首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Joint diseases like osteoarthritis usually are accompanied with inflammatory processes, in which pro‐inflammatory cytokines mediate the generation of intracellular reactive oxygen species (ROS) and compromise survival of subchondral osteoblasts. Melatonin is capable of manipulating bone formation and osteogenic differentiation of mesenchymal stem cells (MSCs). The aim of this work was to investigate the anti‐inflammatory effect of melatonin on MSC proliferation and osteogenic differentiation in the absence or presence of interleukin‐1 beta (IL‐1β), which was used to induce inflammation. Our data showed that melatonin improved cell viability and reduced ROS generation in MSCs in a dose‐dependent manner. When exposed to 10 ng/mL IL‐1β, various concentrations of melatonin resulted in significant reduction of ROS by 34.9% averagely. Luzindole as a melatonin receptor antagonist reversed the anti‐oxidant effect of melatonin in MSCs with co‐exposure to IL‐1β. Real‐time RT‐PCR data suggested that melatonin treatment up‐regulated the expression of CuZnSOD and MnSOD, while down‐regulated the expression of Bax. To investigate the effect of melatonin on osteogenesis, MSCs were cultured in osteogenic differentiation medium supplemented with IL‐1β, melatonin, or luzindole. After exposed to IL‐1β for 21 days, 1 μm melatonin treatment significantly increased the levels of type I collagen, ALP, and osteocalcin, and 100 μm melatonin treatment yielded the highest level of osteopontin. Our study demonstrated that melatonin maintained MSC survival and promoted osteogenic differentiation in inflammatory environment induced by IL‐1β, suggesting melatonin treatment could be a promising method for bone regenerative engineering in future studies.  相似文献   

2.
Abstract: Increasing evidence demonstrates that melatonin has an anti‐inflammatory effect. Nevertheless, the molecular mechanisms remain obscure. In this study, we investigated the effect of melatonin on toll‐like receptor 4 (TLR4)‐mediated molecule myeloid differentiation factor 88 (MyD88)‐dependent and TRIF‐dependent signaling pathways in lipopolysaccharide (LPS)‐stimulated macrophages. RAW264.7 cells were incubated with LPS (2.0 μg/mL) in the absence or presence of melatonin (10, 100, 1000 μm ). As expected, melatonin inhibited TLR4‐mediated tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, IL‐6, IL‐8, and IL‐10 in LPS‐stimulated macrophages. In addition, melatonin significantly attenuated LPS‐induced upregulation of cyclooxygenase (COX)‐2 and inducible nitric oxide synthase (iNOS) in macrophages. Further analysis showed that melatonin inhibited the expression of MyD88 in LPS‐stimulated macrophages. Although it had no effect on TLR4‐mediated phosphorylation of c‐Jun N‐terminal kinase (JNK), p38, and extracellular regulated protein kinase (ERK), melatonin significantly attenuated the activation of nuclear factor kappa B (NF‐κB) in LPS‐stimulated macrophages. In addition, melatonin inhibited TLR4‐mediated Akt phosphorylation in LPS‐stimulated macrophages. Moreover, melatonin significantly attenuated the elevation of interferon (IFN)‐regulated factor‐3 (IRF3), which was involved in TLR4‐mediated TRIF‐dependent signaling pathway, in LPS‐stimulated macrophages. Correspondingly, melatonin significantly alleviated LPS‐induced IFN‐β in macrophages. In conclusion, melatonin modulates TLR4‐mediated inflammatory genes through MyD88‐dependent and TRIF‐dependent signaling pathways.  相似文献   

