首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study identified a new substitution in the Bbeta chain of an abnormal fibrinogen, denoted Longmont, where the residue Arg166 was changed to Cys. The variant was discovered in a young woman with an episode of severe hemorrhage at childbirth and a subsequent mild bleeding disorder. The neo-Cys residues were always found to be disulfide-bridged to either an isolated Cys amino acid or to the corresponding Cys residue of another abnormal fibrinogen molecule, forming dimers. Removing the dimeric molecules using gel filtration did not correct the fibrin polymerization defect. Fibrinogen Longmont had normal fibrinopeptide A and B release and a functional polymerization site "a." Thus, the sites "A" and "a" can interact to form protofibrils, as evidenced by dynamic light-scattering measurements. These protofibrils, however, were unable to associate in the normal manner of lateral aggregation, leading to abnormal clot formation, as shown by an impaired increase in turbidity. Therefore, it is concluded that the substitution of Arg166-->Cys-Cys alters fibrinogen Longmont polymerization by disrupting interactions that are critical for normal lateral association of protofibrils. (Blood. 2001;98:661-666)  相似文献   

2.
Okumura N  Gorkun OV  Terasawa F  Lord ST 《Blood》2004,103(11):4157-4163
Crystallographic structures indicate that gamma-chain residue Asn308 participates in D:D interactions and indeed substitutions of gammaAsn308 with lysine or isoleucine have been identified in dysfibrinogens with impaired polymerization. To probe the role of Asn308 in polymerization, we synthesized 3 variant fibrinogens: gammaAsn308 changed to lysine (gammaN308K), isoleucine (gammaN308I), and alanine (gammaN308A). We measured thrombin-catalyzed polymerization by turbidity, fibrinopeptide release by high-performance liquid chromatography, and factor XIIIa-catalyzed cross-linking by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the absence of added calcium, polymerization was clearly impaired with all 3 variants. In contrast, at 0.1 mM calcium, only polymerization of gammaN308K remained markedly abnormal. The release of thrombin-catalyzed fibrinopeptide B (FpB) was delayed in the absence of calcium, whereas at 1 mM calcium FpB release was delayed only with gammaN308K. Factor XIIIa-catalyzed gamma-gamma dimer formation was delayed with fibrinogen (in absence of thrombin), whereas with fibrin (in presence of thrombin) gamma-gamma dimer formation of only gammaN308K was delayed. These data corroborate the recognized link between FpB release and polymerization. They show fibrin cross-link formation likely depends on the structure of protofibrils. Together, our results show substitution of Asn308 with a hydrophobic residue altered neither polymer formation nor polymer structure at physiologic calcium concentrations, whereas substitution with lysine altered both.  相似文献   

3.
4.
Fibrinogen Philadelphia, a hypodysfibrinogenemia described in a family with a history of bleeding, is characterized by prolonged thrombin time, abnormal fibrin polymerization, and increased catabolism of the abnormal fibrinogen. Turbidity studies of polymerization of purified fibrinogen under different ionic conditions reveal a reduced lag period and lower final turbidity, indicating more rapid initial polymerization and impaired lateral aggregation. Consistent with this, scanning and transmission electron microscopy show fibers with substantially lower average fiber diameters. DNA sequence analysis of the fibrinogen genes A, B, and G revealed a T>C transition in exon 9 resulting in a serine-to-proline substitution near the gamma chain C-terminus (S378P). The S378P mutation is associated with fibrinogen Philadelphia in this kindred and was not found in 10 controls. This region of the gamma chain is involved in fibrin polymerization, supporting this as the polymerization defect causing the mutation. Thus, this abnormal fibrinogen is characterized by 2 unique features: (1) abnormal polymerization probably due to a major defect in lateral aggregation and (2) hypercatabolism of the mutant protein. The location, nature, and unusual characteristics of this mutation may add to our understanding of fibrinogen protein interactions necessary for normal catabolism and fibrin formation.  相似文献   

