首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of etoposide (VP-16), Vinca alkaloids, and verapamil with the P-glycoprotein (P-gp) was studied in human breast (MCF-7) and Chinese hamster lung (DC3F) cell lines and the corresponding multidrug-resistant MCF-7/ADR and DC3F/ADX tumor cell lines, selected for resistance to Adriamycin and actinomycin D, respectively, and overexpressing P-gp. Verapamil (10 microM) markedly reversed resistance to vincristine (11-fold in DC3F/ADX and 125-fold in MCF-7/ADR; 1-hr exposure), but it had a very modest effect on resistance to VP-16 (3- to 4-fold; 1-hr exposure). Resistant cells accumulated 2- to 4-fold less VP-16 and vincristine than the parental cell lines. Verapamil (10 microM) significantly increased accumulation and retention of vincristine, but not of VP-16, in resistant cell lines. Photoaffinity labeling of resistant cell lines with radioactive analogs of verapamil [N(p-azido-3-125I-salicyl)-N'-beta-aminoethylverapamil (NASVP)] and vinblastine[N-(p-azido-3-125I-salicyl)-N'-beta-aminoethylvindesine (NASV)] showed distinctly labeled P-gp bands in both resistant cell lines, compared with wild-type cells. Excess nonradioactive vinblastine or verapamil effectively competed with the P-gp photolabeling by either NASVP or NASV, with IC50 levels of 0.6 and 10 microM, respectively. In contrast, nonradioactive VP-16 was 100- to 500-fold less potent than vinblastine in competing with P-gp photolabeling, suggesting that VP-16 has significantly lower affinity for P-gp than Vinca alkaloids have. Taken together, our data indicate that P-gp glycoprotein by itself may not be important in the transport/efflux of VP-16 and, thus, in the mechanism of resistance to VP-16 in these cells.  相似文献   

2.
目的探讨五味子甲素(schizandrin A or deoxyschizan-drin,schA)对白血病细胞K562/ADR、HL60/ADR、乳腺癌细胞MCF-7/ADR多药耐药的逆转作用,并初步探讨其逆转机制。方法 MTT法检测schA对耐药细胞的逆转作用;流式细胞仪检测schA对细胞内柔红霉素、罗丹明-123含量和细胞表面P-gp表达水平的变化;用Real-time PCR方法检测schA对细胞内mdr1 mRNA和mrp1 mRNA表达;生化检测法检测schA对细胞内GSH含量的变化。结果耐药逆转实验显示:不同浓度的schA对作用机制不同的化疗药物耐药产生不同的逆转效果;蓄积实验表明schA可增加柔红霉素、罗丹明123在耐药细胞内的蓄积,并且有良好的剂量依赖关系;schA处理K562/ADR、HL60/ADR细胞24 h后,能降低P-gp蛋白和mdr1、mrp1基因的表达;schA处理K562/ADR、HL60/ADR细胞4 h后,可降低细胞内谷胱甘肽含量。结论 schA对耐药机制不同的细胞株K562/ADR、HL60/ADR均有耐药逆转作用,推测可能是与抑制细胞表面的P-gp蛋白功能和表达,降低mdr1、mrp1耐药基因的表达和降低细胞内谷胱甘肽含量有关,schA通过影响上述机制,进而增加细胞内的药物浓度,达到有效杀灭肿瘤细胞的作用。  相似文献   

