首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
BACKGROUND: MRL-MPJFaslpr (MRL/lpr) mice spontaneously develop lupus-like disease characterized by immune complex glomerulonephritis and overproduction of nitric oxide (NO). Blocking NO production pharmacologically by a non-specific nitric oxide synthase (NOS) inhibitor ameliorated renal disease in MRL/lpr mice while genetically deficient inducible NOS (iNOS) mice developed proliferative glomerulonephritis similar to wild-type controls.METHODS: To clarify the role of iNOS in the pathogenesis of nephritis in MRL/lpr mice, we treated mice with two different NOS inhibitors. Either NG-monomethyl-l-arginine (L-NMMA), a nonspecific NOS inhibitor, or l-N6-(1-iminoethyl)lysine (L-NIL), an iNOS specific inhibitor, was administered in the drinking water from 10 through 22 weeks of age with disease progression monitored over time. Control mice received water alone.RESULTS: Both L-NMMA and L-NIL blocked NO production effectively in MRL/lpr mice. As expected, neither L-NNMA nor L-NIL had an effect on antibody production, immune complex deposition or complement activation. Although both NOS inhibitors decreased protein excretion, L-NMMA was more effective than L-NIL. Pathologic renal disease was significantly decreased at 19 weeks in both treatment groups. At 22 weeks the L-NIL treated mice, but not the L-NMMA mice, had significantly reduced renal disease scores compared to controls.CONCLUSION: These results indicate that specific inhibition of iNOS blocks the development of pathologic renal disease in MRL/lpr mice.  相似文献   

2.
NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thy1 glomerulonephritis. BACKGROUND: L-Arginine plays a complex role in renal matrix expansion, involving endogenous metabolism into nitric oxide (NO), polyamines, L-proline and agmatine. Supplementing dietary L-arginine intake has been shown to limit transforming growth factor (TGF)-beta 1 overproduction and matrix accumulation in rats with induced anti-thy1 glomerulonephritis (GN). The present study tests the hypothesis that this beneficial effect on in vivo TGF-beta overexpression is mediated via the generation of NO. METHODS: One day after induction of anti-thy1 GN, male Wistar rats fed a normal protein diet were assigned to the following groups: (1) normal controls; (2) GN; (3) GN-Arg (plus 500 mg L-arginine/day); (4) GN-Arg-NAME [plus 500 mg L-arginine/day and 75 mg/L of the NO synthase inhibitor nitro-L-arginine-methyl ester (L-NAME) in the drinking water]; and (5) GN-Molsi (10 mg/day of the NO donor molsidomine). In protocol 1, treatment lasted until day 7, and in protocol 2, until day 12 after disease induction, respectively. Analysis included systolic blood pressure, a glomerular histologic matrix score, and the glomerular mRNA and protein expression of the key fibrogen TGF-beta1, the matrix protein fibronectin, and the protease inhibitor plasminogen activator inhibitor type 1 (PAI-1). RESULTS: Blood pressure was normal in untreated anti-thy1 animals and not significantly affected by any of the treatments. Compared to untreated nephritic rats, administration of both L-arginine and molsidomine reduced glomerular TGF-beta 1 overexpression significantly and to a similar degree in both protocols, while the beneficial effect of L-arginine was abolished by concomitant NO synthesis inhibition. Glomerular matrix accumulation, fibronectin and PAI-1 mRNA and protein expression closely followed the expression of TGF-beta 1. CONCLUSION: The present study shows that L-arginine's antifibrotic action in normotensive anti-thy1 GN is mainly mediated by endogenous production of NO. The data suggest that NO limits in vivo TGF-beta overexpression in a pressure-independent manner and that NO donors may be of benefit in the treatment of human fibrotic renal disease.  相似文献   