5.
A single base substitution (C-->T) in exon II of the Bbeta fibrinogen gene resulting in an Arg14-->Cys replacement was identified in a young woman with a history of recurrent thrombotic stroke. The patient's plasma showed prolongation of the thrombin and Reptilase times, and plasma fibrinogen, which was low when determined by chronometric assay (Clauss technique) was normal by clot weight. Dysfibrinogenaemia associated with the same mutation was identified in eight family members including two siblings with a history of venous and arterial thrombosis. Fibrin monomer polymerization with thrombin, Reptilase and Agkistrodon contortrix contortrix venom was defective. Polymerization studies revealed a reduced rate of polymerization compared with normal plasma, which improved on cooling from 37 degrees C to 20 degrees C. Plasma viscosity in the affected individuals was normal. Flow cytometric analysis of platelets from the proband and another affected member showed no increase in surface bound fibrinogen. Euglobulin clot lysis time was normal. The same point mutation has been described previously in individuals with thrombosis. This family adds further to the genotype-phenotype correlation of the dysfibrinogenaemias and provides strong evidence for a genuine association of fibrinogen BbetaArg14Cys with thrombosis. The mechanism underlying a causal relationship with the increased incidence of thrombosis remains obscure but a review of related dysfibrinogens suggests that the addition of a free thiol group rather than the loss of the thrombin cleavage site may be important.  相似文献   

6.
Cooper AV  Standeven KF  Ariëns RA 《Blood》2003,102(2):535-540
Fibrinogen gammaA/gamma' results from alternative splicing of mRNA. This variant, which constitutes approximately 8% to 15% of plasma fibrinogen, contains FXIII and thrombin binding sites. Our objective was to investigate whether gammaA/gamma' differs in fibrin formation and structure from the more common variant gammaA/gammaA. Both variants were separated and purified by anion-exchange chromatography. Fibrin formation and clot structure of the variants and unfractionated fibrinogen were investigated by turbidity and scanning electron microscopy (SEM). Thrombin cleavage of fibrinopeptides was analyzed by high-performance liquid chromatography (HPLC). Turbidity analysis showed significantly altered polymerization rates and overall fiber thickness in gammaA/gamma' clots compared with gammaA/gammaA and unfractionated fibrinogen. This finding was consistent with a range of thrombin concentrations. HPLC demonstrated reduced rates of fibrinopeptide B (FpB) release from gammaA/gamma' fibrinogen compared with gammaA/gammaA. Delayed FpB release was associated with delayed lateral aggregation of protofibrils and significant differences were found on SEM, with gammaA/gamma' clots consisting of smaller diameter fibers and increased numbers of branch points compared with both gammaA/gammaA and unfractionated fibrinogen. These results demonstrate that the gammaA/gamma' splice variant of fibrinogen directly alters fibrin formation and structure, which may help to explain the increased thrombotic risk associated with this variant.  相似文献   

7.
Physiologic concentrations of Zn(II) (4-40 microM) can increase the rate of thrombin-induced fibrin clot formation (decreased clotting time, CT) and increase the turbidity of the fibrin gel. Both the initial and ultimate turbidity (AbS 600 nm) of fibrin gels are increased in the presence of Zn(II). Two techniques were used to elaborate the mechanisms of Zn+2 procoagulant effect. Analytical ultracentrifugation indicates that Zn(II) does not induce the formation of fibrinogen multimers. Radioimmunoassay for FPA indicates that thrombin activation of fibrinogen is decreased by Zn(II), with 50% inhibition of FPA release observed at 35 microM Zn(II). These experiments indicate that the critical feature of Zn(II) procoagulant effect is not due to the induction of fibrinogen proteolysis by thrombin, which is actually decreased. Rather, it appears that Zn(II) accelerates the polymerization step of fibrin assembly and concomitantly modifies fibrin gel structure.  相似文献   

8.
Riedel T  Suttnar J  Brynda E  Houska M  Medved L  Dyr JE 《Blood》2011,117(5):1700-1706
Fibrinogen adsorption on a surface results in the modification of its functional characteristics. Our previous studies revealed that fibrinogen adsorbs onto surfaces essentially in 2 different orientations depending on its concentration in the solution: "side-on" at low concentrations and "end-on" at high concentrations. In the present study, we analyzed the thrombin-mediated release of fibrinopeptides A and B (FpA and FpB) from fibrinogen adsorbed in these orientations, as well as from surface-bound fibrinogen-fibrin complexes prepared by converting fibrinogen adsorbed in either orientation into fibrin and subsequently adding fibrinogen. The release of fibrinopeptides from surface-adsorbed fibrinogen and from surface-bound fibrinogen-fibrin complexes differed significantly compared with that from fibrinogen in solution. The release of FpB occurred without the delay (lag phase) characteristic of its release from fibrinogen in solution. The amount of FpB released from end-on adsorbed fibrinogen and from adsorbed fibrinogen-fibrin complexes was much higher than that of FpA. FpB is known as a potent chemoattractant, so its preferential release suggests a physiological purpose in the attraction of cells to the site of injury. The N-terminal portions of fibrin β chains including residues Bβ15-42, which are exposed after cleavage of FpB, have been implicated in many processes, including angiogenesis and inflammation.  相似文献   

