首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Pachyonychia congenita (PC) is a group of autosomal dominant ectodermal dysplasias caused by mutations in four differentiation-specific keratin genes. Two major clinical subtypes of PC have been generally recognized. Symmetrically thickened fingernails and toenails are the defining characteristic of PC type 2 (PC-2) with onset at infancy. Pilosebaceous cysts are the best hallmark of PC-2, but they usually occur at puberty. OBJECTIVES: To report a Chinese pedigree of PC-2 with unusually early onset sebaceous cysts and to explore the genetic mutation and its phenotype. METHODS: Exon 1 of keratin 17 was amplified by polymerase chain reaction (PCR) from genomic DNA from the three patients in the pedigree, the proband, his half-sister and his younger son, two unaffected members in the pedigree and 50 unrelated and unaffected people. PCR products were directly sequenced to detect the mutation. RESULTS: Direct sequencing of the PCR products revealed a heterozygous 275A-->G mutation in all three affected members. This mutation predicts the substitution of asparagine by serine in codon 92 (N92S) located in the 1A domain of keratin 17. CONCLUSIONS: Mutation in the 1A domain of keratin 17 underlies the affected members' phenotype, PC-2 with early onset sebaceous cysts and late-onset thickened fingernails and toenails. The onset of the cysts is very early in some people within this family and the age at onset of thickened fingernails and toenails is variable within the family, implying the existence of modifying factors.  相似文献   

2.
Pachyonychia congenita type 2 (PC-2), also known as Jackson-Lawler type PC, is an autosomal dominant disorder characterized by hypertrophic nail dystrophy associated with focal keratoderma and multiple pilosebaceous cysts. It has been demonstrated that PC-2 is associated with germline mutations in the keratin 17 (K17) gene and in its expression partner keratin 6b. In this report, we describe a novel germline mutation in K17, M88T, in a family with PC-2.  相似文献   

3.
Pachyonychia congenita type 2 (PC-2; Jackson–Lawler syndrome) is an autosomal dominant disorder characterized by hypertrophic nail dystrophy, mild focal keratoderma, multiple pilosebaceous cysts and other features of ectodermal dysplasia. Keratin 17 (K17) is a differentiation-specific keratin expressed in the nail bed, hair follicle, sebaceous gland and other epidermal appendages. Previously, we have demonstrated that PC-2 is caused by mutations in K17 and that similar mutations in this gene can present as steatocystoma multiplex with little or no nail dystrophy. Here, we describe three unrelated kindreds carrying K17 mutations. Two of these families have identical missense mutations (R94C) in the 1A domain of K17. However, while affected members of one kindred have the classical features of PC-2, affected persons in the other family have the steatocystoma multiplex phenotype. In a third family with PC-2, mutation N92S was detected, bringing the total number of distinct mutations reported in K17 thus far to 11. These results demonstrate that K17 mutations commonly underlie both PC-2 and steatocystoma multiplex and that the alternate phenotypes which arise from these genetic lesions in K17 are independent of the specific mutation involved.  相似文献   

4.
Pachyonychia congenita type 1 (PC-1) is an autosomal dominant ectodermal dysplasia characterized by hypertrophic nail dystrophy, focal non-epidermolytic palmoplantar keratoderma and variable features of oral leukokeratosis and follicular keratosis. Previously, we have shown that this disease can be caused by mutations in type I keratin K16 and one mutation has been reported in its type II keratin expression partner, K6a. Mutation analysis for K6a has been hampered by the presence of multiple copies of the K6 gene in the human genome, of which some are expressed and others are pseudogenes. Here, we describe a mutation detection strategy where the entire KRT6A gene, approximately 7 kb, is specifically amplified by long-range PCR. Using this technique, we have detected two novel mutations in the 1A domain of the K6a polypeptide, N171K and F174S. Mutations were confirmed in the affected individuals and were excluded from 50 unaffected unrelated individuals by restriction enzyme analysis of KRT6A PCR products. Additionally, mutation N171K was confirmed by RT-PCR in mRNA derived from lesional palmoplantar epidermis of an affected individual, confirming the specificity of the genomic PCR for the functional K6a gene. This, together with a similar strategy which we have developed for the K16 gene, provide a robust system for mutation detection and prenatal diagnosis for patients with PC-1.  相似文献   

