首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalis or its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8 mRNA levels in epithelial cells following sequential challenge with P. gingivalis and F. nucleatum and vice versa were approximately identical and were lower than those following F. nucleatum challenge alone and higher than control levels or those following P. gingivalis challenge alone. Thus, together with the protease effect, P. gingivalis possesses a powerful strategy to ensure the down-regulation of IL-8 and ICAM-1.  相似文献   

2.
Periodontal diseases are inflammatory disorders caused by microorganisms of dental plaque that colonize the gingival sulcus and, subsequently, the periodontal pocket. As in other mucosal infections, the host response to plaque bacteria is characterized by an influx of polymorphonuclear leukocytes (PMNs) to the gingival crevice. Neutrophil migration through the epithelial lining of the gingival pocket is thought to be the first line of defense against plaque bacteria. In order to model this phenomenon in vitro, we used the oral epithelial cell line KB and human PMNs in the Transwell system and examined the impact of Porphyromonas gingivalis-epithelial cell interactions on subsequent PMN transepithelial migration. We demonstrate here that P. gingivalis infection of oral epithelial cells failed to trigger transmigration of PMNs. Furthermore, it significantly inhibited neutrophil transmigration actively induced by stimuli such as N-formylmethionyl leucyl phenylalanine, interleukin-8 (IL-8), and the intestinal pathogen enterotoxigenic Escherichia coli. The ability of P. gingivalis to block PMN transmigration was strongly positively correlated with the ability to adhere to and invade epithelial cells. In addition, P. gingivalis attenuated the production of IL-8 and the expression of intercellular adhesion molecule 1 by epithelial cells. The ability of P. gingivalis to block neutrophil migration across an intact epithelial barrier may critically impair the potential of the host to confront the bacterial challenge and thus may play an important role in the pathogenesis of periodontal disease.  相似文献   

3.
IL-8 mRNA in human gingival epithelial cells (HGECs) is up-regulated by Fusobacterium nucleatum, and up-/down-regulated by Porphyromonas gingivalis in a complex interaction in the early stages (< or = 4 h) after infection. The mechanisms involved in this regulation in response to F. nucleatum and/or P. gingivalis infection, and identification of co-regulated cytokine genes, are the focus of this investigation. Heat, formalin or protease treatment of F. nucleatum cells attenuated the IL-8 mRNA up-regulation. NF-kappaB, mitogen-activated protein kinase (MAPK) p38 and MAPK kinase/extracellular signal-regulated kinase (MEK/ERK) pathways were involved in IL-8 mRNA induction by F. nucleatum. Pretreatment of P. gingivalis with heat, formalin or protease enhanced IL-8 mRNA induction. NF-kappaB, MARK p38, and MEK/ERK pathways were also involved in this induction. In contrast, down-regulation of IL-8 mRNA by P. gingivalis involved MEK/ERK, but not NF-kappaB or MAPK p38 pathways. cDNA arrays analysis revealed that mRNA down-regulation by P. gingivalis is a specific reaction that only a number of genes, e.g. IL-1beta, IL-8, macrophage inflammatory protein-2alpha, and migration inhibitory factor-related protein-14, are affected based on examination of 278 cytokine/receptor genes. These data indicate that F. nucleatum and P. gingivalis trigger specific and differential gene regulation pathways in HGECs.  相似文献   

4.
In this study, we used a mouse model to examine the role of the adaptive immune response in alveolar bone loss induced by oral infection with the human gram-negative anaerobic bacterium Porphyromonas gingivalis. Severe combined immunodeficient mice, which lack B and T lymphocytes, exhibited considerably less bone loss than did immunocompetent mice after oral infection, suggesting that lymphocytes contribute to this process. Bone loss after oral infection was decreased in mice deficient in major histocompatibility complex (MHC) class II-responsive CD4(+) T cells, but no change in bone loss was observed in mice deficient in MHC class I-responsive CD8(+) T cells or NK1(+) T cells. Mice lacking the cytokine gamma interferon or interleukin-6 also demonstrated decreased bone loss. These results suggest that the adaptive immune response, and in particular CD4(+) T cells and the proinflammatory cytokines that they secrete, are important effectors of bone loss consequent to P. gingivalis oral infection. The studies also reinforce the utility of the mouse oral infection model in dissecting the pathobiology of periodontal disease.  相似文献   