3.
Multidrug resistance (MDR) is one of the most significant obstacles in cancer chemotherapy. One of the mechanisms involved in the development of MDR is the over-expression of P-glycoprotein (P-gp). It is widely known that natural compounds found in vegetables, fruits, plant-derived beverages and herbal dietary supplements not only have anticancer properties, but may also modulate P-gp activity. Therefore, the purpose of this investigation was to examine the effects of naturally occurring products on P-gp function in human breast cancer cell lines, MCF-7 (sensitive) and MCF-7/ADR (resistant). The accumulation of daunomycin (DNM), a P-gp substrate, was greater in the sensitive cells compared to the resistant cells, while the efflux of DNM was higher in the resistant cells compared to the sensitive cells over a period of 2 h. The IC50 value of DNM in the resistant cells was about 22 times higher than that in the sensitive cells, indicating an over-expression of P-gp in the resistant cells, MCF-7/ADR. All of the compounds tested, with the exception of fisetin, significantly decreased the IC50 value of DNM. Biochanin A showed the greatest increase in [3H]-DNM accumulation, increasing by 454.3 +/- 19.5% in the resistant cells, whereas verapamil, the positive control, increased the accumulation by 229.4 +/- 17.6%. Also, the accumulation of [3H]-DNM was increased substantially by quercetin and silymarin while it was reduced by fisetin. Moreover, biochanin A, silymarin, and naringenin significantly decreased DNM efflux from MCF-7/ADR cells compared with the control. These results suggest that some flavonoids such as biochanin A and silymarin may reverse MDR by inhibiting the P-gp function.  相似文献   

4.
A spontaneously originated murine mammary adenocarcinoma (16C), selected for its sensitivity to agents active against breast cancer in women, and one of the very few experimental solid tumor models responsive to Adriamycin (ADR) was used to study the mechanism of induced ADR resistance in vivo. A resistant variant of the tumor was obtained from the explant of a regrown tumor following a dose of ADR (12 mg/kg) that caused complete tumor repression but not cure. Progressive refractoriness to ADR was observed following up to six repeated cycles of treatment, regression and regrowth. However, beyond the sixth treatment, no further degree of resistance could be obtained. The cell line so established, designated 16C/ADRR, has a glutathione (GSH) content 1.67 times greater than the parent 16C line. Depletion of GSH by buthionine sulfoximine (BSO) enhanced the cytoxicity of ADR in both cell lines. The sensitization effect appeared to be dependent on the degree of GSH depletion, requiring a threshold level of depletion to approximately 30% of control. The resistance of 16C/ADRR, however, appeared not to be directly related to the increased absolute GSH level per se since reduction of the GSH content of the 16C/ADRR line to levels similar to that of the parent 16C line did not restore the original sensitivity to ADR. However, the activities of two important elements in the GSH detoxification system, GSH peroxidase and S-transferase, were found to be elevated in resistant cells by factors of 2.4 and 4.7-5.6 respectively. In vivo studies with a diverse spectrum of antineoplastic drugs revealed a pattern of cross-resistance consistent with the idea that elevated GSH S-transferase and peroxidase activities may be responsible for the decreased (2.8- to 5.3-fold) sensitivity to ADR. 16C/ADRR exhibited cross-resistance with melphalan (MEL), but none with vincristine (VCR), vinblastine (VBL) or etoposide (VP-16). These results clearly demonstrate non-adherence by the 16C/ADRR tumors to the well characterized multidrug resistance (mdr) phenotype. Further affirmation of this conclusion was obtained by immunochemical and pharmacological studies. When a monoclonal antibody prepared against the mdr associated, 170 kD P-glycoprotein (170 P-gp), was used, the presence of the 170 kD P-gp in both the sensitive and resistant 16C lines could not be detected, although the presence of a lower molecular weight form of P-gp could not be ruled out entirely. High performance liquid chromatographic measurement of ADR accumulation and elimination also failed to reveal any significant differences between the sensitive and resistant variants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Multidrug resistance (MDR) has been considered as a huge challenge to the effective chemotherapy. Therefore, it is necessary to develop new strategies to effectively overcome MDR. Here, based on the previous research of N-(2-hydroxypropyl)methacrylamide (HPMA) polymer–drug conjugates, we designed an effective system that combined drug-efflux circumvention and mitochondria targeting of anticancer drug doxorubicin (Dox). Briefly, Dox was modified with mitochondrial membrane penetrating peptide (MPP) and then attached to (HPMA) copolymers (P-M-Dox). Our study showed that macromolecular HPMA copolymers successfully bypassed drug efflux pumps and escorted Dox into resistant MCF-7/ADR cells via endocytic pathway. Subsequently, the mitochondria accumulation of drugs was significantly enhanced with 11.6-fold increase by MPP modification. The excellent mitochondria targeting then resulted in significant enhancement of reactive oxygen species (ROS) as well as reduction of adenosine triphosphate (ATP) production, which could further inhibit drug efflux and resistant cancer cell growth. By reversing Dox resistance, P-M-Dox achieved much better suppression in the growth of 3D MCF-7/ADR tumor spheroids compared with free Dox. Hence, our study provides a promising approach to treat drug-resistant cancer through simultaneous drug efflux circumvention and direct mitochondria delivery.  相似文献   