5.
Pachyonychia congenita type 2 (PC-2) is an autosomal dominant disorder characterized by hypertrophic nail dystrophy, focal keratoderma, multiple pilosebaceous cysts, and other features of ectodermal dysplasia. It has been demonstrated that PC-2 is caused by mutations in the keratin 17 and keratin 6b genes. In this report, we describe a missense mutation in the keratin 17 gene, M88T, in a Korean patient whose phenotype included early onset steatocystoma multiplex and Hutchinson-like tooth deformities along with other typical features of PC-2 such as hypertrophic nails, natal teeth and follicular hyperkeratosis.  相似文献   

6.
目的了解先天性厚甲症Ⅰ型(PC-Ⅰ)及Ⅱ型(PC-Ⅱ)患者家系的基因突变。探讨其基因突变和临床表现的关系。方法扩增外周血基因组DNA中角蛋白16基因的第1~6外显子及K17基因的第1外显子,对PCR产物进行序列分析。结果PC-Ⅰ家系(家系1)中患者K16基因第127位密码子由CGC突变CCC,导致K16角蛋白1A区的精氨酸由脯氨酸替代(R127P);PC-Ⅱ家系(家系2)中2例患者K17基因第99位密码子由CTG突变为CCG,导致K17角蛋白1A区的亮氨酸由脯氨酸替代(L99P),而这两个家系中的正常人及与此两家系无关的50例正常人未发现此突变。结论该PC-Ⅰ家系存在角蛋白16的R127P突变,PC-Ⅱ家系存在角蛋白17的L99P突变。3例厚甲症患者检测到的2个角蛋白突变均由K16及K17发生错义突变,导致其编码的相应氨基酸由脯氨酸替代。此类突变可引发较重的临床表现,即呈现典型PC-Ⅰ型或PC-Ⅱ型,不会呈现其他较轻的临床亚型。  相似文献   

7.
A new missense mutation in the keratin 5 gene (KRT5) in a Chinese family with Weber-Cockayne type epidermolysis bullosa simplex is reported. Direct sequencing identified a heterozygous A --> C substitution at nucleotide 596 altering codon 199 of KRT5 from lysine to threonine in all affected family members, but not in the unaffected family members or in 50 unrelated control samples. The mutation is designated K199T. This mutated lysine residue is sited within the 1A domain of keratin 5 and is highly conserved among all type II keratins. The mutation may perturb the alignment of tonofilaments and, as a consequence, result in skin fragility and blistering.  相似文献   

8.
BACKGROUND: Pachyonychia congenita (PC) is a rare autosomal dominant keratin disorder, subdivided into two major variants, PC-1 and PC-2. Predominant characteristics include hypertrophic nail dystrophy, focal palmoplantar keratoderma and oral leukokeratosis. Multiple steatocystomas that develop during puberty are a useful feature distinguishing PC-2 from PC-1. At the molecular level it has been shown that mutations in keratin K6a or K16 cause PC-1 whereas those in K6b or K17 lead to PC-2. OBJECTIVE: To identify mutations in 22 families presenting with clinical symptoms of either PC-1/focal non-epidermolytic palmoplantar keratoderma (FNEPPK) or PC-2. METHODS: Mutation analysis was performed on genomic DNA from PC patients by direct sequencing. RESULTS: Here, we report four new missense and five known mutations in K6a; one new deletion and three previously identified missense mutations in K16; plus one known mutation in K17. CONCLUSION: With one exception, all these heterozygous mutations are within the highly conserved helix boundary motif regions at either end of the keratin rod domain. In one sporadic case, a unique mutation in K16 resulting in deletion of 24bp was found within the central rod domain, in a child with a phenotype predominantly consisting of focal plantar keratoderma. The identification of mutations in cases of PC is prerequisite for future development of gene-specific and/or mutation-specific therapies.  相似文献   