3.
Experimental studies have shown both therapeutic and detrimental consequences of modifying dietary L-arginine intake in renal diseases which likely reflect the complexity of L-arginine metabolism. L-Arginine intake is semi-essential and provides substrate for a number of L-arginine metabolites involved in renal pathology. Dietary L-arginine restriction has been identified as a key mediator of the beneficial effects of low protein diets on human renal fibrosis. Supplementing dietary L-arginine in renal diseases with increased iNOS expression appears to be detrimental and thus, may be harmful in immune-mediated human kidney disorders. Increasing L-arginine intake is beneficial in experimental models of hypertensive renal disease. Based upon available data, we believe additional questions must be answered experimentally, not only to prevent an adverse outcome in humans, but to enhance our chances of human trials which will result in substantially better amelioration of disease than currently available.  相似文献   

4.
5.
BACKGROUND: Mesangial cell lysis in the antithymocyte serum (ATS)-induced model of glomerulonephritis is dependent on the generation of cytotoxic nitric oxide (NO) through transient induction of NO synthase (iNOS). We hypothesized that increased availability of L-arginine (L-Arg) during mesangial cell lysis might provide iNOS with increased substrate leading to increased lysis, and that this increased lysis would be reflected in more severe fibrotic disease at day 6. METHODS: To ensure whole body equilibration with high L-Arg at the time of injury, rats were pretreated with 1% L-Arg in drinking water for one week prior to the administration of ATS. Animals were sacrificed six hours after ATS injection when previous experiments had indicated iNOS induction had occurred and at six days. At six hours, plasma was obtained for L-Arg levels and nitrite/nitrate (NOx) content. Renal tissues were taken for histological evaluation of glomerular cell counts, macrophage infiltration (ED-1), and iNOS expression. Glomeruli were isolated for detection of iNOS mRNA and placed in culture to study the dependence of NO production on L-Arg concentration. In rats sacrificed at six days, L-Arg supplementation was stopped 16 hours after ATS injection. Fibrotic disease was evaluated by urinary protein excretion, histological assessment of glomerular cell number, matrix accumulation, and production of transforming growth factor-beta1 and matrix components fibronectin and plasminogen activator inhibitor type-1 (PAI-1) by isolated glomeruli in culture. RESULTS: At six hours, the glomerular cell number was significantly reduced by ATS injection (P < 0.01) and further significantly (P < 0. 05) reduced by L-Arg feeding [normal control (NC) = 64.2 +/- 1, ATS = 53.4 +/- 0.7, ATS + L-Arg = 50.8 +/- 0.7]. Disease increased macrophage infiltration and iNOS protein and iNOS mRNA levels markedly (P < 0.01), whereas L-Arg feeding did not further increase these variables. Plasma L-Arg levels (nmol/ml) were reduced by disease (NC = 121 +/- 9, ATS = 84 +/- 13, P < 0.01) and elevated by L-Arg feeding (ATS + L-Arg = 166 +/- 12, P < 0.01). Plasma NOx was significantly increased by ATS and further increased by ATS + L-Arg (P < 0.05). Production of NOx by cultured glomeruli showed striking L-Arg concentration dependence in six hours but not in normal glomeruli. In the group sacrificed at day 6, day 2 proteinuria was higher in the ATS + L-Arg group compared with the ATS alone group (P < 0.05). Measures of fibrotic disease at day 6 all showed large increases over control with ATS alone (P < 0.01), and further small, but significant increases when L-Arg was combined with ATS (P < 0.05). CONCLUSIONS: The results indicate that if given during disease induction, L-Arg supplementation can enhance iNOS-dependent tissue injury by providing increased substrate. Although the increase in injury with L-Arg supplementation was small, it led to increased fibrosis at day 6. These data predict that in diseases with repeated iNOS-dependent tissue injury, L-Arg supplementation may produce cumulative increases in tissue fibrosis.  相似文献   