9.
The effects of the gamma-308 Asn-->Lys substitution of fibrinogen Bicêtre II on clot formation, structure and properties were determined to elucidate the role of this part of the molecule in fibrin polymerization. This process was followed by measurement of turbidity, and the structure and biophysical characteristics of the clots were studied by permeation, scanning electron microscopy, and rheological techniques. Turbidity studies revealed an increased lag period and greater final turbidity for fibrin BII clots, indicating impaired oligomer formation. By permeation it was found that BII clots had greater network porosity, four times more than that of the control. The clot architecture visualized by scanning electron microscopy was similar to that of control clots with pore size and fiber diameter slightly increased. BII clots had a stiffness decreased by more than half, and an increased loss tangent, a measure of the inelastic deformation of the clot. All these results suggest a disruption of the proper alignment of fibrin monomers during oligomer formation. Consistent with these results, fibrin cross-linking by adding the physiological concentration of factor XIII to the purified protein showed that gamma and alpha chain cross-linking was impaired in BII clots. This amino acid substitution defines distinctive effects on the surface of the D:D interaction sites that are reflected in the clot structure and functional properties.  相似文献   

10.
Sodium ascorbate and histidine were employed to protect fibrinogen against modifications followed by a gamma-irradiation process that could potentially inactivate the blood-borne viruses in plasma-derived products. Fibrinogen was irradiated (50 kGy total dose, on dry ice) using a 60Co source. Samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot. Carbonyl groups were measured by the 2,4-dinitrophenylhydrazine-coupled method, and the fibrinogen clotting activity was assessed by different functional assays. In irradiated fibrinogen, the carbonyl group concentration was elevated three-fold versus control; and moderate fragmentation of largely Aalpha and Bbeta chains was revealed. The rate of thrombin-catalyzed fibrinogen polymerization was inhibited (average 50%) with normal fibrinopeptide release and with a minor decrease of total clottable fibrinogen and alpha-polymer formation. Ascorbate reduced the incorporation of carbonyls to the fibrinogen molecule (by > 50% at 50 mmol/l; P < 0.001). Contrary to ascorbate, which alone delayed the fibrinogen polymerization rate, histidine abolished irradiation-induced inhibition of fibrinogen polymerization (by 80% at 50 mmol/l; P < 0.001). In conclusion, even though ascorbate effectively protects fibrinogen from oxidation due to its adverse effects on fibrinogen function, it may not serve as a suitable radioprotective. On the contrary, the first definite evidence is provided that radiation-sterilized fibrinogen in the presence of histidine greatly retains its clotting capability.  相似文献   

11.
Congenital dysfibrinogenaemia was found in a 39-year-old female and her two children. The proposita, apparently heterozygous for this abnormality, had no episode of bleeding or thrombosis. The abnormal fibrinogen showed normal release of fibrinopeptides A and B but impaired polymerization of the fibrin monomer. Amino acid sequence analysis of the whole A alpha-chain isolated from fibrinogen Kanazawa showed a substitution of Leu for Pro at position 18 in the A alpha-chain. This substitution was corroborated by the analysis of the amino acid sequence which demonstrated the lysyl endopeptidase peptides derived from the A alpha-chain of fibrinogen Kanazawa. The minimal genetic exchange responsible for this substitution was a C----T transition in the middle position of the Pro codon. We conclude that Pro-18 in the A alpha-chain is crucial for the polymerization of the fibrin monomer.  相似文献   

