐galactose‐induced neuroinflammation through inhibition of microgliosis (Iba‐1) and astrocytosis (GFAP), and downregulating other inflammatory mediators such as p‐IKKβ, p‐NF‐KB65, COX2, NOS2, IL‐1β, and TNFα. Moreover, melatonin lowered the oxidative stress kinase p‐JNK which suppressed various apoptotic markers, that is, cytochrome C, caspase‐9, caspase‐3 and PARP‐1, and prevent neurodegeneration. Hence, melatonin attenuated the D‐galactose‐induced memory impairment, neuroinflammation and neurodegeneration possibly through RAGE/NF‐KB/JNK pathway. Taken together, our data suggest that melatonin could be a promising, safe and endogenous compatible antioxidant candidate for age‐related neurodegenerative diseases such as Alzheimer's disease (AD).  相似文献   

19.
Both autophagy and melatonin play important roles in plant development and stress response. However, the direct correlation between autophagy and melatonin as well as the underlying mechanism remains elusive in plants. In this study, we discovered that the expression of three autophagy-associated genes (MeATG8b, 8c, and 8e) and autophagic activity were induced by exogenous melatonin treatment in cassava. In addition, three melatonin biosynthesis enzymes (tryptophan decarboxylase 2 (MeTDC2), N-aceylserotonin O-methyltransferase 2 (MeASMT2), and MeASMT3) positively regulate endogenous melatonin level and autophagic activity. Further investigation showed that these melatonin biosynthesis enzymes interacted with MeATG8b/8c/8e in vivo and in vitro. Consistently, MeTDC2, MeASMT2, and MeASMT3 also positively regulate endogenous melatonin level and autophagic activity in cassava. Notably, overexpression of MeATG8b, 8c, and 8e facilitated the protein expression level of MeTDC2, MeASMT2, and MeASMT3 in vivo. Taken together, melatonin synthesis enzymes (MeTDC2, MeASMT2/3) interact with MeATG8b/8c/8e and thus coordinate the dynamics of melatonin biosynthesis and autophagic activity in cassava, highlighting the links between melatonin biosynthesis and autophagic activity in cassava.  相似文献   

20.
The environmental neurotoxin β‐N‐methylamino‐L‐alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10‐day‐old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14C‐L‐BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05‐3 mmol/L BMAA showed a 57%‐93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol‐12‐myristate‐13‐acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA‐induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号