6.
7.
MRL/MpJ-Fas(lpr)/J (MRL/lpr) mice represent a well-established mouse model of human systemic lupus erythematosus. MRL/lpr mice homozygous for the spontaneous lymphoproliferation mutation (lpr) are characterized by systemic autoimmunity, massive lymphadenopathy associated with proliferation of aberrant T cells, splenomegaly, hypergammaglobulinemia, arthritis, and fatal immune complex-mediated glomerulonephritis. It was reported previously that steady-state mRNA levels for the chemokine (C-C motif) receptor 2 (Ccr2) continuously increase in kidneys of MRL/lpr mice. For examining the role of Ccr2 for development and progression of immune complex-mediated glomerulonephritis, Ccr2-deficient mice were generated and backcrossed onto the MRL/lpr genetic background. Ccr2-deficient MRL/lpr mice developed less lymphadenopathy, had less proteinuria, had reduced lesion scores, and had less infiltration by T cells and macrophages in the glomerular and tubulointerstitial compartment. Ccr2-deficient MRL/lpr mice survived significantly longer than MRL/lpr wild-type mice despite similar levels of circulating immunoglobulins and comparable immune complex depositions in the glomeruli of both groups. Anti-dsDNA antibody levels, however, were reduced in the absence of Ccr2. The frequency of CD8+ T cells in peripheral blood was significantly lower in Ccr2-deficient MRL/lpr mice. Thus Ccr2 deficiency influenced not only monocyte/macrophage and T cell infiltration in the kidney but also the systemic T cell response in MRL/lpr mice. These data suggest an important role for Ccr2 both in the general development of autoimmunity and in the renal involvement of the lupus-like disease. These results identify Ccr2 as an additional possible target for the treatment of lupus nephritis.  相似文献   

8.
BACKGROUND: ROP-Os/+ mice are born with oligosyndactyly and oligonephronia and develop renal dysfunction, which includes renal tubular epithelial cell (RTC) Fas-dependent apoptosis and tubular atrophy. MRL/lpr mice harbor a Fas-inactivating mutation and develop glomerulonephritis, whereas mice expressing lpr on a C3H background demonstrate no renal phenotype. We hypothesized that crossing ROP-Os/+ with CH3-lpr/lpr mice would rescue the Os/+ renal phenotype by reducing Fas-dependent RTC apoptosis. METHODS: ROP-Os/+ mice were intercrossed with C3H-lpr/lpr mice and F(2) generation animals were phenotyped by kidney weight, serum creatinine, and albuminuria. Kidney sections were scored for histopathology and apoptosis. Univariate and multivariate analyses were used to examine additive effects of Os and lpr on renal phenotype. RESULTS: By 16 weeks, F(2)Os/+ lpr/lpr mice developed significantly more albuminuria, glomerulosclerosis, and interstitial inflammation compared to Os/++/+ mice. Glomerular cell apoptosis was increased in Os/+ lpr/lpr compared to Os/++/+ mice, with no significant difference in RTC apoptosis. A statistically significant Os-lpr effect on renal phenotype was demonstrated by multivariate analysis, which exceeded the combined independent effects if Os and lpr, indicating a biologic interaction exists between Os and lpr. CONCLUSION: Os/+ mice with a superimposed lpr mutation displayed a more severe renal phenotype, rather than phenotype rescue, suggesting that Fas pathway activation is necessary to delete cells resulting from Os-dependent injury. We further propose that an Os-lpr gene interaction and/or mixed ROP-C3H genetic background regulated the renal phenotype, consistent with the concept that chronic renal disease pathogenesis reflects effects of multiple nephropathy susceptibility alleles.  相似文献   