6.
摘要:目的 分析高胰岛素对 MCF-7/ADR 细胞 P-糖蛋白(P-gp)表达和功能的影响, 并初步探讨胰岛素对 MCF-7/ADR 细胞化疗敏感性的影响。方法 用不同胰岛素浓度(0.001、 0.005、 0.01、 0.05、 0.10 μmol/L)的全细胞培 养基干预 MCF-7/ADR 细胞, 分别采用 Real-time PCR 法检测细胞中 P-gp mRNA 表达, Western Blot 法检测细胞中 P-gp 蛋白表达水平, 罗丹明 123 荧光实验测定 P-gp 的外排功能变化, MTT 法检测 MCF-7/ADR 细胞活性及化疗敏 感性。结果 0.10 μmol/L 的胰岛素可促进 MCF-7/ADR 细胞增殖, 0.05 及 0.10 μmol/L 浓度的胰岛素可增加 MCF-7/ ADR 细胞 P-gp mRNA 及蛋白水平表达, 并能增加 P-gp 的外排功能, 降低 MCF-7/ADR 细胞对表阿霉素的化疗敏感 性。结论 高浓度胰岛素可能通过促进 MCF-7/ADR 细胞 P-gp 的表达和功能, 增加乳腺癌细胞化疗耐药性, 从而降 低 MCF-7/ADR 细胞的化疗敏感性。  相似文献   

7.
To overcome multi-drug resistance (MDR) of cancer cells, paclitaxel (PTX) and doxorubicin (DOX)-loaded nanostructured lipid carriers (NLC) were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid as liquid lipid matrix. The cytotoxicities and reversal activity of drug-loaded NLC were tested against human breast cancer (MCF-7) cells, human ovarian cancer (SKOV3) cells and their multi-drug resistant (MCF-7/ADR and SKOV3-TR30) cells. The chemical conjugant of folic acid and stearic acid (FA-SA) was further synthesized to prepare folated NLC. Comparing with taxol and doxorubicin solution, the NLC loading PTX exhibited high cytotoxicities in MCF-7 and MCF-7/ADR cells, while the NLC loading DOX only indicated high cytotoxicity in MCF-7/ADR cells. The reversal powers of the NLC loading PTX and DOX were 34.3 and 6.4 folds, respectively. The NLC loading PTX and DOX showed the same trends of enhanced cytotoxicity against SKOV3 and SKOV3-TR30 cells. The reversal powers were 31.3 and 2.2 folds for the NLC loading PTX and DOX, respectively. The modification of NLC with FA-SA could further enhance the cytotoxicities of drug in drug sensitive and drug resistant cells.  相似文献   

8.
目的研究钙调素拮抗剂0-4-乙氧基-丁基-小檗胺(EBB)增强阿霉素诱导乳腺癌多药耐药细胞系MCF-7/ADR细胞的杀伤作用及其相关机制。方法用MTT法测定阿霉素、EBB单独及联合用药对阿霉素杀伤乳腺癌多药耐药细胞系(MCF-7/ADR)及其亲代细胞系(MCF-7)的作用的IC50值,用不同浓度EBB处理MCF-7/ADR细胞后用FACS法分析EBB对阿霉素诱导细胞凋亡及对mdr1mRNA和P-gp蛋白水平表达的影响,通过激光共聚焦显微镜观察EBB处理前后及用EBB预处理24和48h后MCF-7/ADR和MCF-7细胞内阿霉素浓度的改变。结果MTT结果显示EBB对MCF-7和MCF-7/ADR都具有抗肿瘤活性;EBB还能协同提高阿霉素的细胞毒作用,MCF-7组两药相互作用指数(CDI)值为0.73,MCF-7/ADR组CDI值为0.49,其对耐药细胞的协同作用更为明显。随EBB剂量增加,低剂量阿霉素诱导MCF-7/ADR细胞凋亡增加而且P-gp蛋白表达水平逐渐下降,细胞内阿霉素浓度逐渐提高,而且用EBB预处理MCF-7/ADR细胞24和48h后细胞内阿霉素和罗丹明浓度也逐渐提高。结论EBB是有效的肿瘤细胞化疗药物,它不但能直接抑制P-gp功能还具有下调P-gp蛋白表达的作用,从而有效逆转MCF-7/ADR细胞的耐药现象,协同增强化疗药物对耐药细胞的杀伤作用。  相似文献   