5.
6.
ABSTRACT: BACKGROUND: Periodontal diseases are bacterial infections leading to chronic inflammation disorders that are frequently observed in adults. In the present study, we evaluated the effect of auraptene and lacinartin, two natural oxyprenylated coumarins, on the growth, adherence properties, and collagenase activity of Porphyromonas gingivalis. We also investigated the capacity of these compounds to reduce cytokine and matrix metalloproteinase (MMP) secretion by lipopolysaccharide (LPS)-stimulated macrophages and to inhibit MMP-9 activity. METHODS: Microplate dilution assays were performed to determine the effect of auraptene and lacinartin on P. gingivalis growth as well as biofilm formation stained with crystal violet. Adhesion of FITC-labeled P. gingivalis to oral epithelial cells was monitored by fluorometry. The effects of auraptene and lacinartin on LPS-induced cytokine and MMP secretion by macrophages were determined by immunological assays. Fluorogenic assays were used to evaluate the capacity of the two coumarins to inhibit the activity of MMP-9 and P. gingivalis collagenase. RESULTS: Only lacinartin significantly inhibited P. gingivalis growth in a complex culture medium. However, under iron-limiting conditions, auraptene and lacinartin both inhibited the growth of P. gingivalis. Lacinartin also inhibited biofilm formation by P. gingivalis and promoted biofilm desorption. Both compounds prevented the adherence of P. gingivalis to oral epithelial cells, dose-dependently reduced the secretion of cytokines (IL-8 and TNF-alpha) and MMP-8 and MMP-9 by LPS-stimulated macrophages, and inhibited MMP-9 activity. Lacinartin also inhibited P. gingivalis collagenase activity. CONCLUSIONS: By acting on multiple targets, including pathogenic bacteria, tissue-destructive enzymes, and the host inflammatory response, auraptene and lacinartin may be promising natural compounds for preventing and treating periodontal diseases.  相似文献   

7.
Porphyromonas gingivalis invasion of gingival epithelial cells.   总被引:9,自引:5,他引:9       下载免费PDF全文
Porphyromonas gingivalis, a periodontal pathogen, can invade primary cultures of gingival epithelial cells. Optimal invasion occurred at a relatively low multiplicity of infection (i.e., 100) and demonstrated saturation at a higher multiplicity of infection. Following the lag phase, during which bacteria invaded poorly, invasion was independent of growth phase. P. gingivalis was capable of replicating within the epithelial cells. Invasion was an active process requiring both bacterial and epithelial cell energy production. Invasion was sensitive to inhibitors of microfilaments and microtubules, demonstrating that epithelial cell cytoskeletal rearrangements are involved in bacterial entry. P. gingivalis, but not epithelial cell, protein synthesis was necessary for invasion. Invasion within the epithelial cells was not blocked by inhibitors of protein kinase activity. Invasion was inhibited by protease inhibitors, suggesting that P. gingivalis proteases may be involved in the invasion process. Low-passage clinical isolates of P. gingivalis invaded with higher efficiency than the type strain. Serum inhibited invasion of the type strain but had no effect on the invasion of a clinical isolate. Invasion of gingival epithelial cells by P. gingivalis may contribute to the pathology of periodontal diseases.  相似文献   

8.
Porphyromonas gingivalis (P. gingivalis), an important periodontal pathogen in adult chronic periodontitis, has been reported to colocalize in human atheromatous lesions. We have studied the phagocytosis and survival of P. gingivalis in human monocytes, together with the cellular responses of infected human monocytes. Human monocytes were cocultured with P. gingivalis and the external bacteria were killed with metronidazole and gentamycin. Localization of P. gingivalis in cells was studied by transmission electron microscopy (TEM). The survival of P. gingivalis was determined by lysing the monocytes and plating on blood agar under anaerobic conditions. Interleukin-1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were determined using specific enzyme-linked immunosorbent assays (ELISAs) kits. The transwell chamber system was used to investigate the chemotactic response of the infected cells. TEM showed that P. gingivalis organisms were localized within the autophagosome-like structure of monocytes. No significant difference on the survival of P. gingivalis at 0, 4 and 8 h after infection was found. IL-1beta and TNF-alpha were present in the cell culture media in response to bacterial challenge. The infected monocytes showed a normal chemotactic response to monocyte chemotactic protein-1 (MCP-1). The number of monocyte cells migrating through membrane in the presence and absence of P. gingivalis were 18.64 +/- 2.33 x 10(4) cells and 19.11 +/- 1.76 x 10(4) cells respectively. The number of viable P. gingivalis per monocyte following translocation in response to the chemotactic gradient was 5.83 +/- 1.45 x 10(-3) CFU/cell. The results indicate that P. gingivalis can stimulate cytokine production and survive in monocytes without affecting cell migration.  相似文献   