3.
4.
Melatonin is an effector of the diurnal clock on pancreatic islets. The membrane receptor‐transmitted inhibitory influence of melatonin on insulin secretion is well established and contrasts with the reported stimulation of glucagon release from α‐cells. Virtually, nothing is known concerning the melatonin‐mediated effects on islet δ‐cells. Analysis of a human pancreatic δ‐cell model, the cell line QGP‐1, and the use of a somatostatin‐specific radioimmunoassay showed that melatonin primarily has an inhibitory effect on somatostatin secretion in the physiological concentration range. In the pharmacological range, melatonin elicited slightly increased somatostatin release from δ‐cells. Cyclic adenosine monophosphate (cAMP) is the major second messenger dose‐dependently stimulating somatostatin secretion, in experiments employing the membrane‐permeable 8‐Br‐cAMP. 8‐Br‐cyclic guanosine monophosphate proved to be of only minor relevance to somatostatin release. As the inhibitory effect of 1 nm melatonin was reversed after incubation of QGP‐1 cells with the nonselective melatonin receptor antagonist luzindole, but not with the MT2‐selective antagonist 4‐P‐PDOT (4‐phenyl‐2‐propionamidotetraline), an involvement of the MT1 receptor can be assumed. Somatostatin release from the δ‐cells at low glucose concentrations was significantly inhibited during co‐incubation with 1 nm melatonin, an effect which was less pronounced at higher glucose levels. Transient expression experiments, overexpressing MT1, MT2, or a deletion variant as a control, indicated that the MT1 and not the MT2 receptor was the major transmitter of the inhibitory melatonin effect. These data point to a significant influence of melatonin on pancreatic δ‐cells and on somatostatin release.  相似文献   

5.
The function of melatonin as a protective agent against newborn hypoxic‐ischemic (H‐I) brain injury is not yet well studied, and the mechanisms by which melatonin causes neuroprotection in neurological diseases are still evolving. This study was designed to investigate whether expression of MT1 receptors is reduced in newborn H‐I brain injury and whether the protective action of melatonin is by alterations of the MT1 receptors. We demonstrated that there was significant reduction in MT1 receptors in ischemic brain of mouse pups in vivo following H‐I brain injury and that melatonin offers neuroprotection through upregulation of MT1 receptors. The role of MT1 receptors was further supported by observation of increased mortality in MT1 knockout mice following H‐I brain injury and the reversal of the inhibitory role of melatonin on mitochondrial cell death pathways by the melatonin receptor antagonist, luzindole. These data demonstrate that melatonin mediates its neuroprotective effect in mouse models of newborn H‐I brain injury, at least in part, by the restoration of MT1 receptors, the inhibition of mitochondrial cell death pathways and the suppression of astrocytic and microglial activation.  相似文献   

6.
The hormone melatonin has many properties, including antioxidant, anti‐inflammatory, and immunomodulatory effects. Melatonin has been demonstrated to be beneficial in several inflammatory autoimmune diseases, but its effects in rheumatoid arthritis (RA) remain controversial. We sought to determine how melatonin regulates inflammation in RA. We found that melatonin dose‐dependently inhibits tumor necrosis factor‐α (TNF‐α) and interleukin (IL)‐1β expression through the PI3K/AKT, ERK, and NF‐κB signaling pathways. We also identified that melatonin inhibits TNF‐α and IL‐1β production by upregulating miR‐3150a‐3p expression. Synovial tissue specimens from RA patients and culture of human rheumatoid fibroblast‐like synoviocytes confirmed that the MT1 receptor is needed for the anti‐inflammatory activities of melatonin. Importantly, melatonin also significantly reduced paw swelling, cartilage degradation, and bone erosion in the collagen‐induced arthritis mouse model. Our results indicate that melatonin ameliorates RA by inhibiting TNF‐α and IL‐1β production through downregulation of the PI3K/AKT, ERK, NF‐κB signaling pathways, as well as miR‐3150a‐3p overexpression. The role of melatonin as an adjuvant treatment in patients with RA deserves further clinical studies.  相似文献   

7.
8.
Toxoplasma gondii is a widespread intracellular parasite, which naturally enters the organism via the oral route and crosses the intestinal barrier to disseminate. In addition to neuronal and ocular pathologies, this pathogen also causes gut inflammation in a number of animals. This infection‐triggered inflammation has been extensively studied in the C57BL/6 mice, highlighting the importance of the immune cells and their mediators in the development of gut pathology. However, despite their importance in inflammation, the role of protease‐activated receptors (PAR) was never reported in the context of T.gondii‐mediated small intestine inflammation. Using genetically modified mice, we show that PAR2 plays a pathogenic role in the development of gut inflammatory lesions. We find that PAR2 controls the innate inflammatory mediators IL‐6, KC/CXCL1, PGE2 as well as neutrophil infiltration in T. gondii‐triggered gut damage. These results bring new knowledge on the mechanisms operating in the gut in response to T. gondii infection.  相似文献   