9.
Epidermolytic palmoplantar keratoderma (EPPK), an autosomal‐dominant genodermatosis, is the most frequently occurring hereditary palmoplantar keratoderma. EPPK is characterized by hyperkeratosis of the palms and soles. Approximately 90% of patients present with mutations in the KRT9 gene, which encodes for keratin 9. Many of these mutations are located within the highly conserved coil 1A region of the alpha‐helical rod domain of keratin 9, an important domain for keratin heterodimerization. The objective was to assess the clinical and molecular characteristics of a Mexican family with EPPK. The clinical characteristics of members of this family were analyzed. The KRT9 gene of affected members was polymerase chain reaction amplified from genomic DNA and sequenced. All affected members of the family had hyperkeratosis of the palms and soles with knuckle pads. The R163W mutation in the KRT9 gene was present in all affected individuals who were tested. Although R163W is the most frequent KRT9 mutation in patients with EPPK, only two families have been reported with knuckle pads associated with this mutation. Our findings indicate that knuckle pads can be associated with EPPK and the R163W mutation in a family with a genetic background different from that described here.  相似文献   

10.
Epidermolytic palmoplantar keratoderma (EPPK) is an autosomal dominant skin disorder characterized by hyperkeratosis of the palms and soles associated with histologic findings of hyperkeratosis and epidermolysis. Ultrastructurally, there is vacuolization of the cytoplasm and abnormal keratin filament network with tonofilament clumping. EPPK is caused by mutations in the keratin 9 gene (KRT9), which is expressed exclusively in suprabasal keratinocytes of palmoplantar epidermis. The mutation R162W is the most frequent keratin 9 alteration reported in patients from different geographical areas. We present three unrelated Italian families affected by EPPK in which we confirmed the presence of the R162W mutation, by RT-PCR analysis followed by sequencing of the KRT9 gene, in all affected members. The finding of the same mutation in all patients, together with the previous reports of the disease, strongly suggest that position 162 of the KRT9 gene represents a mutation "hot-spot", probably due to the peculiarity of the sequence.  相似文献   

11.
A previously undescribed missense mutation was detected in the L12 domain of keratin 5 (K5) in a Chinese family with Weber-Cockayne epidermolysis bullosa simplex. Direct sequencing of the PCR products identified a single base substitution (983A-->G) that changes the aspartic acid residue at codon 328 to glycine in all affected family members, while no mutation was observed either in the healthy individual or 50 unrelated control samples. Asp328 of K5 is remarkably conserved among all type II keratins. D328G is the fourth mutation found to affect this residue in K5-related epidermolysis bullosa simplex, indicating the importance of Asp328 for K5 structure and the dramatic effect that fine changes can have on keratin intermediate filament integrity.  相似文献   

12.
Steatocystoma multiplex (SM) is characterized by multiple dermal cysts involving the pilosebaceous glands. Although most presenting cases are sporadic, there is a rare familial syndrome involving a mutation in keratin 17 (K17) that is inherited in an autosomal dominant fashion. SM often presents concomitantly with eruptive vellus hair cysts (EHVS) and pachyonychia congenital type 2 (PC-2). We report a sporadic case of SM in a 21-year-old man.  相似文献   

13.
In 1994, the molecular basis of pachyonychia congenita (PC) was elucidated. Four keratin genes are associated with the major subtypes of PC: K6a or K16 defects cause PC-1; and mutations in K6b or K17 cause PC-2. Mutations in keratins, the epithelial-specific intermediate filament proteins, result in aberrant cytoskeletal networks which present clinically as a variety of epithelial fragility phenotypes. To date, mutations in 20 keratin genes are associated with human disorders. Here, we review the genetic basis of PC and report 30 new PC mutations. Of these, 25 mutations were found in PC-1 families and five mutations were identified in PC-2 kindreds. All mutations identified were heterozygous amino acid substitutions or small in-frame deletion mutations with the exception of an unusual mutation in a sporadic case of PC-1. The latter carried a 117 bp duplication resulting in a 39 amino acid insertion in the 2B domain of K6a. Also of note was mutation L388P in K17, which is the first genetic defect identified in the helix termination motif of this protein. Understanding the genetic basis of these disorders allows better counseling for patients and paves the way for therapy development.  相似文献   