9.
Porphyromonas gingivalis, is a Gram-negative obligate oral anaerobic bacterium highly implicated in periodontal disease, the most prevalent chronic inflammatory disease, but recent evidence also indicates a potential contribution to systemic inflammation. The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1) is a cell surface receptor of the immunoglobulin superfamily, which, along with its adaptor signalling molecule DAP12, is involved in immune response to bacterial and fungal infections, particularly by amplifying the production of pro-inflammatory cytokines by the host. The aim of the present study was to investigate the effect of P. gingivalis on the expression of the TREM-1/DAP12 pathway, as well as its engagement in pro-inflammatory cytokine production, by the myelomonocytic cell line MonoMac-6. P. gingivalis enhanced TREM-1 gene expression by the cells, concomitantly to an increase of soluble TREM-1 secretion. Engagement of TREM-1, by introducing anti-TREM-1 to the experimental system, resulted in further potentiation of the pro-inflammatory responses to P. gingivalis, as evaluated by a further enhancement of interleukin (IL)-1β and IL-6 secretion. On the contrary, the synthetic TREM-1 antagonist LP17 reduced the P. gingivalis-induced IL-1β and IL-6 secretion by approximately 50%. In conclusion, the putative periodontal pathogen P. gingivalis can positively regulate the expression of the TREM-1/DAP12 pathway in monocytic cells. Moreover, engagement of TREM-1 can further potentiate the pro-inflammatory responses to P. gingivalis infection. This effect may contribute not only to the pathogenesis of inflammatory periodontal disease, but also to the enhancement of systemic inflammation.  相似文献   

10.
Zhao JJ  Feng XP  Zhang XL  Le KY 《Inflammation》2012,35(4):1330-1337
Porphyromonas gingivalis alters cytokine expression in gingival epithelial cells, stimulating inflammatory responses that may lead to periodontal disease. This study explored the effect of Lactobacillus acidophilus on the specific expressions of the interleukins (ILs) IL1B, IL6, and IL8 induced by the pathogen. Human gingival epithelial cells were co-cultured with P. gingivalis, L. acidophilus, or L. acidophilus + P. gingivalis; the control group consisted of the cells alone. Protein and gene expression levels of the ILs were detected using ELISA and qRT-PCR, respectively. The supernatant from the P. gingivalis group held significantly higher protein and mRNA levels of IL1B, IL6, and IL8, compared to the control group. In the mixed bacterial group (L. acidophilus + P. gingivalis), the levels of all three ILs decreased with increasing concentrations of L. acidophilus and were significantly different from the P. gingivalis group. This suggests that in gingival cells, L. acidophilus offsets the P. gingivalis-induced secretion of these ILs in a dose-dependent manner.  相似文献   

11.
Porphyromonas gingivalis fimbriae are classified into six types (types I to V and Ib) based on the fimA genes encoding FimA (a subunit of fimbriae), and they play a critical role in bacterial interactions with host tissues. In this study, we compared the efficiencies of P. gingivalis strains with distinct types of fimbriae for invasion of epithelial cells and for degradation of cellular focal adhesion components, paxillin, and focal adhesion kinase (FAK). Six representative strains with the different types of fimbriae were tested, and P. gingivalis with type II fimbriae (type II P. gingivalis) adhered to and invaded epithelial cells at significantly greater levels than the other strains. There were negligible differences in gingipain activities among the six strains; however, type II P. gingivalis apparently degraded intracellular paxillin in association with a loss of phosphorylation 30 min after infection. Degradation was blocked with cytochalasin D or in mutants with fimA disrupted. Paxillin was degraded by the mutant with Lys-gingipain disrupted, and this degradation was prevented by inhibition of Arg-gingipain activity by Nalpha-p-tosyl-l-lysine chloromethyl ketone. FAK was also degraded by type II P. gingivalis. Cellular focal adhesions with green fluorescent protein-paxillin macroaggregates were clearly destroyed, and this was associated with cellular morphological changes and microtubule disassembly. In an in vitro wound closure assay, type II P. gingivalis significantly inhibited cellular migration and proliferation compared to the cellular migration and proliferation observed with the other types. These results suggest that type II P. gingivalis efficiently invades epithelial cells and degrades focal adhesion components with Arg-gingipain, which results in cellular impairment during wound healing and periodontal tissue regeneration.  相似文献   