9.
Melatonin binds and activates G protein-coupled melatonin receptors. The density and affinity of the endogenous melatonin receptors change throughout the 24-hr day, and the exposure of recombinant melatonin receptors to melatonin often results in desensitization of the receptors. Receptor density, G protein activation and expression level were analyzed in CHO cell lines stably expressing the human MT1 receptors after 1 or 72 hr of exposure to melatonin (agonist, 10 nm) and luzindole (antagonist/inverse agonist, 10 microm). The 72-hr exposure to luzindole significantly increased the apparent receptor density in cell lines with both high and low MT1 receptor expression levels (MT1(high) and MT1(low) cells, respectively). In the constitutively active MT1(high) cells, luzindole pretreatment also stimulated the functional response to melatonin in [(35)S]GTPgammaS binding assays, whereas melatonin pretreatment attenuated the functional response at both time points. Receptor ELISA was used to analyze the cell membrane and total expression level of the MT1 receptor in intact and permeabilized cells, respectively. Luzindole pretreatment decreased the total cellular level of MT1 receptor in the MT1(high) cells at both time points but increased the cell surface expression of MT1 receptor at 72 hr. Melatonin significantly decreased MT1 receptor cell surface expression only in MT1(high) cells after a 1-hr treatment. These results indicate that melatonin treatment desensitizes MT1 receptors, whereas luzindole increases ligand binding and G-protein activation. Luzindole also stimulates downregulation of the MT1 receptor protein, interfering with the synthesis and/or degradation of the receptor.  相似文献   

10.
Melatonin reduces proliferation in many different cancer cell lines. However, studies on the oncostatic effects of melatonin in hepatocarcinoma are limited. We have previously demonstrated that melatonin administration induces cycle arrest, apoptosis, and changes in the expression of its specific receptors in HepG2 human hepatocarcinoma cells. In this study, we used the receptor antagonist luzindole to assess the contribution of MT1 melatonin membrane receptor to melatonin effects on cell viability, mitogen-activated protein kinase (MAPKs) activation, and cAMP levels. Additionally, effects of MT1 inhibition on mRNA levels of cytosolic quinone reductase type-2 (NQO2) receptor and nuclear retinoic acid-related orphan receptor alpha (RORα) were tested. Melatonin, at 1000 and 2500 μm, significantly reduced cell viability. Pre-incubation with luzindole partially inhibited the effects of melatonin on cell viability. Melatonin at 2500 μm significantly reduced cAMP levels, and this effect was partially blocked by luzindole. Both melatonin concentrations increased the expression of phosphorylated p38, ERK, and JNK. ERK activation was completely abolished in the presence of luzindole. NQO2 but not RORα mRNA level significantly increased in luzindole-treated cells. Results obtained provide evidence that the melatonin effects on cell viability and proliferation in HepG2 cells are partially mediated through the MT1 membrane receptor, which seems to be related also with melatonin modulation of cAMP and ERK activation. This study also highlights a possible interplay between MT1 and NQO2 melatonin receptors in liver cancer cells.  相似文献   