9.
Purpose. Organic isothiocyanates (ITCs), or mustard oils, are non-nutrient components present in the diet, especially in cruciferous vegetables. The purpose of this investigation was to examine the effect of ITCs on P-glycoprotein (P-gp)- and multidrug resistance-associated Protein (MRP1)-mediated transport in multidrug resistant (MDR) human cancer cell lines. Methods. The direct effect of ITCs on the 2-h cellular accumulation of daunomycin (DNM) and vinblastine (VBL), substrates for both P-gp and MRP1, were measured in sensitive and resistant MCF-7 cells and in PANC-1 cells. Resistant MCF-7 cells (MCF-7/ADR) overexpress P-gp whereas PANC-1 cells overexpress MRP1. The following compounds were evaluated: allyl-, benzyl-(BITC), hexyl-, phenethyl-(PEITC), phenyl-, 1-naphthyl-(NITC), phenylhexyl-, phenylpropyl-, and phenylbutyl-ITC, sulforaphane, erucin, and erysolin. Results. NITC significantly increased the accumulation of DNM and VBL in both resistant cell lines, but had no effect on DNM accumulation in sensitive MCF-7 cells. VBL accumulation in resistant MCF-7 cells was increased 40-fold by NITC whereas that in PANC-1 cells was increased 5.5-fold. Significant effects on the accumulation of DNM and VBL in resistant MCF-7 cells were also observed with benzyl-isothiocyanate whereas PEITC, erysolin, phenylhexyl-ITC, and phenylbutyl-ITC increased the accumulation of DNM and/or VBL in PANC-1 cells. Overall, the inhibitory activities of these compounds in MCF-7 cells and PANC-1 cells were significantly correlated (r2= 0.77 and 0.86 for DNM and VBL, respectively). Significant effects on accumulation were generally observed with the ITCs at 50 M concentrations, but not at 10 M concentrations. Conclusions. One strategy to enhance the effectiveness of cancer chemotherapy is to reverse the MDR phenomena. Our results indicate that certain dietary ITCs inhibit the P-gp- and the MRP1-mediated efflux of DNM and VBL in MDR cancer cells and suggest the potential for diet-drug interactions.  相似文献   

10.
A carcinogen-transformed rat hepatoma cell line (Reuber H-35) was utilized as a model system for investigation of the biochemical factors which may limit the effectiveness of chemotherapy in intrinsically resistant tumors such as hepatocellular carcinoma. Northern blotting demonstrated expression of mRNA coding for the P-170 membrane-glycoprotein associated with the multi-drug resistance phenotype, while Western blotting identified the P-170 glycoprotein in the hepatoma cell membrane. Consistent with these observations, tumor cell sensitivity to the vinca alkaloids, vincristine and vinblastine, to the anthracycline antibiotics, Adriamycin and daunorubicin, and to the demethylepipodophyllotoxin derivative, VM-26, was enhanced by continuous incubation in the presence of the calcium channel antagonist, verapamil. Verapamil produced a minimal change in cell sensitivity to the demethylepipodophyllotoxin derivative, VP-16, and to the aminoacridine, m-AMSA. Relatively high detoxification potential via the glutathione metabolic pathway was also observed in the hepatoma cell. The capacity of topoisomerase II in nuclear extracts from the hepatoma cell to mediate cleavable complex formation stimulated by VM-26, VP-16 and m-AMSA appeared to be at least comparable to, if not greater than that from drug-sensitive HL-60 cells, suggesting that drug resistance may not occur at the level of this enzyme. Consistent with findings in a number of tumor cell lines resistant to antineoplastic drugs, the antiproliferative activity of the topoisomerase II inhibitors VM-26, VP-16 and m-AMSA appeared to be dissociable from the induction of DNA strand breaks, suggesting that such lesions in DNA may fail to fully account for the antiproliferative activity of these agents in the hepatoma cell.  相似文献   