14.
Pachyonychia congenita type 1 (PC-1) is an autosomal dominant ectodermal dysplasia characterized by nail dystrophy, focal non-epidermolytic palmoplantar keratoderma (FNEPPK) and oral lesions. We have previously shown that mutations in keratin 16 (K16) cause fragility of specific epithelia resulting in phenotypes of PC-1 or FNEPPK alone. Here, we report 2 novel mutations in K16 causing distinct phenotypes. A heterozygous missense mutation (L124R) was detected in a kindred with PC-1. In a family where mild FNEPPK was the only phenotype, a 23 bp deletion and a separate 1 bp deletion downstream were found in exon 6: [1244-1266del; 1270delG]. At the protein level, these mutations remove 8 residues and substitute 2 residues in the helix termination motif (HTM) of the K16 polypeptide. The HTM sequence is conserved in all known intermediate filament proteins and for convenience, this complex mutation was designated deltaHTM. Transient expression of K16 cDNAs carrying either the L124R or the deltaHTM mutation in epithelial cell line PtK2 produced aggregation of the keratin cytoskeleton. However, the aggregates observed with the deltaHTM mutation were morphologically different and appeared to be less disruptive to the endogenous cytoskeleton. Therefore, loss of the HTM sequence may render this mutant K16 less capable of contributing to filament assembly and decrease its dominant-negative effect, resulting in the milder FNEPPK phenotype.  相似文献   

15.
Palmoplantar keratodermas are a group of heterogeneous diseases characterized by thickening, and marked hyperkeratosis, of the epidermis of the palms and soles. Palmoplantar keratodermas can be divided into four major classes: diffuse, focal, punctate, and palmoplantar ectodermal dysplasias. All forms are genetic diseases inherited as autosomal dominant disorders. We studied a patient exhibiting a localized thickening of the skin in parts of the right palm and the right sole, following Blaschko's lines, that does not fit into any classes already described. We sequenced the keratin 16 cDNA derived from skin biopsy material from affected and non affected palms. The keratin 16 cDNA sequence from lesional epidermis showed a 12 base pair deletion (309-320del), which deletes codons 104-107. The mutation is predicted to delete four amino acids, GGFA, from the V1 domain of the keratin 16 polypeptide, close to the 1A domain. Full-length keratin 16 cDNA sequence derived from the unaffected palm was completely normal, consistent with a postzygotic mutation as is suggested by the mosaicism observed. We defined this new clinical entity, "unilateral palmoplantar verrucous nevus", rather than localized or focal epidermolytic palmoplantar keratodermas, as the lesions are present only on one side of the body and follow Blaschko's lines. This study is a report of a mosaic mutation in keratin 16 and also the association of a mutation in the V1 domain of a type I keratin associated with a human disease.  相似文献   

16.
We report here two unrelated families in Japan and Korea having patients with a unique type of epidermolysis bullosa simplex and a novel mutation in the keratin gene KRT5, i.e., a frameshift and delayed stop codon inconsistent with any subtype described before. The patients showed migratory circinate erythema and multiple vesicles on the circular belt-like areas affected by erythema. Electron microscopy of skin biopsies showed a reduction in the number of keratin intermediate filaments in the basal cells without tonofilament clumping. We identified a novel heterozygous deletion mutation (1649delG of KRT5) in both cases. This deletion is predicted to produce a mutant keratin 5 protein with a frameshift of its terminal 41 amino acids and 35 amino acids longer than the wild-type keratin 5 protein due to a delayed termination codon. As the same abnormal elongated mutant KRT5 gene was found in the independent families, the predicted abnormal elongated keratin protein is likely to lead to an atypical clinical phenotype that has never been reported, possibly by interfering with the functional interaction between keratin and its associated proteins.  相似文献   

17.
Epidermolytic hyperkeratosis (EHK) is a genodermatosis caused by mutations in either the keratin 1 (K1) or keratin 10 (K10) genes, and characterized by erythroderma and blistering at birth, with development of a ribbed, ichthyotic hyperkeratosis and palmoplantar keratoderma. A wide variety of mutations within the highly conserved helix termination motifs of the central rod domains of the K1 or K10 genes correlate with the highly variable phenotypic severity observed in EHK. We report a unique EHK-like phenotype exhibiting autosomal dominant inheritance with variable expressivity in four affected individuals in a single family. Clinically, affected individuals manifest transient blistering at birth followed by chronic diffuse palmoplantar keratoderma without transgradiens. Intermittent flares of non-migratory polycylic erythematous psoriasiform plaques which worsen and abate in severity were present in all affected individuals, but showed immense individual variation in both severity and duration, ranging from weeks to months. Histopathologic examination of the psoriasiform plaques demonstrated the characteristic features of EHK. Sequencing of the K1 gene in affected family members revealed a heterozygous A-to-T transversion at nucleotide 1435 within exon 7, converting isoleucine (ATT) to phenylalanine (TTT), (I479F). The mutation resides within the highly conserved helix termination motif of the helix 2B segment of the K1 gene. This unique clinical phenotype and the associated K1 mutation have not been previously described, and it is referred to here as EHK with polycyclic, psoriasiform plaques (EHK/PPP).  相似文献   