11.
Abstract: Melatonin exhibits a wide variety of biological effects, including antioxidant and anti‐inflammatory functions. Its antioxidant role impedes the etiopathogenesis of pancreatitis, but little is known about the signaling pathway of melatonin in the induction of antioxidant enzymes in acute pancreatitis (AP). The aim of this study was to determine whether melatonin could prevent cerulein‐induced AP through nuclear factor erythroid 2‐related factor 2 (Nrf2) and curtail inflammation by inhibition of NF‐κB. AP was induced by two intraperitoneal (i.p.) injections of cerulein at 2 h intervals (50 μg/kg) in Sprague‐Dawley rats. Melatonin (10 or 50 mg/kg/daily, i.p.) was administered 24 h before each injection of cerulein. The rats were killed 12 h after the last injection. Acinar cell degeneration, pancreatic edema, and inflammatory infiltration were significantly different in cerulein‐ and melatonin‐treated rats. Melatonin significantly reduced amylase, lipase, MPO, and MDA levels, and increased antioxidant enzyme activities including SOD and GPx, which were decreased in AP (P < 0.05). Melatonin increased the expression of NQO1, HO‐1, and SOD2 when compared with the cerulein‐induced AP group (P < 0.05). In addition, melatonin increased Nrf2 expression, and reduced expressions of tumor necrosis factor‐alpha, IL‐1β, IL‐6, IL‐8, and iNOS. The elevated nuclear binding of NF‐κB in the cerulein‐induced pancreatitis group was inhibited by melatonin. These results show that melatonin increases antioxidant enzymes and Nrf2 expression, and limits inflammatory mediators in cerulein‐induced AP. It is proposed that melatonin may play an important role in oxidative stress via the Nrf2 pathway in parallel with reduction of inflammation by NF‐κB inhibition.  相似文献   

12.
We investigated the protective effects of melatonin and its metabolites: 6‐hydroxymelatonin (6‐OHM), N1‐acetyl‐N2‐formyl‐5‐methoxykynuramine (AFMK), N‐acetylserotonin (NAS), and 5‐methoxytryptamine (5‐MT) in human keratinocytes against a range of doses (25, 50, and 75 mJ/cm2) of ultraviolet B (UVB) radiation. There was significant reduction in the generation of reactive oxygen species (50–60%) when UVB‐exposed keratinocytes were treated with melatonin or its derivatives. Similarly, melatonin and its metabolites reduced the nitrite and hydrogen peroxide levels that were induced by UVB as early as 30 min after the exposure. Moreover, melatonin and its metabolites enhanced levels of reduced glutathione in keratinocytes within 1 hr after UVB exposure in comparison with control cells. Using proliferation assay, we observed a dose‐dependent increase in viability of UVB‐irradiated keratinocytes that were treated with melatonin or its derivatives after 48 hr. Using the dot‐blot technique and immunofluorescent staining we also observed that melatonin and its metabolites enhanced the DNA repair capacity of UVB‐induced pyrimidine photoproducts (6‐4)or cyclobutane pyrimidine dimers generation in human keratinocytes. Additional evidence for induction of DNA repair in cells exposed to UVB and treated with the indole compounds was shown using the Comet assay. Finally, melatonin and its metabolites further enhanced expression of p53 phosphorylated at Ser‐15 but not at Ser‐46 or its nonphosphorylated form. In conclusion, melatonin, its precursor NAS, and its metabolites 6‐OHM, AFMK, 5‐MT, which are endogenously produced in keratinocytes, protect these cells against UVB‐induced oxidative stress and DNA damage.  相似文献   

13.
The pharmacological potential of targeting selectively melatonin MT1 or MT2 receptors has not yet been exploited in medicine. Research using selective MT1/MT2 receptor ligands and MT1/MT2 receptor knockout mice has indicated that the activation of MT2 receptors selectively increases non‐rapid eye movement (NREM) sleep whereas MT1 receptors seem mostly implicated in the regulation of REM sleep. Moreover, MT1 knockout mice show an increase in NREM sleep, while MT2 knockout a decrease, suggesting an opposite role of these two receptors. A recent paper in mice by Sharma et al (J Pineal Res, 2018, e12498) found that MT1 but not MT2 receptors are expressed on orexin neurons in the perifornical lateral hypothalamus (PFH). Moreover, after injecting melatonin or luzindole into the mouse PFH, the authors suggest that melatonin promotes NREM sleep because activates PFH MT1 receptors, which in turn inhibit orexin neurons that are important in promoting arousal and maintaining wakefulness. In this commentary, we have critically commented on some of these findings on the bases of previous literature. In addition, we highlighted the fact that no conclusions could be drawn on the melatonin receptor subtype mediating the effects of melatonin on sleep because the authors used the non‐selective MT1/MT2 receptors antagonist luzindole. More solid research should further characterize the pharmacological function of these two melatonin receptors in sleep.  相似文献   