11.
Overexpression of a 170kD membrane glycoprotein, P-glycoprotein (Pgp), which acts as an energy dependent efflux pump for cytotoxic drugs is believed to be one of the factors that is responsible for clinical drug resistance. Recent studies suggest that Pgp is also responsible for the intracellular transport of cholesterol from the plasma membrane to the endoplasmic reticulum. Leukemic cells from patients with acute myelogenous leukemia have an elevated uptake of low density lipoprotein (LDL) when compared with white blood cells from healthy individuals. Since elevated LDL receptor expression and multidrug resistance are both common events in leukemic cells, we investigated LDL receptor expression in sensitive and drug resistant human leukemic cell lines. We found a 2- to 10-fold higher uptake of LDL in five out of five drug resistant K562 cell lines. All three drug resistant HL60 cell lines studied also had higher uptake than the parental cells. The LDL receptor expression in vincristine resistant Pgp positive K562 cells was less sensitive to downregulation by sterols than in parental cells. There was no selective effect of the Pgp inhibitor PSC-833 or other Pgp modulators on LDL receptor activity in Pgp positive cells. Since also resistant Pgp, multidrug resistance protein 1, and breast cancer resistance protein negative cells exhibited an elevated LDL receptor activity, we conclude that overexpression of these proteins is not the mechanism behind the elevated LDL uptake in the drug resistant leukemic cell lines. The findings are of interest for the concept of using lipoproteins as carriers of cytotoxic drugs in cancer treatment.  相似文献   

12.
Platinum sensitivity and platinum resistance may involve altered activity of transport proteins. In order to assess the role of drug uptake and efflux in this phenomenon, we compared the expression of three copper transporters, intracellular platinum accumulation, DNA platination and cytotoxicity of cisplatin in two cisplatin-sensitive and -resistant tumor cell line pairs (ovarian A2780/A2780cis and cervical HeLa/HeLaCK cells). Gene expression of importer CTR1, and ATP7A and ATP7B efflux transporters (with and without cisplatin treatment) was investigated using quantitative real-time PCR and platinum concentrations were determined by flameless atomic absorption spectrometry. After incubation with cisplatin, DNA platination was significantly lower in the resistant variants compared to the respective sensitive cell lines, whereas no obvious difference in DNA repair was found. Accordingly, the resistant variants exhibited lower intracellular platinum concentrations than their respective parental cells (2.5- and 2.9-fold lower in A2780cis and HeLaCK cells, respectively). No differences in efflux were observed. Resistant cells expressed lower levels of CTR1 (1.5-1.8-fold) than their sensitive counterparts. Expression differences of ATP7A and ATP7B between resistant and sensitive cells were cell type-specific. The results highlight the relevance of CTR1 for cisplatin sensitivity as there is a clear relationship between lower CTR1 expression, intracellular concentration, DNA platination and cytotoxicity of cisplatin in both resistant cell lines. Our data provide the basis for a quantitative understanding of alterations in uptake and efflux processes leading to cisplatin resistance and might hence facilitate the development of ex vivo assays that can predict cisplatin sensitivity in tumor specimens of patients.  相似文献   