12.
We detail for the first time the uniquely altered fibrin polymerization of homophenotypic Aalpha R16H dysfibrinogen. By polymerase chain reaction amplification and DNA sequencing, our new proposita's genotype consisted of a G>A transition encoding for Aalpha R16H, and an 11 kb Aalpha gene deletion. High-performance liquid chromatography disclosed fibrinopeptide A release approximately six times slower than its fibrinopeptide B. Turbidimetric analyses revealed unimpaired fibrin repolymerization, and abnormal thrombin-induced polymerization (1-7 mumol/l fibrinogen, > 96% coagulable), consisting of a prolonged lag time, slow rate, and abnormal clot turbidity maxima, all varying with thrombin concentration. For example, at 0.2-3 U/ml, the resulting turbidity maxima ranged from lower to higher than normal control values. By scanning electron microscopy, clots formed by 0.3 and 3 thrombin U/ml displayed mean fibril diameters 42 and 254% of the respective control values (n = 400). Virtually no such differences from control values were demonstrable, however, when clots formed in the presence of high ionic strength (micro = 0.30) or of monoclonal antibeta(15-42)IgG. The latter also prolonged the thrombin clotting time approximately three-fold. Additionally, thrombin-induced clots displayed decreased elastic moduli, with G' values of clots induced by 0.3, 0.7 and 3 thrombin U/ml corresponding to 11, 34, and 45% of control values. The results are consistent with increased des-BB fibrin monomer generation preceding and during polymerization. This limited the inherent gelation delay, decreased the clot stiffness, and enabled a progressively coarser, rather than finer, network induced by increasing thrombin concentrations. We hypothesize that during normal polymerization these constitutive des-BB fibrin monomer properties attenuate their des-AA fibrin counterparts.  相似文献   

13.
Mullin JL  Brennan SO  Ganly PS  George PM 《Blood》2002,99(10):3597-3601
We present a novel gamma-chain dysfibrinogen that was discovered in a 32-year-old asymptomatic man admitted to the hospital after a car accident. He presented with a low fibrinogen concentration, 0.5 mg/mL, and a prolonged thrombin clotting time, 58 seconds. Analysis of purified fibrinogen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a gamma-chain variant with an apparently higher molecular weight. Isoelectric focusing (IEF) demonstrated an anodal shift in the banding pattern of the chains and electrospray ionization mass spectrometry (ESIMS) showed a 27-Da increase in the average mass of the unresolved variant and normal gamma chains. DNA sequence analysis showed a heterozygous mutation of GGC (Gly)-->GAC (Asp) at codon 309 of the gamma chain gene. This Gly--> Asp substitution was consistent with the charge change shown by IEF as well as the mass change identified by ESIMS. Functional analysis revealed that thrombin-catalyzed polymerization occurred with a longer lag time, lower rate of lateral aggregation, and similar final turbidity compared to normal and that factor XIII cross-linking was normal. The polymerization results suggest that residue gamma309 is necessary for proper alignment of fibrinogen molecules, specifically in protofibril formation and D:D interactions. gammaGly309 is highly conserved and x-ray structures support the conclusion that the lack of a side chain at this position helps facilitate the close contact between abutting gammaD domains of condensing fibrin monomers during polymerization.  相似文献   