14.
Background: Increased systemic levels of endotoxin have been detected in human alcoholics and are thought to be derived from the gut. Although a ‘leaky gut’ is considered to be a necessary factor for alcohol‐induced endotoxemia followed by chronic liver injury, the effects of low concentrations of ethanol on intestinal epithelial cells have not been fully understood. The aim of this study was to evaluate intestinal epithelial cell death induced by acute, low concentrations of ethanol in an in vitro system. Methods: The human intestinal Caco‐2 cell line was incubated with 0%, 5%, 10% ethanol for up to 3?h. Phosphatidylserine (PS) externalization, caspase‐mediated cytokeratin 18 (CK18) cleavage, and DNA fragmentation were evaluated using flow cytometry. The caspase inhibitor zVAD‐fmk was used to test the role of caspases in ethanol‐induced cell death. Results: Treatment with 5% and 10% ethanol for 3?h led to a gradual increase in PS externalization. Caspase‐mediated CK18 was significantly enhanced as early as 1?h after 10% ethanol incubation, while DNA fragmentation was detected from 2?h onwards. Not only caspase activation but also both PS externalization and DNA fragmentation were completely prevented by pretreatment with the caspase inhibitor. Conclusions: Apoptotic cell death in confluent Caco‐2 cells was induced by acute and low concentrations of ethanol. These results suggest that clinically achievable doses of ethanol impair intestinal barrier function by induction of apoptosis in intestinal epithelial cells. This impairment of the barrier function would allow endotoxin to enter the circulation and evoke hepatic inflammation.  相似文献   

15.
Abstract: Loss of motoneurons may underlie some of the deficits in motor function associated with the central nervous system (CNS) injuries and diseases. We tested whether melatonin, a potent antioxidant and free radical scavenger, would prevent motoneuron apoptosis following exposure to toxins and whether this neuroprotection is mediated by melatonin receptors. Exposure of VSC4.1 motoneurons to either 50 μm H2O2, 25 μm glutamate (LGA), or 50 ng/mL tumor necrosis factor‐alpha (TNF‐α) for 24 h caused significant increases in apoptosis, as determined by Wright staining and ApopTag assay. Analyses of mRNA and proteins showed increased expression and activities of stress kinases and cysteine proteases and loss of mitochondrial membrane potential during apoptosis. These insults also caused increases in intracellular free [Ca2+] and activities of calpain and caspases. Cells exposed to stress stimuli for 15 min were then treated with 200 nm melatonin. Post‐treatment of cells with melatonin attenuated production of reactive oxygen species (ROS) and phosphorylation of p38, MAPK, and JNK1, prevented cell death, and maintained whole‐cell membrane potential, indicating functional neuroprotection. Melatonin receptors (MT1 and MT2) were upregulated following treatment with melatonin. To confirm the involvement of MT1 and MT2 in providing neuroprotection, cells were post‐treated (20 min) with 10 μm luzindole (melatonin receptor antagonist). Luzindole significantly attenuated melatonin‐induced neuroprotection, suggesting that melatonin worked, at least in part, via its receptors to prevent VSC4.1 motoneuron apoptosis. Results suggest that neuroprotection rendered by melatonin to motoneurons is receptor mediated and melatonin may be an effective neuroprotective agent to attenuate motoneuron death in CNS injuries and diseases.  相似文献   