13.
HL60 cells isolated for resistance to Adriamycin do not contain P-glycoprotein, as determined with immunological probes. These cells, however, are multidrug resistant and defective in the cellular accumulation of drug. In view of these findings, we have examined in greater detail certain properties of the HL60/Adr cells and have compared these properties to an HL60 drug-resistant isolate (HL60/Vinc) which contains high levels of P-glycoprotein. The results of these studies demonstrated that verapamil induces a major increase in cellular drug accumulation in both HL60/Adr and HL60/Vinc isolates. An 125I-labeled photoaffinity analog of verapamil labeled P-glycoprotein contained in membranes of HL60/Vinc cells. In contrast, this agent did not label any protein selectively associated with drug resistance in membranes of the HL60/Adr isolate. The photoactive dihydropyridine calcium channel blocker [3H]azidopine and [125I]NASV, a photoaffinity analog of vinblastine, labelled P-glycoprotein in membranes from HL60/Vinc cells, whereas in experiments with the HL60/Adr isolate there was no detectable labeling of a drug resistance associated membrane protein. Additional studies have been carried out to analyze membrane proteins of HL60/Adr cells labeled with the photoaffinity agent 8-azido-alpha-[32P]ATP (AzATP32). The results demonstrate that this agent labeled a resistance associated membrane protein of 190 kilodaltons (P190). P190 is essentially absent in membranes of drug-sensitive cells. Labeling of P190 with AzATP32 in membranes of resistant cells was blocked completely when incubations were carried out in the presence of excess unlabeled ATP. Additional studies were carried out to analyze mdr gene amplification and expression in sensitive and resistant cells. Experiments carried out with human 5',mdr1 (1.1 kb) and mdr3 (1.0 kb) cDNAs demonstrate that both of these sequences were highly amplified in the HL60/Vinc isolate. Only the mrd1 gene sequence however, was overexpressed. In contrast, there was no detectable amplification or overexpression of mdr1 or mdr3 sequences in HL60/Adr cells. The results of this study thus identify a new nucleotide binding protein which is overexpressed in membranes of HL60 cells isolated for resistance to Adriamycin. P190, which exhibits properties distinct from P-glycoprotein, possibly functions in the energy-dependent drug efflux system contained in the HL60/Adr resistant isolate.  相似文献   

14.
The ability of cancer cells to become simultaneously resistant to different drugs, a trait known as multidrug resistance, remains a major obstacle for successful anticancer therapy. One major mechanism of resistance involves cellular drug efflux by expression of P-glycoprotein (P-gp), a membrane transporter with a wide variety of substrates. Anthracyclines are especially prone to induction of resistance by the P-gp mechanism. P-gp mediated resistance is often confronted by use of P-gp inhibitors, synthesis of novel analogs, or conjugating drugs to macromolecular carriers in order to circumvent the efflux mechanism. In this report, the effect of free and Elastin-like polypeptide (ELP) bound doxorubicin (Dox) on the viability of sensitive (MES-SA and MCF-7) and multidrug resistant (MES-SA/Dx5 and NCI/ADR-RES) human carcinoma cells was studied in vitro. The resistant MES-SA/Dx5 cells demonstrated about 70 times higher resistance to free Dox than the sensitive MES-SA cells, and the NCI/ADR-RES cells were about 30 fold more resistant than the MCF-7 cells. However, the ELP-bound Dox was equally cytotoxic in both sensitive and resistant cell lines. The ELP-bound Dox was shown to accumulate in MES-SA/Dx5 cells, as opposed to free Dox, which was rapidly pumped out by the P-gp transporter. Since ELP is a thermally responsive carrier, the effect of hyperthermia on the cytotoxicity of the ELP-Dox conjugate was investigated. Both cytotoxicity and apoptosis were enhanced by hyperthermia in the Dox resistant cells. The results suggest that ELP-Dox conjugates may provide a means to thermally target solid tumors and to overcome drug resistance in cancer cells.  相似文献   