18.
Pachyonychia congenita (PC) is a rare, autosomal dominant, ectodermal dysplasia characterized most distinctly by the presence of symmetric nail hypertrophy. In the Jadassohn-Lewandowsky form, or PC-1, additional cutaneous manifestations may include palmoplantar hyperkeratosis, hyperhidrosis, follicular keratoses, and oral leukokeratosis. Mutations have previously been identified in the 1A helix initiation motif of either keratin 6 or keratin 16 in patients with PC-1. In the current study, we have identified 2 sporadic, heterozygous mutations in the 1A helix region of the K6 isoform (K6a). The first mutation identified was a 3 base pair deletion (K6adelta N171). The second mutation was a C-to-A transversion resulting in an amino acid substitution (K6a N171K). These data, in combination with previous reports, provide further evidence that this location is a mutational hot spot.  相似文献   

19.
Monilethrix, a rare human hair disorder with autosomal dominant transmission, can be caused by mutations in hair keratins. Up to now, causative mutations have only been found in two type II cortex keratins, hHb6 and hHb1. In these hair keratins, the helix termination motif, HTM, was the only site in which mutations were located. The most frequent mutation, which has been found in 22 cases, was a Glu413Lys substitution in hHb6, whereas other mutations, i.e., hHb6 Glu413Asp, hHb1 Glu413Lys, and hHb1 Glu402Lys, have been reported in a distinctly lower number of cases. In this study, we describe the equivalent of the hHb1 Glu402Lys mutation in the HTM of cortex keratin hHb6. The mutation occurred in an American family in which it could only be detected in one clinically affected individual. Thus the underlying G-->A transition represents a spontaneous germ-line mutation in the hHb6 gene. This new mutation indicates that both the hHb6/hHb1 Glu413Lys substitution and the hHb6/hHb1 Glu402Lys substitution, represent mutational hotspots in the HTM of type II cortex keratins. However, we also describe a monilethrix-causing mutation in the helix initiation motif, HIM, of the cortex keratin hHb6. The critical Asn114Asp substitution was only found in affected members of a large Swedish three-generation family. Considering that since childhood, half of the affected individuals suffer from complete baldness and follicular keratosis, the new HIM mutation seems to be associated with a rather severe disease phenotype. In conclusion, our data strongly suggest that monilethrix is a disease of the hair cortex, whose etiology is interesting in that causative mutations seem to be restricted to type II hair keratins.  相似文献   

20.
Woolly hair (WH) is an abnormal variant of tightly curled hair, which is frequently associated with hypotrichosis. Non-syndromic forms of WH can show either autosomal-dominant WH (ADWH) or autosomal-recessive WH (ARWH) inheritance patterns. ARWH has recently been shown to be caused by mutations in either the lysophosphatidic acid receptor 6 (LPAR6) or lipase H (LIPH) gene. More recently, a mutation in the keratin K74 (KRT74) gene has been reported to underlie ADWH. Importantly, all of these genes are abundantly expressed in the inner root sheath (IRS) of human hair follicles. Besides these findings, the molecular mechanisms underlying hereditary WH have not been fully disclosed. In this study, we identified a Japanese family with ADWH and associated hypotrichosis. After exclusion of known causative genes, we discovered the heterozygous mutation c.422T>G (p.Phe141Cys) within the helix initiation motif of the IRS-specific keratin K71 (KRT71) gene in affected family members. We demonstrated that the mutant K71 protein led to disruption of keratin intermediate filament formation in cultured cells. To our knowledge, it is previously unreported that the KRT71 mutation is associated with a hereditary hair disorder in humans. Our findings further underscore the crucial role of the IRS-specific keratins in hair follicle development and hair growth in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号