9.
阻塞性黄疸时L-精氨酸对肾功能的保护作用   总被引:1,自引:0,他引:1  
目的:研究阻塞性黄疸(OJ)时,L-精氨酸(L-Arg)对肾功能的保护作用。方法:胆总管结扎大鼠30只,随机分成生理盐水对照(NS)组、L-精氨酸(L-Arg)组和L-硝基精氨酸(L-NNA)组,每组10只。胆总管结扎后第2天起分别腹腔注射1ml NS、1ml L-Arg(500mg/kg)、1ml L-NNA(10mg/kg),连用9d;假手术(SO)组用1ml NS腹腔注射。观察各组肾功能的变化,同时测定血和肾组织内皮素(ET)、一氧化氮(NO)水平、一氧化氮合酶(NOS)活性和丙二醛(MDA)的含量。并用图像分析检测ET1 mRNA和NOS mRNA表达的部位及量的变化。结果:用L-Arg后,血和肾组织NOS活性增加,肾组织ET1 mRNA表达减少,血和肾组织ET下降,NO升高;同时伴有内生肌酐清除率(Ccr)、肾皮质平均血流(RCBF)的升高,肾组织MDA含量降低。结论:L-Arg通过增强血和肾组织NOS活性来增加体内NO水平、抑制ET1 mRNA表达、降低体内ET水平,从而提高Ccr与RCBF,减轻阻塞性黄疸时的肾功能损伤。  相似文献   

10.
Complement receptor 1-related gene/protein y (Crry) in rodents is a potent membrane complement regulator that inhibits complement C3 activation by both classical and alternative pathways. To clarify the role of complement in lupus nephritis, MRL/lpr mice were given Crry as a recombinant protein (Crry-Ig) from 12 to 24 wk of age. Control groups were given saline or normal mouse IgG. Sera and urine were collected biweekly. Only 1 of 20 (5%) Crry-Ig-treated mice developed renal failure (BUN > 50 mg/dl) compared with 18 of 38 (47.4%) mice in control groups (P = 0.001). BUN levels at 24 wk were reduced from 68.8 +/- 9.7 mg/dl in control groups to 38.5 +/- 3.9 mg/dl in the Crry-Ig-treated group (P < 0.01). Urinary albumin excretion at 24 wk was also significantly reduced from 5.3 +/- 1.4 mg/mg creatinine in the control groups to 0.5 +/- 0.2 mg/mg creatinine in the Crry-Ig-treated group (P < 0.05). Of the histologic data at 24 wk, there was a significant reduction in scores for glomerulosclerosis and C3d, IgG, IgG3, and IgA staining intensity in glomeruli in complement-inhibited animals. Crry-Ig-treated animals were also protected from vasculitic lesions. Although there was no effect on relevant autoimmune manifestations such as anti-double stranded DNA titers or cryoglobulin IgG3 levels, circulating immune complex levels were markedly higher in complement-inhibited animals. Thus, inhibition of complement activation with Crry-Ig significantly reduces renal disease in MRL/lpr lupus mice. The data support the strategy of using recombinant complement C3 inhibitors to treat human lupus nephritis.  相似文献   

11.
BACKGROUND/AIMS: In addition to their lipid-lowering effects, HMG-CoA reductase inhibitors (statins) induce a variety of pleiotropic actions that have been recently studied in the area of cardiovascular and renal protection. In the present studies we sought to determine whether statins retain beneficial effects in the experimental model of NO deficiency achieved by chronic administration of a pressor dose of L-arginine analogue N-nitro-L-arginine-methyl ester (L-NAME). METHODS: To address this issue, blood pressure (BP), renal function (GFR), and albuminuria were determined in rats treated for 4 weeks with L-NAME, L-NAME + atorvastatin (ATO), and in untreated controls. In addition, renal cortical protein expression of caveolin 1 (CAV1), vascular endothelial growth factor (VEGF), and activity of RhoA were also determined. RESULTS: L-NAME administration resulted in sustained elevation of BP, decreased GFR, and in higher albuminuria as compared to control animals. Co-administration of ATO with L-NAME normalized albuminuria and prevented decreases in GFR in L-NAME rats without having an impact on pressor effects of L-NAME. CAV1 protein expression was similar in all groups of rats. In contrast, VEGF expression and RhoA activity was increased in L-NAME-treated animals, and normalized with co-administration of ATO. CONCLUSION: Treatment with ATO exerts early nephroprotective effects in the NO-deficient model of hypertension. These effects could be mediated by amelioration of VEGF expression and reduction of RhoA activity.  相似文献   