15.
1. Overexpression of glutathione S-transferases (GST) in breast cancer cells is hypothesized to be a component of the multifactorial doxorubicin-resistant phenotype. 2. We have characterized the expression of GST enzymes at the catalytic activity, protein and mRNA levels in wild-type MCF-7 (MCF-7/WT) human breast cancer cells and a line selected for resistance to doxorubicin (MCF-7/ADR), with the goal of modulating GST activity to overcome resistance. 3. The MCF-7/ADR cells were 30-65-fold more resistant to doxorubicin than the MCF-7/WT cells. 4. Total cytosolic GST catalytic activity was elevated 23-fold in the MCF-7/ADR cells as compared with the MCF-7/WT cells, and the MCF-7/ADR cells also showed 3-fold increases in catalytic activity toward GST mu and alpha class-selective substrates. Neither cell line showed detectable catalytic activity with a GST mu class-selective substrate. 5. MCF-7/ADR cells showed pronounced overexpression of GST mu protein and GST P1 mRNA in comparison with the wild-type cell line. Neither cell line displayed detectable GST alpha or mu at the protein level. 6. A glutathione analogue that functions as a selective GST alpha inhibitor was more potent at inhibiting total cytosolic GST catalytic activity in the MCF-7/ADR cell line than GST alpha and mu class-selective inhibitory glutathione analogues and the non-selective GST inhibitor ethacrynic acid. 7. The multidrug resistance-associated protein, which can function as a glutathione-conjugate transporter, appeared weakly overexpressed in the MCF-7/ADR cells in comparison with the MCF-7/WT cells.  相似文献   

16.
This study investigates the P-glycoprotein (Pgp)-mediated transport of its substrates in accumulation or efflux modes under steady-state conditions. The kinetics of colchicine uptake and efflux, a substrate of both Pgp and intracellular tubulin, were studied in HL60 and HL60/DNR cells; HL60/DNR cells contain 25 times more Pgp than do HL60 cells. HL60/DNR cells in a medium containing 6.25 nM colchicine, which mimics therapeutic conditions, reached steady-state twice as rapidly as did HL60 cells, and accumulated 24-times less colchicine than did HL60 cells. The Pgp inhibitor GF120918, increased colchicine uptake by HL60 cells 1.2-fold and that of HL60/DNR cells 17-fold, while it had no effect on colchicine efflux from either cell line that had been incubated with colchicine for 24 h. Colchicine kinetics fitted well a two closed-compartment model, showing that the low intracellular accumulation of colchicine in HL60/DNR cells resulted from a 11-fold decrease in colchicine uptake and a 2.3-fold increase in colchicine efflux, that could be attributed to Pgp-mediated efflux activity in HL60/DNR cells. Intracellular colchicine was mainly and similarly distributed in the cytosol in both cell lines. These data demonstrate that the kinetics of the intracellular colchicine accumulation depend on the density of Pgp and that Pgp is more a phase 0 (preventing cellular uptake) than a phase 3 (effluxing intracellular substrate) transporter under steady-state conditions, although the situation is reversed after a short incubation time (30 min), when intracellular free colchicine concentration is probably high enough for it to be removed from the cell by Pgp.  相似文献   

17.
99mTc-MIBI评价川芎嗪逆转乳腺癌MCF-7/ADR细胞耐多药的研究   总被引:2,自引:0,他引:2  
张雪梅  吴华 《中国药师》2002,5(5):261-262,272
目的:用P-gp的底物~(99m)Tc-MIBI评价中药钙通道阻滞剂川芎嗪(TMP)对乳腺癌MCF-7/ADR细胞耐多药的逆转作用。方法:以经典逆转剂维拉帕米和MCF-7/WT细胞作对照,各组均加入~(99m)Tc-MIBI,分别测定逆转剂作用前后细胞内(C_(in))和上清液(C_(out))中的放射性活度的比值。结果:在加入逆转剂之前MCF-7/WT和MCF-7/ADR细胞株间~(99m)Tc-MIBI聚集的差别为33倍,加入逆转剂 60min后二者间的差别为3.8倍。结论:~(99m)Tc-MIBI的变化可以反映耐多药的逆转,TMP可部分逆转MCF-7/ADR的耐多药性。  相似文献   