14.
Release of fibrinopeptide B from fibrinogen by copperhead venom procoagulant enzyme results in a form of fibrin (beta-fibrin) with weaker self-aggregation characteristics than the normal product (alpha beta-fibrin) produced by release of fibrinopeptides A (FPA) and B (FPB) by thrombin. We investigated the ultrastructure of these two types of fibrin as well as that of beta-fibrin prepared from fibrinogen Metz (A alpha 16 Arg----Cys), a homozygous dysfibrinogenemic mutant that does not release FPA. At 14 degrees C and physiologic solvent conditions (0.15 mol/L of NaCl, 0.015 mol/L of Tris buffer pH 7.4), the turbidity (350 nm) of rapidly polymerizing alpha beta-fibrin (thrombin 1 to 2 U/mL) plateaued in less than 6 min and formed a "coarse" matrix consisting of anastomosing fiber bundles (mean diameter 92 nm). More slowly polymerizing alpha beta-fibrin (thrombin 0.01 and 0.001 U/mL) surpassed this turbidity after greater than or equal to 60 minutes and concomitantly developed a network of thicker fiber bundles (mean diameters 118 and 186 nm, respectively). Such matrices also contained networks of highly branched, twisting, "fine" fibrils (fiber diameters 7 to 30 nm) that are usually characteristic of matrices formed at high ionic strength and pH. Slowly polymerizing beta-fibrin, like slowly polymerizing alpha beta-fibrin, displayed considerable quantities of fine matrix in addition to an underlying thick cable network (mean fiber diameter 135 nm), whereas rapidly polymerizing beta-fibrin monomer was comprised almost exclusively of wide, poorly anastomosed, striated cables (mean diameter 212 nm). Metz beta-fibrin clots were more fragile than those of normal beta-fibrin and were comprised almost entirely of a fine network. Metz fibrin could be induced, however, to form thick fiber bundles (mean diameter 76 nm) in the presence of albumin at a concentration (500 mumol/L) in the physiologic range and resembled a Metz plasma fibrin clot in that regard. The diminished capacity of Metz beta-fibrin to form thick fiber bundles may be due to impaired use or occupancy of a polymerization site exposed by FPB release. Our results indicate that twisting fibrils are an inherent structural feature of all forms of assembling fibrin, and suggest that mature beta-fibrin or alpha beta-fibrin clots develop from networks of thin fibrils that have the ability to coalesce to form thicker fiber bundles.  相似文献   

15.
An abnormal fibrinogen was identified in a 10-year-old male with a mild bleeding tendency; several years later, the patient developed a thrombotic event. Fibrin polymerization of plasma from the propositus and his mother, as measured by turbidity, was impaired. Plasmin digestion of fibrinogen and thrombin bound to the clot were both normal. The structure of clots from both plasma and purified fibrinogen was characterized by permeability, scanning electron microscopy and rheological measurements. Permeability of patients' clots was abnormal, although some measurements were not reliable because the clots were not mechanically stable. Consistent with these results, the stiffness of patients' clots was decreased approximately two-fold. Electron microscopy revealed that the patients' clots were very heterogeneous in structure. DNA sequencing of the propositus and his mother revealed a new unique point mutation that gives rise to a fibrinogen molecule with a missing amino acid residue at Aalpha-Asn 80. This new mutation, which would disrupt the alpha-helical coiled-coil structure, emphasizes the importance of this part of the molecule for fibrin polymerization and clot structure. This abnormal fibrinogen has been named fibrinogen Caracas VI.  相似文献   

16.
Fibrinogen Caracas I is a dysfibrinogenemia with a mild bleeding tendency; a novel nonsense mutation, in the gene coding the Aalpha-chain, identified in this study as G4731T, giving rise to a new stop codon at Aalpha-Glu 467. Fibrinogen from two family members, the mother and sister of the propositus, both heterozygous for the mutation were studied, analyzing clots made from both plasma and purified fibrinogen. Clot structure and properties were characterized by turbidity, permeation, scanning electron microscopy and rheological studies. Permeation through Caracas I plasma clots was decreased, consistent with the decreased final turbidity. As shown by scanning electron microscopy, plasma clots from the patients were composed of very thin fibers, with increased fibrin density and reduced pore size. Viscoelastic measurements revealed that fibrinogen Caracas I plasma clots were much stiffer and less subject to compaction. These results demonstrate a key role of the carboxyl-terminal alpha chains of fibrin in lateral aggregation during polymerization and reinforce the utility of studying plasma clots. It is important to point out that the biophysical studies with fibrinogen purified by two different methods yielded contradictory results, which can be accounted for by selective purification of certain molecular species as seen by two-dimensional electrophoresis.  相似文献   

17.
Thrombin-induced cleavage of fibrinopeptide A is the initial step in the conversion of fibrinogen to fibrin. Three dysfunctional fibrinogen variants are described with an amino acid substitution at position 16 of the Aalpha-chain: the fibrinogen variants Bern IV and Milano XI having an Arg-->His substitution and the variant Bern V having an Arg-->Cys substitution. Routine coagulation studies revealed prolonged plasma thrombin and reptilase clotting times in all patients, and a discrepancy between the plasma levels of fibrinogen determined by the clotting assay and electroimmunoassay. The defect was localized by high-performance liquid chromatography analysis of fibrinopeptide release and confirmed by polymerase chain reaction and sequencing of exon 2 of the Aalpha-chain. Immunoblotting analysis with a rabbit antiserum against human serum albumin indicated that albumin was linked to the additional sulfhydryl group of fibrinogen Bern V. The assay of tissue-plasminogen-activator-induced plasmic degradation revealed that the fibrinolysis of fibrin Bern V was delayed, whereas fibrin Bern IV was digested in the same way as normal fibrin.  相似文献   