12.
Y Asai  Y Ohyama  K Gen  T Ogawa 《Infection and immunity》2001,69(12):7387-7395
Gingival epithelial cells are a central component of the barrier between oral microflora and internal tissues. Host responses to periodontopathic bacteria and surface components containing fimbriae are thought to be important in the development and progression of periodontal diseases. To elucidate this mechanism, we established immortalized human gingival epithelial cells (HGEC) that were transfected with human papillomavirus. HGEC predominantly expressed Toll-like receptor (TLR) 2, but not TLR4 or CD14. They also induced interleukin-8 (IL-8) production when stimulated with Porphyromonas gingivalis fimbriae and Staphylococcus aureus peptidoglycan, but not Escherichia coli-type synthetic lipid A. Furthermore, an active synthetic peptide composed of residues 69 to 73 (ALTTE) of the fimbrial subunit protein, derived from P. gingivalis and similar to a common component of cell wall peptidoglycans in parasitic bacteria, N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP), significantly induced IL-8 production and NF-kappaB activation in HGEC, and these cytokine-producing activities were augmented by a complex of soluble CD14 and lipopolysaccharide-binding protein (LBP). IL-8 production in HGEC stimulated with these bacterial components was clearly inhibited by mouse monoclonal antibody to human TLR2. These findings suggest that P. gingivalis fimbrial protein and its active peptide are capable of activating HGEC through TLR2.  相似文献   

13.
M J Duncan  S Nakao  Z Skobe    H Xie 《Infection and immunity》1993,61(5):2260-2265
The invasion of gingival epithelial cells by certain pathogenic periodontal bacteria may account for their presence within diseased gingival tissue. To dissect the initial steps of a potential invasion pathway for the periodontal pathogen Porphyromonas gingivalis, laboratory and clinical bacterial isolates were tested for their interactions with a human oral epithelial cell line (KB). Several P. gingivalis strains immobilized on filters could bind oral epithelial cells. Quantitative adherence assays supported these results. The invasion of epithelial cells by P. gingivalis 33277 was measured by assay and confirmed by transmission electron microscopy. These preliminary results demonstrate that certain P. gingivalis strains are capable of internalization by human oral epithelial cells in vitro.  相似文献   

14.
15.
Pretreatment of human peripheral blood monocytes with a very low concentration (0.1 ng/ml) of Porphyromonas gingivalis lipopolysaccharides (LPS) resulted in a significant decrease of interleukin-6 (IL-6) production, but not IL-8 production, by restimulation of a high concentration (1 microg/ml) of the same LPS. In contrast, the same pretreatment with Escherichia coli LPS resulted in the enhanced production of both IL-6 and IL-8 after restimulation. The selective induction by P. gingivalis LPS tolerance of IL-6 production developed in a time-dependent manner during the primary culture. P. gingivalis LPS-pretreated cells were also refractory to a high-dose E. coli LPS restimulation in terms of IL-6 production. The expression of IL-6 mRNA decreased 10 h after restimulation of P. gingivalis LPS-pretreated monocytes. Furthermore, an up-regulation of anti-inflammatory cytokine IL-10 upon a second high-dose LPS rechallenge occurred at the same time point in the pretreated cells. We studied the role of IL-10 in the process of IL-6 down-regulation. Neutralization by an anti-IL-10 polyclonal antibody prevented IL-6 down-regulation in P. gingivalis LPS-pretreated monocytes, whereas IL-8 production was not affected. Addition of exogenous IL-10 during the high-dose LPS stimulation of untreated cells substituted for the LPS pretreatment and resulted in the inhibition of IL-6 production in a dose-dependent manner. A higher dose of IL-10 was required to suppress IL-8 synthesis from monocytes. Our data suggest that IL-10 mediates IL-6 down-regulation in P. gingivalis LPS-tolerant monocytes in an autocrine manner.  相似文献   