12.
13.
Introduction. Nitric oxide (NO) and peroxynitrite (OONO—) are implicated in the pathophysiology of renal ischemia/reperfusion (I/R). The aim of this study was to investigate and compare the efficiency of S-methylisothiourea (SMT), an iNOS inhibitor, and mercaptoethylguanidine (MEG), a scavenger of peroxynitrite, on renal dysfunction and injury induced by I/R of rat kidney. Materials and Methods. Thirty-two male Sprague-Dawley rats were divided into four groups: sham-operated, I/R, I/R+SMT, and I/R+MEG. Rats were given SMT (10 mg/kg ip) or MEG (10 mg/kg ip) 6 h prior to I/R and at the beginning of reperfusion. All rats except sham-operated underwent 60 min of bilateral renal ischemia followed by 6 h of reperfusion. After reperfusion, kidneys and blood were obtained for evaluation. Superoxide dismutase, glutathione peroxidase, malondialdehide, protein carbonyl content, and nitrite/nitrate level (NOx) were determined in the renal tissue. Serum creatinine (SCr), blood urea nitrogen (BUN), and aspartate aminotransferase (AST) were determined in the blood. Additionally, renal sections were used for histological grade of renal injury. Results. SMT and MEG significantly reduced the I/R-induced increases in SCr, BUN, and AST. Both SMT and MEG attenuated the tissue NOx levels, indicating reduced NO production. In addition, SMT and MEG markedly reduced elevated oxidative stress product, restored decreased antioxidant enzymes, and attenuated histological alterations. Interestingly, MEG exerted a greater renoprotective effect than SMT. Conclusions. These data support the finding that iNOS and peroxynitrite are involved in the renal I/R injury, and suggest that a scavenger of peroxynitrite might be more effective than iNOS inhibitors as a therapeutic intervention.  相似文献   

14.
BACKGROUND: Cyclosporin (CsA)-induced vascular dysfunction has been attributed to a diminished role of the nitric oxide (NO)/cGMP-mediated vasodilator mechanism. The present study was aimed at investigating whether L-arginine, the substrate of NO synthesis, ameliorates CsA-induced vascular dysfunction. METHODS: Male Sprague-Dawley rats were used throughout the study. The thoracic aorta was isolated from normal rats and acutely treated with CsA (10(-4) mol/l, 60 min) in vitro, or the aorta was taken from rats treated with CsA (25 mg/kg/day, i.m., 1 week). The vascular relaxation response to acetylcholine, and tissue levels of NO metabolites and cGMP were determined. The vascular expression of NO synthase (NOS) isoforms was also determined by western blot analysis. RESULTS: Acute treatment with CsA in vitro markedly attenuated the vasorelaxation response to acetylcholine, which was completely restored by L-arginine. The vascular accumulation of NO metabolites in response to acetylcholine was decreased significantly by CsA, which was prevented by cotreatment with L-arginine. CsA decreased the cGMP accumulation in response to both acetylcholine and sodium nitroprusside. L-Arginine restored, although not completely, acetylcholine-stimulated cGMP generation, whereas it did not affect sodium nitroprusside-stimulated cGMP generation. Following chronic CsA treatment in the whole animal, the vasorelaxation response to acetylcholine was decreased significantly along with tissue levels of NO metabolites; this was preserved by L-arginine-supplementation. Vascular expression of iNOS protein was decreased by CsA treatment along with decreased tissue accumulation of NO metabolites. L-Arginine supplementation did not modify the altered expression of NOS proteins. CONCLUSION: These results suggest that CsA causes an L-arginine-sensitive vascular dysfunction which is associated with impaired generation of NO and cGMP.  相似文献   