16.
Abstract: Melatonin has shown particular promise as a neuroprotective agent to prevent motoneuron death in animal models of both amyotrophic lateral sclerosis (ALS) and spinal cord injuries (SCI). However, an understanding of the roles of endogenous melatonin receptors including MT1, MT2, and orphan G‐protein receptor 50 (GPR50) in neuroprotection is lacking. To address this deficiency, we utilized plasmids for transfection and overexpression of individual melatonin receptors in the ventral spinal cord 4.1 (VSC4.1) motoneuron cell line. Receptor‐mediated cytoprotection following exposure to glutamate at a toxic level (25 μm ) was determined by assessing cell viability, apoptosis, and intracellular free Ca2+ levels. Our findings indicate a novel role for MT1 and MT2 for increasing expression of the calcium‐binding proteins calbindin D28K and parvalbumin. Increased levels of calbindin D28K and parvalbumin in VSC4.1 cells overexpressing MT1 and MT2 were associated with cytoprotective effects including inhibition of proapoptotic signaling, downregulation of inflammatory factors, and expression of prosurvival markers. Interestingly, the neuroprotective effects conferred by overexpression of MT1 and/or MT2 were also associated with increases in the estrogen receptor β (ERβ): estrogen receptor α (ERα) ratio and upregulation of angiogenic factors. GPR50 did not exhibit cytoprotective effects. To further confirm the involvement of the melatonin receptors, we silenced both MT1 and MT2 in VSC4.1 cells using RNA interference technology. Knockdown of MT1 and MT2 led to an increase in glutamate toxicity, which was only partially reversed by melatonin treatment. Taken together, our findings suggest that the neuroprotection against glutamate toxicity exhibited by melatonin may depend on MT1 and MT2 but not GPR50.  相似文献   

17.
Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing nestin, CD133, CXCR4, and SOX‐2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c‐Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c‐Myc related mRNAs were differentially expressed in melatonin‐treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c‐Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c‐Myc increased the expression of nestin, while overexpression of nestin enhanced c‐Myc through crosstalk despite different locations, nucleus, and cytoplasm. Interestingly, melatonin attenuated small ubiquitin‐related modifier‐1 (SUMO‐1) more than SUMO‐2 or SUMO‐3 and disturbed nuclear translocation of nestin for direct binding to c‐Myc by SUMOylation of SUMO‐1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor luzindole blocked the ability of melatonin to decrease the expression of nestin, p‐c‐Myc(S62), and c‐Myc. Furthermore, melatonin promoted cytotoxicity, sub‐G1 accumulation, and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c‐Myc, nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells.  相似文献   

18.
Melatonin promotes sleep. However, the underlying mechanisms are unknown. Orexin neurons in the perifornical lateral hypothalamus (PFH ) are pivotal for wake promotion. Does melatonin promote sleep by inhibiting orexin neurons? We used C57BL /6J mice and designed 4 experiments to address this question. Experiment 1 used double‐labeled immunofluorescence and examined the presence of melatonin receptors on orexin neurons. Second, mice, implanted with bilateral guides targeted toward PFH and sleep‐recording electrodes, were infused with melatonin (500 pmole/50 nL/side) at dark onset (onset of active period), and spontaneous bouts of sleep‐wakefulness were examined. Third, mice, implanted with bilateral guides into the PFH , were infused with melatonin (500 pmole/50 nL/side) at dark onset and euthanized 2 hours later, to examine the activation of orexin neurons using c‐Fos expression in orexin neurons. Fourth, mice, implanted with PFH bilateral guides and sleep‐recording electrodes, were infused with melatonin receptor antagonist, luzindole (10 pmol/50 nL/side), at light onset (onset of sleep period), and spontaneous bouts of sleep‐wakefulness were examined. Our results suggest that orexin neurons express MT 1, but not MT 2 receptors. Melatonin infusion into the PFH , at dark onset, site‐specifically and significantly increased NREM sleep (43.7%, P  = .003) and reduced wakefulness (12.3%, P  = .013). Local melatonin infusion at dark onset inhibited orexin neurons as evident by a significant reduction (66%, P  = .0004) in the number of orexin neurons expressing c‐Fos. Finally, luzindole infusion‐induced blockade of melatonin receptors in PFH at sleep onset significantly increased wakefulness (44.1%, P  = .015). Based on these results, we suggest that melatonin may act via the MT 1 receptors to inhibit orexin neurons and promote sleep.  相似文献   