18.
The anthracycline, antitumor drugs doxorubicin (DOX), daunorubicin (DAU), and epidoxorubicin (EPI) catalyze production of formaldehyde through induction of oxidative stress. The formaldehyde then mediates covalent bonding of the drugs to DNA. Synthetic formaldehyde conjugates of DOX, DAU, and EPI, denoted Doxoform (DOXF), Daunoform (DAUF), and Epidoxoform (EPIF), exhibit enhanced toxicity to anthracycline-sensitive and -resistant tumor cells. Uptake and retention of parent anthracycline antitumor drugs (DOX, DAU, and EPI) relative to those of their formaldehyde conjugates (DOXF, DAUF, and EPIF) were assessed by flow cytometry in both drug-sensitive MCF-7 cells and drug-resistant MCF-7/ADR cells. The MCF-7 cells took up more than twice as much drug as the MCF-7/ADR cells, and both cell lines took up substantially more of the formaldehyde conjugates than the parent drugs. Both MCF-7 and MCF-7/ADR cells retained fluorophore from DOXF, DAUF, and EPIF hours after drug removal, while both cell lines almost completely expelled DOX, DAU, and EPI within 1 h. Longer treatment with DOX, DAU, and EPI resulted in modest drug retention in MCF-7 cells following drug removal but poor retention of DOX, DAU, and EPI in MCF-7/ADR cells. Fluorescence microscopy showed that the formaldehyde conjugates targeted the nuclei of both sensitive and resistant cells, and remained in the nucleus hours after drug removal. Experiments in which [(3)H]Doxoform was used, synthesized from doxorubicin and [(3)H]formaldehyde, also indicated that Doxoform targeted the nucleus. Elevated levels of (3)H were observed in DNA isolated from [(3)H]Doxoform-treated MCF-7 and MCF-7/ADR cells relative to controls. The results implicate drug-DNA covalent bonding in the tumor cell toxicity mechanism of these anthracyclines.  相似文献   

19.
CEM cells exhibiting a 25-fold (C25X) or 80-fold (C80X) increase in resistance to adriamycin were isolated and characterized. C25X cells were cross-resistant to daunomycin and etoposide (VP-16) but not to vincristine or colchicine. These cells were not defective in the cellular accumulation of drug and did not contain detectable levels of P-glycoprotein. Continued exposure of C25X cells to adriamycin resulted in increased levels of resistance and additional phenotypic changes. These cells (C80X) now contained high levels of P-glycoprotein and were cross-resistant to a variety of agents including vincristine and colchicine. A fluorometric assay for DNA unwinding was used to measure levels of drug-induced DNA breaks in sensitive and C25X resistant cells. Studies carried out with VP-16, 4'9-acridinyl-aminomethanesulfon-m-anisidide (m-AMSA), adriamycin, or daunomycin showed that the level of drug-induced DNA strand breakage in resistant cells was considerably less than that occurring in drug-treated sensitive cells. These studies, therefore, show that treatment of CEM cells with adriamycin resulted in a nuclear alteration that contributed to drug resistance. They also demonstrate that prolonged treatment of cells with adriamycin resulted in membrane alterations that affect cellular drug accumulation. Adriamycin resistance in CEM cells can thus occur as a result of at least two distinct mechanisms.  相似文献   

20.
沙利度胺(α-N-phthalimido-glutarimide,TLD)是一种具有抗血管生成和抗炎作用的药物,对多种实体瘤有效。本文研究了N-糖基取代的沙利度胺新衍生物(STA-35)对阿霉素(doxorubicin,ADR)引起的多药耐药(multidurg resistance,MDR)的调节作用。采用SRB法检测化合物对癌细胞的增殖抑制作用,应用流式细胞术测定P-糖蛋白(P-glycoprotein,P—gp)的功能,以免疫印迹方法考察P—gP的蛋白表达。实验结果表明,STA-35能够抑制人乳腺癌细胞MCF-7及其ADR耐药细胞MCF-7/ADR生长,耐药指数仅为1.19;并能增强MCF-7/ADR细胞对ADR的敏感性。此外,STA-35可以增加MCF-7/ADR细胞内罗丹明123(rhodamine 123,RH123)的聚积,减弱P—gP的功能,抑制P-gp的蛋白表达。该化合物具有多药耐药逆转作用,其分子机制可能与抑制P—gp的功能和蛋白表达相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号