15.
L-arginine as a therapeutic tool in kidney disease   总被引:2,自引:0,他引:2  
Infusion of L-arginine in experimental animals increases renal plasma flow (RPF) and glomerular filtration rate (GFR). It is likely that a component of these hemodynamic changes are mediated by nitric oxide (NO) as suggested by studies with specific antagonists of L-arginine metabolism. L-arginine administration ameliorates the infiltration of the renal parenchyma by macrophages in rats with obstructive nephropathy or rats with puromycin-induced nephrotic syndrome. L-arginine administration also blunts the increase in interstitial volume, collagen IV, and alpha-smooth muscle actin. Rats with a remnant kidney given 1% L-arginine in the drinking water had a greater GFR and RPF. L-arginine administration also decreased proteinuria. Diabetic rats given L-arginine had significantly lower excretion of protein and cyclic guanosine monophosphate than diabetic rats not receiving L-arginine. Despite persistent hyperglycemia, the administration of L-arginine prevented the development of hyperfiltration and ameliorated proteinuria in diabetic rats. In the setting of ischemic acute renal failure, the administration of L-arginine had a beneficial effect on GFR and RPF, decreased O2- production, diminished up-regulation of soluble guanylate cyclase, and prevented up-regulation of inducible NO synthase (iNOS). The pharmacokinetics of L-arginine indicate that side effects are rare and mostly mild and dose dependent.  相似文献   

16.
BACKGROUND: The alternative complement pathway (AP) is activated in individuals with lupus nephritis and in murine models of systemic lupus erythematosus, including MRL/lpr mice. A previous study from our laboratory evaluated the development of renal disease in MRL/lpr mice genetically deficient in factor B (Bf-/-), a protein necessary for AP activation. MRL/lpr Bf-/- mice developed less renal disease and had improved survival; however, these mice were also a different major histocompatibility complex (MHC) haplotype (H-2b) than their wild-type littermates (H-2k) due to the gene for Bf being located in the MHC gene complex. We undertook the current study to determine if the decreased renal disease in MRL/lpr Bf-/- mice was due to the lack of AP activation or the H-2b haplotype by studying the effects of factor D (Df) deficiency, a critical protein for AP activation, on disease development in MRL/lpr mice. METHODS: Df-deficient mice were backcrossed with MRL/lpr mice for four to nine generations. MRL/lpr H-2k Df-/-, Df+/-, and Df+/+ littermates were evaluated for disease development. Lack of AP activation in MRL/lpr Df-/- mice was determined by the zymosan assay. Serum creatinine levels were measured using a creatinine kit. Proteinuria and autoantibody levels were determined by enzyme-linked immunosorbent assay (ELISA). Sections from one kidney were stained with fluorescein isothiocyanate (FITC) alpha-murine C3 or alpha-murine IgG to detect C3 and IgG deposition. The remaining kidney was cut in half with one half fixed, sectioned, and stained with hematoxylin and eosin and periodic acid-Schiff (PAS) to evaluate pathology and another half fixed in glutaraldehyde and examined via electron microscopy. RESULTS: MRL/lpr Df-/- mice had similar glomerular IgG deposition, proteinuria and autoantibody levels, as Df+/+ and Df+/- littermates. However, glomerular C3 deposition, serum creatinine levels, and pathologic renal disease were significantly reduced in Df-/- mice. Despite the lack of renal disease in Df-/- mice, life span was not impacted by factor D deficiency. CONCLUSION: The absence of Df and AP activation is protective against the development of proliferative renal disease in MRL/lpr mice suggesting the similar effect of Bf deficiency in MRL/lpr mice was also due to the lack of AP activation.  相似文献   