16.
Porphyromonas gingivalis, a gram-negative, black-pigmented anaerobe, is among the microorganisms implicated in the etiology of adult periodontal disease. This bacterium possesses a number of factors, including hemagglutinins, of potential importance in virulence. Several hemagglutinin genes have been identified, cloned, and expressed in Escherichia coli. The purpose of this study was to characterize host responses to purified recombinant hemagglutinin B (rHag B), using the conventional Fischer rat as the experimental animal model. The effectiveness of immunization with rHag B on protection against experimental periodontal bone loss following infection with P. gingivalis was also evaluated. Groups of rats were immunized by the subcutaneous route with rHag B in complete Freund's adjuvant, immunized with rHag B and orally infected with P. gingivalis, nonimmunized and noninfected, or orally infected with P. gingivalis only. Serum and saliva samples were collected throughout the experiment and evaluated for serum immunoglobulin G (IgG) and IgM and salivary IgA antibody activity by enzyme-linked immunosorbent assay. No salivary IgA anti-Hag B activity was detected in the various groups of rats. A slight serum IgM response similar to that seen in preimmune samples was observed. Serum IgG antibody activity to Hag B was detected only in samples from rats immunized with rHag B. This response was primarily of the IgG1 and IgG2a subclasses, followed by IgG2b and low levels of IgG2c. Supernatants from rHag B-stimulated splenic lymphoid cell cultures from immunized rats contained high levels of gamma interferon, followed by interleukin-2 (IL-2), IL-10, and then IL-4. These results are consistent with the induction of T helper type 1 (Th1)- and Th2-like responses. Western blot analysis of sera derived from rHag B-immunized rats reacted with trichloroacetic acid (TCA) precipitates of P. gingivalis 33277, 381, A7A1-28, and W50, revealing a 50-kDa band reflective of Hag B. However, sera derived from rats immunized with P. gingivalis whole cells or from rats infected with P. gingivalis only did not react with rHag B but did react with TCA precipitates of P. gingivalis strains. Finally, radiographic measurements of periodontal bone loss indicated that rats immunized with rHag B had less bone loss than those infected with P. gingivalis only. These results demonstrate the effectiveness of purified rHag B in inducing a protective immune response and support the potential usefulness of this component of P. gingivalis in the development of a vaccine against adult periodontitis.  相似文献   

17.
Calprotectin, an S100 calcium-binding protein with broad-spectrum antimicrobial activity in vitro, is expressed in neutrophils, monocytes, and gingival keratinocytes. In periodontitis, calprotectin appears upregulated and is detected at higher levels in gingival crevicular fluid and tissue specimens. How calprotectin contributes to the pathogenesis of periodontal diseases is unknown. To isolate the effects of calprotectin, a calprotectin-negative oral epithelial cell line was transfected with calprotectin genes to enable expression. Porphyromonas gingivalis was permitted to bind and invade transfected cells expressing calprotectin and sham transfectants. Rates of invasion into both cell lines were compared using the antibiotic protection assay. Transfected cells expressing calprotectin showed 40 to 50% fewer internalized P. gingivalis than sham transfectants. Similarly, binding to calprotectin expressing cells was reduced approximately twofold at all time points (15, 30, 45, and 60 min) as estimated by immunofluorescence analysis. Independent of invasion, however, prolonged exposure to P. gingivalis induced epithelial cell rounding and detachment from the substratum. These morphological changes were delayed, however, in cells expressing calprotectin. Using P. gingivalis protease-deficient mutants, we found that Arg-gingipain and Lys-gingipain contributed to epithelial cell rounding and detachment. In conclusion, expression of calprotectin appears to protect epithelial cells in culture against binding and invasion by P. gingivalis. In addition, cells expressing calprotectin are more resistant to detachment mediated by Arg-gingipain and Lys-gingipain. In periodontal disease, calprotectin may augment both the barrier protection and innate immune functions of the gingival epithelium to promote resistance to P. gingivalis infection.  相似文献   

18.
19.
Periodontitis is characterized by tissue destruction and bone loss mainly due to inflammatory responses after bacterial challenge of the gingiva. Gingiva is supplied with lymphatics that drain interstitial fluid and transport immune cells to the lymph nodes for antigen presentation; yet, the role of lymphatics in periodontal disease development is unknown. To investigate the lymphatic function after periodontal infection, we used K14-VEGF receptor 3-Ig (K14) mice that lack lymphatics in gingiva. Mice were orally infected with human Porphyromonas gingivalis and observed for 42 days. The infected K14 mice developed significantly more bone loss than the wild-type mice, and were associated with an increased number of macrophages and major histocompatibility complex class II antigen-presenting cells in the bone resorptional areas. The infected transgenic mice expressed a significant higher periodontal level of several proinflammatory cytokines, whereas the plasma level of P. gingivalis IgG was significantly lower than in the wild-type mice. No differences were found in immune cell distribution in draining lymph nodes between the strains. Our results show that a strong periodontal inflammatory response and a weakened systemic humoral B-cell response took place in K14 mice after infection. We conclude that gingival lymphatics protect against P. gingivalis-induced periodontitis, and we speculate that they are critical in the protection by clearance of infection and by promotion of humoral immune responses.  相似文献   

20.
Porphyromonas gingivalis FDC381 replication and persistence within KB epithelial cells in vitro were studied by means of an antibiotic protection assay and electron microscopy. Intracellular counts decreased during the first 24 h; showed a threefold increase during the second day, indicating intracellular multiplication; and after 8 days declined to levels approximating 40% of the initial invasion. The ability of P. gingivalis to persist and multiply within epithelial cells may constitute a pathogenic mechanism in periodontal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号