19.
We previously reported an antidepressant-like effect in C3H/HeN mice during the forced swimming test (FST) following treatment with the MT1/MT2 melatonin receptor ligand, luzindole. This study investigated the role melatonin receptors (MT1 and/or MT2) may play in the effect of luzindole in the FST using C3H/HeN mice with a genetic deletion of either MT1 (MT1KO) or MT2 (MT2KO) melatonin receptors. In the light phase (ZT 9-11), luzindole (30 mg/kg, i.p.) significantly decreased immobility during swimming in both wild type (WT) (135.6 +/- 25.3 s, n = 7) and MT(1)KO (132.6 +/- 13.3 s, n = 8) as compared with vehicle-treated mice (WT: 207.1 +/- 6.0 s, n = 7; MT1KO: 209.5 +/- 6.2 s, n = 8) (P < 0.001). In the dark phase (ZT 20-22), luzindole also decreased time of immobility in both WT (89.5 +/- 13.9 s, n = 8) and MT1KO (66.5 +/- 6.4 s, n = 8) mice as compared with the vehicle treated (WT: 193.8 +/- 3.5, n = 6; MT1KO: 176.6 +/- 6.2 s, n = 8) (P < 0.001). Genetic disruption of the MT1 gene did not alter the diurnal rhythm of serum melatonin in MT1KO mice (ZT 9-11: 1.3 +/- 0.6 pg/mL, n = 7; ZT 20-22: 10.3 +/- 1.1 pg/mL, n = 8) as compared with WT (ZT 9-11: 1.4 +/- 0.7 pg/mL; ZT 20-22: 10.6 pg/mL). Swimming did not alter the serum melatonin diurnal rhythm in WT and MT1KO mice. Decreases in immobility of WT and MT1KO mice by luzindole treatment were not affected by gender or age (3 months versus 8 months). In contrast, luzindole did not decrease immobility during the FST in MT2KO mice. We conclude that the antidepressant-like effect of luzindole may be mediated through blockade of MT2 rather than MT1 melatonin receptors.  相似文献   

20.
Abstract. Thang PH, Ruffin N, Brodin D, Rethi B, Cam PD, Hien NT, Lopalco L, Vivar N, Chiodi F (Karolinska Institutet, Stockholm, Sweden; National Institute of Hygiene and Epidemiology, Hanoi, Vietnam; San Raffaele Scientific Institute, Milan, Italy). The role of IL‐1β in reduced IL‐7 production by stromal and epithelial cells: a model for impaired T‐cell numbers in the gut during HIV‐1 infection. J Intern Med 2010; 268 : 181–193. Objectives. Interleukin (IL)‐7 is a key cytokine in T‐cell homeostasis. Stromal cells, intestinal epithelial cells and keratinocytes are known to produce this cytokine. The mechanisms and cellular factors regulating IL‐7 production are still unclear. We assessed whether IL‐1β and interferon (IFN)‐γ, cytokines produced during inflammatory conditions, may impact on IL‐7 production. Design. We used human intestinal epithelial cells (DLD‐1 cell line) and bone marrow stromal cells (HS27 cell line), known to produce IL‐7; IL‐7 production was evaluated at the mRNA and protein levels. To assess whether treatment of HS27 cells with IL‐1β and/or IFN‐γ leads to changes in the gene expression of cytokines, Toll‐like receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole‐genome microarray Human Gene 1.0 ST. Results. We found that IFN‐γ enhanced the expression of IL‐7 mRNA (P < 0.001) in both cell lines. IL‐1β treatment led to a significant down‐regulation (P < 0.001) of IL‐7 mRNA expression in both cell lines. The IL‐7 concentration in supernatants collected from treated DLD‐1 and HS27 cell cultures reflected the trend of IL‐7 mRNA levels. The gene profiles revealed dramatic changes in expression of cytokines and their receptors (IL‐7/IL‐7Rα; IL‐1α,IL‐1β/IL‐1R1; IFN‐γ/IFN‐γR1), of IFN regulatory factors (IRF‐1 and 2), of TLRs and of important chemo‐attractants for T cells. The microarray results were verified by additional methods. Conclusions. Our results are discussed in the setting of inflammation and T‐cell survival in the gut compartment during HIV‐1 infection where stromal and epithelial cells may produce factors that contribute to impaired IL‐7 homeostasis and homing of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号