17.
BACKGROUND: In previous studies we found that experimental Adriamycin (ADR) nephropathy is associated with the loss of glomerular basement membrane (GBM) anionic sites provided by heparan sulfate proteoglycans. Chronic saline loading in normal rats resulted in a similar effect on the GBM anionic sites. The L-arginine-nitric oxide synthase-nitric oxide system is involved in the pathogenesis of experimental chronic renal failure. The present study was performed to determine the combined effect of nitric oxide (NO) modulation and chronic saline loading in ADR nephropathy. The modulation of NO was done by chronic administration of L-arginine (NO donor) or N(w)-nitro-L-arginine, a known nitric oxide synthase inhibitor. METHODS: Systolic blood pressure was measured in awake rats by a tail-cuff method. Renal function was assessed by creatinine clearance, FeNa%, and daily protein excretion. The change of mean GBM widths and anionic sites distribution were assessed by electron microscopy. The localization of anionic sites was carried out by cationic colloidal gold. Plasma and urinary nitrates (NO(x)) were measured by nitrite (NO(2)) + nitrate (NO(3)), stable metabolites of NO. RESULTS: Two weeks after the ADR administration (3.5 mg/kg BW iv) the rats had severe renal failure (creatinine clearance 134 +/- 31 microl/min/100 g BW vs. initial values 670 +/- 29 microl/min/ 100 g BW, p < 0.001), high FeNa%, severe proteinuria, increased GBM width, significant reduction of GBM anionic sites and low urinary NO(x) excretion. The saline loading resulted in further reduction of GBM anionic sites count and blood pressure elevation. The inhibition of NO did not change the course of ADR nephropathy. The main finding of the present study is that chronic administration of L-arginine significantly alleviates the renal failure in the ADR (+/- saline loading) nephropathy. The L-arginine-treated rat had higher creatinine clearance, lower FeNa% and protein excretion and complete normalization of GBM anionic sites distribution. CONCLUSIONS: Sodium loading has a deleterious effect on GBM permselectivity. L-Arginine prevents the reduction of GBM anionic sites, decreases proteinuria and alleviates the renal insufficiency in ADR nephropathy.  相似文献   

18.
Chronic diabetic nephropathy: role of inducible nitric oxide synthase   总被引:12,自引:0,他引:12  
Nitric oxide (NO) is a multifunctional mediator that has been implicated in the short-term hemodynamic alterations that occur in acute streptozocin (STZ)-induced diabetes. We investigated the role of NO produced by inducible nitric oxide synthase (iNOS) in chronic STZ diabetic nephropathy. Diabetes was induced in C57BL/6 and iNOS knockout (KO) mice with two intraperitoneal injections of STZ, 100 mg/kg. Animals were maintained without insulin treatment for 40 weeks. There were no significant differences between the strains in blood urea nitrogen (BUN), serum creatinine or glucose concentration, or urinary protein excretion during the entire observation period. Urinary nitrite + nitrate excretion was significantly lower in iNOS KO mice compared to control animals at all time points; in C57 mice, urinary nitrite declined progressively with more prolonged duration of diabetes. Renal hypertrophy (kidney weight/body weight) was noted in both strains of mice. However, histopathological assessment of renal tissue specimens at 16 and 40 weeks demonstrated increased mesangial hypercellularity and expansion as well as more prominent tubulointerstitial fibrosis in iNOS KO versus C57 mice. These changes were accompanied by increased interstitial deposition of type I collagen at 16 and 40 weeks in iNOS KO mice. Glomerular basement membrane staining for type IV collagen was also increased at 40 weeks in diabetic iNOS KO mice. While iNOS protein was undetectable in any of the kidney specimens obtained from either strain, eNOS was present throughout the course of chronic STZ diabetes. Moreover, eNOS expression was significantly increased by approximately 40% at 16 and 40 weeks of observation in iNOS KO versus C57 mice. There was no difference in renal cortical malondialdehyde content between the strains early or late in the disease course. In time control animals, there was no evidence of renal histopathological damage in iNOS KO or C57 mice after 40 weeks. We conclude that iNOS-derived NO modulates glomerulosclerosis and tubulointerstitial fibrosis in chronic STZ nephropathy. This action is probably a result of the direct actions of NO on the synthesis and degradation of extracellular matrix proteins. Received: 28 February 2001 / Revised: 10 August 2001 / Accepted: 13 August 2001  相似文献   