18.
Hypodysfibrinogenemia is the least frequently reported congenital fibrinogen disorder, characterized by both quantity and quality defects of fibrinogen. In this study, we investigated the molecular basis of hypodysfibrinogenemia in a Chinese family. Functional fibrinogen was measured by Clauss method, and the antigenic fibrinogen was measured by immunoturbidimetry assay. All the exons and exon–intron boundaries of fibrinogen genes (FGA, FGB and FGG) were analysed by direct DNA sequencing. To further evaluate its molecular and functional characterizations, fibrinogen was purified from the plasma of propositus, then SDS-PAGE, fibrin polymerization, clot lysis, and electron microscopy scanning were all performed. The propositus showed a slight decrease of immunologic fibrinogen (1.52 g/L) but dramatically reduced functional fibrinogen (0.3 g/L). DNA sequencing revealed a novel heterozygous CCTTTGATG deletion in the exon 8 of FGG, leading to the deletion of Ala289, Phe290, and Asp291 in fibrinogen γ-chain. The polymerization of the fibrinogen from the propositus was markedly impaired, with prolonged lag period and decreased final turbidity. The fibrinogen clottability showed a reduced fraction of participating clot formation. While the clot lysis showed normal. Scanning electron microscopy revealed that the fibers of the propositus were thicker than normal, with larger pores and curlier meshworks. We conclude that γAla289_Asp291del is responsible for the hypodysfibrinogenemia in this case.  相似文献   

19.
Congenital homozygous dysfibrinogenemia was diagnosed in a man with a history of 2 thrombotic strokes before age 30. His hemostatic profile was characterized by a dramatically prolonged plasma thrombin clotting time, and no clotting was observed with reptilase. Complete clotting of the abnormal fibrinogen occurred after a prolonged incubation of plasma with thrombin. The release of fibrinopeptides A and B by thrombin and of fibrinopeptide A by reptilase were both normal. Thrombin-induced fibrin polymerization was impaired, and no polymerization occurred with reptilase. The polymerization defect was characterized by a defective site "a," resulting in an absence of interaction between sites A and a, indicated by the lack of fragment D(1) (or fibrinogen) binding to normal fibrin monomers depleted in fibrinopeptide A only (Des-AA fm). By SDS-PAGE, the defect was detected on the gamma-chain and in its fragment D(1). The molecular defect determined by analysis of genomic DNA showed a single base change (A-->T) in exon VIII of the gamma-chain. The resulting change in the amino acid structure is gamma 330 aspartic acid (GAT) --> valine (GTT). It is concluded that the residue gamma-Asp(330) is essential for the normal functioning of the polymerization site a on the fibrinogen gamma-chain.  相似文献   

20.
Fibrinogen BbetaArg448Lys is a common polymorphism, positioned within the carboxyl terminus of the Bbeta-chain of the molecule. Studies suggest that it is associated with severity of coronary artery disease and development of stroke. The effects of the amino acid substitution on clot structure remains controversial, and the aim of this study was to investigate the effect(s) of this polymorphism on fibrin clot structure using recombinant techniques. Permeation, turbidity, and scanning electron microscopy showed that recombinant Lys448 fibrin had a significantly more compact structure, with thin fibers and small pores, compared with Arg448. Clot stiffness, measured by means of a novel method using magnetic tweezers, was significantly higher for the Lys448 compared with the Arg448 variant. Clots made from recombinant protein variants had similar lysis rates outside the plasma environment, but when added to fibrinogen-depleted plasma, the fibrinolysis rates for Lys448 were significantly slower compared with Arg448. This study demonstrates for the first time that clots made from recombinant BbetaLys448 fibrinogen are characterized by thin fibers and small pores, show increased stiffness, and appear more resistant to fibrinolysis. Fibrinogen BbetaArg448Lys is a primary example of common genetic variation with a significant phenotypic effect at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号