19.
Nitric oxide (NO) is known to be generated from L-arginine and may regulate glomerular filtration, tubular sodium reabsorption, and renin secretion. Impairment of renal function might influence NO production secondary to endothelial dysfunction, decreased NO synthesis and increased activity of arginine analogues inhibiting NO synthase. In this study, we evaluated the effect of L-arginine on the blood pressure and urinary sodium excretion in patients with chronic renal failure. A 300-ml dose of 10% L-arginine solution was administered intravenously over 30 min and blood pressure was monitored every 10 min under basal conditions and for 120 min after infusion. The patients were divided into two groups based on the reduction in mean blood pressure (dMBP) following infusion, namely non-responders (dMBP < 10 mmHg) and responders (dMBP > 10 mmHg). Urine and blood samples were collected to determine electrolytes, urinary NO2 + NO3 by the Griess method, urinary cGMP, plasma renin activity (PRA), and the plasma aldosterone concentration (PAC). L-arginine significantly decreased MBP in 8 patients and caused no significant change in 10 patients. Urinary sodium excretion and the NO2 + NO3 level were significantly increased following L-arginine infusion and the increment of fractional excretion of sodium was higher in responders. However, there were no significant changes in PRA, PAC, and cGMP. Our findings suggest that a vasodilator effect of NO induced by L-arginine loading may, at least in part, be associated with increased renal sodium excretion in patients with chronic renal failure.  相似文献   

20.
Lupus nephritis is characterized by immune complex deposition and inflammatory cell infiltration. Therefore, the initiation and progression of lupus nephritis in MRL/MpJ Fas(lpr/lpr) (MRL/lpr) mice were investigated, with a focus on the expression of several chemokines and chemokine receptors. Mice were monitored for proteinuria from 6 to 20 wk of age, and kidneys were examined every 2 wk by light microscopy, electron microscopy, and immunohistologic analyses. Furthermore, the expression of chemokines, chemokine receptors, and proinflammatory cytokines was analyzed in ribonuclease protection assays. MRL/lpr mice demonstrated increased expression of monocyte chemoattractant protein-1, regulated upon activation, normal T cell-expressed and -secreted protein, inducible protein of 10 kD, and macrophage inflammatory protein-1beta at week 8. At that time point, levels of circulating and glomerular immune complexes were increased, and no proteinuria or histopathologic signs of renal damage could be observed. As assessed in immunohistochemical and in situ hybridization analyses, monocyte chemoattractant protein-1 and regulated upon activation, normal T cell-expressed and -secreted protein expression was preferentially located in the glomeruli and interstitium. Mononuclear cell infiltration of the kidney was observed by weeks 10 to 12. At week 12, the renal expression of chemokine receptor 1 (CCR1), CCR2, and CCR5 was increased, mice became proteinuric, and renal damage was histologically evident. Finally, the expression of proinflammatory cytokines was detected (weeks 12 to 14). In summary, (1) chemokines are upregulated before inflammatory cell infiltration, proteinuria, and kidney damage are observed; (2) chemokine generation is restricted to sites of subsequent inflammatory cell infiltration, i.e., glomeruli and interstitium; (3) chemokine receptor expression parallels mononuclear cell infiltration; and (4) proinflammatory cytokines are upregulated later, in parallel with inflammatory cell infiltration and the onset of proteinuria. These results support the hypothesis that chemokines initiate leukocyte infiltration and precede proteinuria and renal damage in MRL/lpr mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号